JPH0529310A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0529310A
JPH0529310A JP18282391A JP18282391A JPH0529310A JP H0529310 A JPH0529310 A JP H0529310A JP 18282391 A JP18282391 A JP 18282391A JP 18282391 A JP18282391 A JP 18282391A JP H0529310 A JPH0529310 A JP H0529310A
Authority
JP
Japan
Prior art keywords
film
silicon
oxide film
silicon substrate
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18282391A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18282391A priority Critical patent/JPH0529310A/en
Publication of JPH0529310A publication Critical patent/JPH0529310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove the lateral expanse (bird's beak) of an oxidation area, in the element isolating formation method by selective oxidation method. CONSTITUTION:A pad oxide film 2 is made on a silicon substrate, and a silicon nitride film 3 is stacked on the oxide film 2, and an element isolating region is patterned. Then, a silicon nitride film is made as a sidewall 4 at the sidewall of the insulating film on the silicon substrate 1, and then a groove 5 is made in the silicon substrate, and a polysilicon film 6 is grown selectively in the groove, and then boron 7 is implanted as a channel stopper 8, and then the polysilicon film 6 is oxidated to form an element isolating oxide film 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に選択酸化による素子分離酸化膜の形成法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an element isolation oxide film by selective oxidation.

【0002】[0002]

【従来の技術】従来の半導体装置の製造工程における選
択酸化法による素子分離酸化膜の形成方法は、LOCO
S(Local oxidftion of Sili
con)と呼ばれる方法で主に形成されていた。以下図
4を用いて説明する。
2. Description of the Related Art A conventional method for forming an element isolation oxide film by a selective oxidation method in a semiconductor device manufacturing process is LOCO.
S (Local oxidation of Sili)
It was mainly formed by a method called con). This will be described below with reference to FIG.

【0003】まず図4(a)に示すように、シリコン基
板1上に薄いパット酸化膜2Aと厚い窒化シリコン膜3
Aを形成したのち、素子分離領域の窒化シリコン膜3A
とパット酸化2Aをパターニングし、開口部を形成す
る。
First, as shown in FIG. 4 (a), a thin pad oxide film 2A and a thick silicon nitride film 3 are formed on a silicon substrate 1.
After forming A, the silicon nitride film 3A in the element isolation region is formed.
Then, the pad oxide 2A is patterned to form an opening.

【0004】次に図4(b)に示すように、窒化シリコ
ン膜3Aをマスクとして開口部内のシリコン基板を選択
的に酸化し、素子分離酸化膜19を形成する。
Next, as shown in FIG. 4B, the silicon substrate in the opening is selectively oxidized by using the silicon nitride film 3A as a mask to form an element isolation oxide film 19.

【0005】[0005]

【発明が解決しようとする課題】デバイスの高集積化が
進むにつれ素子分離領域の縮小化、つまり選択酸化法に
よる素子分離酸化膜の形成法に於て、酸化領域の横方向
の広がり(バーズビーク)の縮小化が要求される。その
ため、従来の選択酸化による素子分離酸化膜の形成方法
では、バーズビークを縮小するため、窒化シリコン膜3
Aを厚くし、パッド酸化膜2Aを薄くする必要がある。
パッド酸化膜の薄膜化、及び窒化シリコン膜を厚くする
ことによりバーズビークの縮小は認められるものの、窒
化シリコン膜のもたらす応力をパッド酸化膜で緩和する
ことができなくなるため、シリコン基板に欠陥を発生さ
せ、デバイス特性を劣化させるという欠点がある。
As device integration becomes higher, element isolation regions are made smaller, that is, in the method of forming an element isolation oxide film by the selective oxidation method, the lateral extension of the oxidized region (bird's beak) is caused. Is required to be reduced. Therefore, in the conventional method of forming an element isolation oxide film by selective oxidation, in order to reduce the bird's beak, the silicon nitride film 3 is formed.
It is necessary to make A thick and make the pad oxide film 2A thin.
Although the bird's beak can be reduced by thinning the pad oxide film and thickening the silicon nitride film, the stress caused by the silicon nitride film cannot be alleviated by the pad oxide film, which causes defects in the silicon substrate. However, there is a drawback that the device characteristics are deteriorated.

【0006】また、チャンネルストッバーとして所望の
不純物をイオン注入する場合、パッド酸化を介してシリ
コン基板に注入し欠陥の発生を抑制していたが、パッド
酸化膜が薄くなると、窒化シリコン膜除去の際、パッド
酸化膜が同時に除去されるためベアー注入となり、欠陥
が多量に発生するという欠点がある。
Further, when a desired impurity is ion-implanted as a channel stopper, the generation of defects is suppressed by injecting into the silicon substrate through pad oxidation. However, when the pad oxide film becomes thin, the silicon nitride film is removed. At this time, since the pad oxide film is removed at the same time, bare implantation is performed, which causes a large number of defects.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、シリコン基板上に酸化シリコン膜と第1の窒
化シリコン膜を順次形成したのち素子分離領域のこの第
1の窒化シリコン膜と酸化シリコン膜とを選択的に除去
し開口部を形成する工程と、この開口部の側壁に第2の
窒化シリコン膜からなるサイドウオールを形成する工程
と、このサイドウオールと前記第1の窒化シリコン膜を
マスクとし前記シリコン基板に溝を形成したのちこの溝
内に選択的にシリコン層を成長させる工程と、このシリ
コン層を介してチャンネルストッパーとしての不純物を
イオン注入したのちこのシリコン層を酸化する工程とを
含むものである。
According to the method of manufacturing a semiconductor device of the present invention, a silicon oxide film and a first silicon nitride film are sequentially formed on a silicon substrate, and then the first silicon nitride film in the element isolation region is formed. A step of selectively removing the silicon oxide film and forming an opening, a step of forming a side wall made of a second silicon nitride film on a side wall of the opening, the side wall and the first silicon nitride A step of forming a groove in the silicon substrate using the film as a mask, and then selectively growing a silicon layer in the groove, and ion-implanting impurities as a channel stopper through the silicon layer, and then oxidizing the silicon layer And a process.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(d)は本発明の第1の実施例を説明
するための半導体チップの断面図である。
The present invention will be described below with reference to the drawings. 1A to 1D are cross-sectional views of a semiconductor chip for explaining a first embodiment of the present invention.

【0009】まず図1(a)に示すように、低濃度P型
の面方位(100)を有するシリコン基板1に、薄いパ
ッド酸化膜(SiO2 )を45nm,窒化シリコン膜
(Si3 4 )3を300nmの厚さに順次形成したの
ちパターニングし、素子分離領域に開口部を形成する。
First, as shown in FIG. 1A, a thin pad oxide film (SiO 2 ) of 45 nm and a silicon nitride film (Si 3 N 4 ) are formed on a silicon substrate 1 having a low-concentration P-type plane orientation (100). 3) is sequentially formed to a thickness of 300 nm and then patterned to form an opening in the element isolation region.

【0010】次に図1(b)に示すように、シリコン基
板1上に第2の窒化シリコン膜を形成したのちエッチバ
ックし、開口部の側壁にサイドウォール4を形成する。
このサイドウォールは横方向の酸化過程を抑制し、素子
分離領域の横方向の広がりを小さくする。更に実際のマ
スク設計寸法より小さい素子分離領域が形成されるわけ
である。その後、サイドウォール4と窒化シリコン膜3
をマスクとし、異方性エッチング法によりシリコン基板
1に溝5を200nmの深さで形成する。 次に図1
(c)に示すように、この溝5にポリシリコン膜6(1
00nm)を堆積させる。その後ボロンイオン7を10
0KeV,1.5×1013cm-2の条件でポリシリコン
膜6を介してシリコン基板1に注入しチャンネルストン
バー8を形成する。その際、ポリシリコン膜6は注入損
傷を緩和させる保護膜となる。
Next, as shown in FIG. 1B, a second silicon nitride film is formed on the silicon substrate 1 and then etched back to form a sidewall 4 on the side wall of the opening.
This sidewall suppresses the lateral oxidation process and reduces the lateral spread of the element isolation region. Further, an element isolation region smaller than the actual mask design size is formed. After that, the sidewall 4 and the silicon nitride film 3
Using the as a mask, a groove 5 is formed in the silicon substrate 1 to a depth of 200 nm by an anisotropic etching method. Next in FIG.
As shown in (c), the polysilicon film 6 (1
00 nm) is deposited. After that, the boron ion 7 is 10
A channel stone bar 8 is formed by injecting into the silicon substrate 1 through the polysilicon film 6 under the conditions of 0 KeV and 1.5 × 10 13 cm −2 . At this time, the polysilicon film 6 serves as a protective film that relieves the implantation damage.

【0011】次に図1(d)に示すように、ポリシリコ
ン膜6を1000℃、2時間、ウエット酸化させ素子分
離酸化膜9を形成する。次いで窒化シリコン膜を除去す
る。
Next, as shown in FIG. 1D, the polysilicon film 6 is wet-oxidized at 1000 ° C. for 2 hours to form an element isolation oxide film 9. Then, the silicon nitride film is removed.

【0012】従来技術と比較するため図2に素子分離領
域の横方向の広がりの素子分離酸化膜の膜厚依存を示
す。直線Bに示す従来技術の素子分離領域の横方向の広
がりに比べ、直線Aに示す第1の実施例による素子分離
領域の横方向広がりは小さく、本発明の優位性が認めら
れる。
For comparison with the prior art, FIG. 2 shows the film thickness dependence of the element isolation oxide film on the lateral expansion of the element isolation region. The lateral spread of the element isolation region according to the first embodiment shown by the straight line A is smaller than the lateral spread of the prior art device isolation region shown by the straight line B, and the advantage of the present invention is recognized.

【0013】図3(a)〜(d)は本発明の第2の実施
例を説明するための半導体チップ断面図である。
FIGS. 3A to 3D are sectional views of a semiconductor chip for explaining a second embodiment of the present invention.

【0014】まず図3(a)に示すように、低濃度P型
の面方位(100)を有するシリコン基板1に、第1の
実施例と同称にて薄いパッド酸化2と窒化シリコン膜3
とを形成し、パターシングして開口部を形成する。次に
図3(b)に示すように、この開口部の側壁にサイドウ
ォール4を形成する。更に、シリコン基板に溝5Aを2
00nmの深さで形成する。この際、ドライエッチング
の異方性を弱めテーパを形成し、溝の側壁が傾くように
する。
First, as shown in FIG. 3A, a thin pad oxide 2 and a silicon nitride film 3 are formed on a silicon substrate 1 having a low-concentration P-type plane orientation (100) under the same names as in the first embodiment.
And are patterned and the openings are formed. Next, as shown in FIG. 3B, a sidewall 4 is formed on the side wall of this opening. Furthermore, two grooves 5A are formed on the silicon substrate.
It is formed with a depth of 00 nm. At this time, the anisotropy of dry etching is weakened to form a taper so that the side wall of the groove is inclined.

【0015】次に図3(c)に示すように、溝5A中に
選択的にポリシリコン膜6Aを100nmの厚さに堆積
させる。第1の実施例に比べ、この溝5Aの側壁の傾き
は、横方向の酸化過程を抑制し、素子分離領域の横方向
広がりをなくすと共に、ポリシリコン膜6Aの応力を緩
和する。その後、第1の実施例と同様にして、ボロンイ
オン7をポリシリコン膜6Aを介してシリコン基板に注
入しチャンネルストッパー8Aを形成する。次いで図3
(d)に示すように、開口部内のシリコン基板をウエッ
ト酸化させ、素子分離酸化膜9Aを形成する。
Next, as shown in FIG. 3C, a polysilicon film 6A is selectively deposited in the groove 5A to a thickness of 100 nm. Compared with the first embodiment, the inclination of the sidewall of the trench 5A suppresses the lateral oxidation process, eliminates the lateral expansion of the element isolation region, and relaxes the stress of the polysilicon film 6A. After that, as in the first embodiment, boron ions 7 are implanted into the silicon substrate through the polysilicon film 6A to form the channel stopper 8A. Then Fig. 3
As shown in (d), the silicon substrate in the opening is wet-oxidized to form an element isolation oxide film 9A.

【0016】尚、上記実施例においては、溝中に形成す
るシリコン膜としてポリシリコン膜を用いた場合につい
て説明したが、シリコン基板に比較して酸化される速度
の早いエピタキシキル成長による単結晶シリコン膜やア
モルファスシリコン膜を用いてもよい。
In the above embodiment, the case where a polysilicon film is used as the silicon film formed in the groove has been described, but single crystal silicon by epitaxy growth which has a higher oxidation rate than a silicon substrate. A film or an amorphous silicon film may be used.

【0017】[0017]

【発明の効果】以上説明したように本発明は、シリコン
基板上のシリコン窒化膜の開口部の側壁にサイドウォー
ルとして窒化シリコン膜を形成した後、シリコン基板に
溝を形成し、溝内に選択的にシリコン膜を成長させ、そ
の後チャンネルストッパーとして所望の不純物をイオン
注入した後、そのシリコン膜を酸化させることにより、
素子分離領域の横方向の広がりがなく、実際の素子分離
形成領域の寸法より小さい素子分離酸化膜を形成できる
という効果がある。
As described above, according to the present invention, after a silicon nitride film is formed as a sidewall on the side wall of the opening of the silicon nitride film on the silicon substrate, a groove is formed in the silicon substrate and the inside of the groove is selected. By selectively growing a silicon film, ion-implanting desired impurities as a channel stopper, and then oxidizing the silicon film.
There is an effect that the element isolation region does not spread laterally and an element isolation oxide film smaller than the actual size of the element isolation formation region can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例を説明するための半導体チップの
断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining a first embodiment.

【図2】素子分離領域の横方向広がりの素子分離形成領
域の酸化膜厚依存性を示す図。
FIG. 2 is a diagram showing the oxide film thickness dependence of the element isolation formation region in the lateral expansion of the element isolation region.

【図3】本発明の第2の実施例を説明するための半導体
チップの断面図。
FIG. 3 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention.

【図4】従来技術を説明するための半導体チップの断面
図。
FIG. 4 is a sectional view of a semiconductor chip for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2,2A パッド酸化膜 3,3A 窒化シリコン膜 4 サイドウォール 5,5A 溝 6,6A ポリシリコン膜 7 ボロンイオン 8,8A チャンネルストッパー 9,19 素子分離酸化膜 1 Silicon substrate 2,2A pad oxide film 3,3A Silicon nitride film 4 sidewalls 5,5A groove 6,6A Polysilicon film 7 Boron ion 8,8A channel stopper 9,19 Element isolation oxide film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に酸化シリコン膜と第1
の窒化シリコン膜を順次形成したのち素子分離領域のこ
の第1の窒化シリコン膜と酸化シリコン膜とを選択的に
除去し開口部を形成する工程と、この開口部の側壁に第
2の窒化シリコン膜からなるサイドウオールを形成する
工程と、このサイドウオールと前記第1の窒化シリコン
膜をマスクとし前記シリコン基板に溝を形成したのちこ
の溝内に選択的にシリコン層を成長させる工程と、この
シリコン層を介してチャンネルストッパーとしての不純
物をイオン注入したのちこのシリコン層を酸化する工程
とを含むことを特徴とする半導体装置の製造方法。
1. A silicon oxide film and a first silicon oxide film on a silicon substrate.
Second silicon nitride film is sequentially formed, and then the first silicon nitride film and the silicon oxide film in the element isolation region are selectively removed to form an opening, and a second silicon nitride film is formed on the side wall of the opening. A step of forming a side wall made of a film, a step of forming a groove in the silicon substrate using the side wall and the first silicon nitride film as a mask, and then selectively growing a silicon layer in the groove, And a step of oxidizing the silicon layer after ion-implanting impurities as a channel stopper through the silicon layer.
【請求項2】 シリコン基板に形成する溝はテーパを有
する請求項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the groove formed in the silicon substrate has a taper.
JP18282391A 1991-07-24 1991-07-24 Manufacture of semiconductor device Pending JPH0529310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18282391A JPH0529310A (en) 1991-07-24 1991-07-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18282391A JPH0529310A (en) 1991-07-24 1991-07-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0529310A true JPH0529310A (en) 1993-02-05

Family

ID=16125088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18282391A Pending JPH0529310A (en) 1991-07-24 1991-07-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0529310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010066388A (en) * 1999-12-31 2001-07-11 박종섭 Method for forming semiconductor device with trench type isolation layer
US6746935B2 (en) * 2000-03-31 2004-06-08 Stmicroelectronics S.A. MOS transistor in an integrated circuit and active area forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010066388A (en) * 1999-12-31 2001-07-11 박종섭 Method for forming semiconductor device with trench type isolation layer
US6746935B2 (en) * 2000-03-31 2004-06-08 Stmicroelectronics S.A. MOS transistor in an integrated circuit and active area forming method

Similar Documents

Publication Publication Date Title
JP3058954B2 (en) Method of manufacturing semiconductor device having growth layer on insulating layer
US4459325A (en) Semiconductor device and method for manufacturing the same
JP3208575B2 (en) Semiconductor device manufacturing method
JPH04234146A (en) Formation method of field oxide film for semiconductor device
US5895252A (en) Field oxidation by implanted oxygen (FIMOX)
US20030049893A1 (en) Method for isolating semiconductor devices
JPH02260660A (en) Manufacture of mos type semiconductor device
JPH07153829A (en) Separate constituent body and its preparation
JPH06163532A (en) Method for isolation of semiconductor element
JP2989051B2 (en) Silicon carbide bipolar semiconductor device and method of manufacturing the same
JP3385981B2 (en) Semiconductor device and manufacturing method thereof
JPH05102292A (en) Manufacture of isoplanar-separating type active region
JPH0529310A (en) Manufacture of semiconductor device
US5763316A (en) Substrate isolation process to minimize junction leakage
US20030181014A1 (en) Method of manufacturing semiconductor device with STI
JPH08236611A (en) Element separation method of semiconductor device
JP2707901B2 (en) Method for manufacturing semiconductor device
JP3109121B2 (en) Semiconductor substrate manufacturing method
JP2500427B2 (en) Method for manufacturing bipolar semiconductor device
JPS594046A (en) Semiconductor device and fabrication thereof
JPH04234145A (en) Element isolation forming method
JPH0423828B2 (en)
JP3249101B2 (en) Mos semiconductor device
KR930010726B1 (en) Isolation method of semiconductor
JPH0514430B2 (en)