JPH02260660A - Manufacture of mos type semiconductor device - Google Patents
Manufacture of mos type semiconductor deviceInfo
- Publication number
- JPH02260660A JPH02260660A JP8350789A JP8350789A JPH02260660A JP H02260660 A JPH02260660 A JP H02260660A JP 8350789 A JP8350789 A JP 8350789A JP 8350789 A JP8350789 A JP 8350789A JP H02260660 A JPH02260660 A JP H02260660A
- Authority
- JP
- Japan
- Prior art keywords
- film
- forming
- groove
- mask
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 238000005530 etching Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000003647 oxidation Effects 0.000 claims abstract description 14
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 14
- 238000002955 isolation Methods 0.000 claims description 26
- 238000001020 plasma etching Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 4
- 238000001947 vapour-phase growth Methods 0.000 claims 3
- 230000003071 parasitic effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 3
- 238000007669 thermal treatment Methods 0.000 abstract 1
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 241000293849 Cordylanthus Species 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- -1 boron ions Chemical class 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、半導体装置の製造方法に係り、とくに絶縁膜
埋込みによる素子分離技術を用いたMOS型半導体装置
の製造方法に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a method of manufacturing a MOS type semiconductor device using element isolation technology by embedding an insulating film. .
(従来の技術)
従来、MO3集積回路においては、寄生チャネルによる
絶縁不良をなくし、また配線の寄生容量を小さくする為
に素子間の分離領域(いわゆるフィールド領域)に厚い
絶縁膜を形成することが行われている。その一つの例と
して、ウニ/%の素子分離領域に溝をエツチングにより
形成し、ここに気相成長法(CVD法)により酸化膜を
平坦に埋め込む方法(BOX法)が知られている。この
方法は、LOCO8法によるビーズバークの発生が無く
、微細な素子領域を形成することができ、また表面の平
坦性が優れたものとなる、といった特徴を有する。(Prior art) Conventionally, in MO3 integrated circuits, it has been necessary to form a thick insulating film in the isolation region between elements (so-called field region) in order to eliminate insulation defects caused by parasitic channels and to reduce parasitic capacitance of wiring. It is being done. As one example, there is known a method (BOX method) in which a trench is formed in an element isolation region by etching, and an oxide film is flattened therein by vapor phase epitaxy (CVD method). This method has the characteristics that there is no bead bark caused by the LOCO8 method, that a fine element region can be formed, and that the surface has excellent flatness.
しかしながらこのBOX法にも解決すべき問題がある。However, this BOX method also has problems that need to be solved.
例えば、BOX法では埋込みCVD酸化膜をレジストを
用いたエッチバック法で形成するため、ウニへ面内にお
いてSi基板が露出して、チャネル領域に凸状のコーナ
ーができる。その様子を第7図(a) (b)を用いて
説明する。第7図(a) (b)は、Si基板21に反
応性イオンエツチング(RI E)により満22を形成
し、この溝22にCVD酸化膜23を埋込み、素子領域
にゲート絶縁膜24を介してゲート電極25を形成した
状態(チャネル方向は紙面に垂直)を示している。もし
第7図(a)に示すように埋込み酸化膜23の表面が素
子領域のSi基板面と一致していれば、問題ない。とこ
ろが実際には、エッチバックによる酸化膜埋込みはそれ
ほど制御性よく行われず、第7図(b)に示すように、
素子領域のSi基板が凸型になる。そうすると、コーナ
ーAの部分には寄生チャネルが形成され、ドレイン電流
のサブスレッショルド特性にハンプが出て、MOSトラ
ンジスタのカットオフ特性が悪化する。その特性を、第
6図に(ハ)従来例として示した。第6図の(イ)は、
第7図(a)のように素子領域が凸状にならない理想状
態での特性であり、このときハンプは出ない。For example, in the BOX method, a buried CVD oxide film is formed by an etch-back method using a resist, so that the Si substrate is exposed within the surface of the sea urchin, creating a convex corner in the channel region. The situation will be explained using FIGS. 7(a) and 7(b). 7(a) and 7(b), a trench 22 is formed on a Si substrate 21 by reactive ion etching (RIE), a CVD oxide film 23 is buried in this trench 22, and a gate insulating film 24 is formed in the element region. The state in which the gate electrode 25 is formed (the channel direction is perpendicular to the paper surface) is shown. If the surface of the buried oxide film 23 matches the surface of the Si substrate in the element region as shown in FIG. 7(a), there is no problem. However, in reality, oxide film filling by etchback is not performed with good controllability, and as shown in FIG. 7(b),
The Si substrate in the element region becomes convex. Then, a parasitic channel is formed at corner A, a hump appears in the subthreshold characteristic of the drain current, and the cutoff characteristic of the MOS transistor deteriorates. Its characteristics are shown in FIG. 6 (c) as a conventional example. (a) in Figure 6 is
As shown in FIG. 7(a), this is the characteristic in an ideal state in which the element region does not have a convex shape, and no hump appears in this case.
(発明が解決しようとする課題)
以上のように従来の絶縁膜埋込み法でMO8集積回路を
形成した場合、チャネル領域の基板が凸状になってコー
ナーができ、寄生チャネルが形成されてカットオフ特性
が劣化するという問題があった。(Problems to be Solved by the Invention) As described above, when an MO8 integrated circuit is formed using the conventional insulating film embedding method, the substrate in the channel region becomes convex, corners are formed, a parasitic channel is formed, and a cut-off occurs. There was a problem that the characteristics deteriorated.
本発明はこのような問題を解決して、優れたカットオフ
特性が得られる絶縁膜埋込み構造のMOS型半導体装置
の製造方法を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a method for manufacturing a MOS type semiconductor device with an insulating film buried structure that provides excellent cutoff characteristics.
[発明の構成]
(課題を解決するための手段)
本発明は、半導体基板の素子分離領域に溝を形成した後
、この溝の上部コーナーに丸みをつけ、その後素子領域
にゲート絶縁膜を介してゲート電極を形成する。[Structure of the Invention] (Means for Solving the Problem) The present invention forms a groove in an element isolation region of a semiconductor substrate, rounds the upper corner of the groove, and then forms a groove in the element region with a gate insulating film interposed therebetween. to form a gate electrode.
(作用)
本発明によれば、素子領域の基板が素子分離領域に埋め
込ま屯る絶縁膜表面より突出する状態に形成されても、
その素子領域のコーナーに一定の丸みをつけることによ
って寄生チャネルの効果を抑制することができ、カット
オフ特性の優れたMOS集積回路を得ることができる。(Function) According to the present invention, even if the substrate of the element region is formed to protrude from the surface of the insulating film buried in the element isolation region,
By rounding the corners of the element region to a certain degree, the effects of parasitic channels can be suppressed, and a MOS integrated circuit with excellent cutoff characteristics can be obtained.
(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図(a) (b)は、一実施例のMOS集積回路に
おける一つのMOS)ランリスタ部分を示す斜視図と断
面図である。断面図は、チャネル長方向に直交する面で
ある。第2図(a)〜(h)はその断面で見た製造工程
図である。FIGS. 1(a) and 1(b) are a perspective view and a sectional view showing one MOS run lister portion in a MOS integrated circuit according to an embodiment. The cross-sectional view is a plane perpendicular to the channel length direction. FIGS. 2(a) to 2(h) are manufacturing process diagrams viewed in cross section.
まず不純物濃度がI X 1017/ cn3程度のp
型Si基板1の表面に50no+程度の熱酸化膜11と
200 na+程度のCVDシリコン窒化膜12を積層
形成し、これを素子領域にのみ残すように選択エツチン
グによりバターニングする(第2図(a))。First, p with an impurity concentration of about I x 1017/cn3
A thermal oxide film 11 of approximately 50 NO+ and a CVD silicon nitride film 12 of approximately 200 NA+ are laminated on the surface of a type Si substrate 1, and patterned by selective etching so as to remain only in the element region (see FIG. 2(a)). )).
次に1000℃程度のウェット雰囲気中で熱酸化を行な
い、素子分離領域の基板面に20Cjnm程度の熱酸化
膜13を形成する(第2図(b))。このとき、熱酸化
膜13は、素子領域に食い込んだ状態で形成され、所謂
バーズビークが形成される。Next, thermal oxidation is performed in a wet atmosphere at about 1000° C. to form a thermal oxide film 13 of about 20 Cj nm on the substrate surface of the element isolation region (FIG. 2(b)). At this time, the thermal oxide film 13 is formed so as to dig into the element region, forming a so-called bird's beak.
次にNH,F液などを用いて熱酸化膜13をエツチング
除去し、ついで窒化膜12をマスクとして用いてRIE
により素子分離領域に深さ約0.3μmの溝14を形成
する(第2図(C))。Next, the thermal oxide film 13 is removed by etching using NH, F solution, etc., and then RIE is performed using the nitride film 12 as a mask.
A groove 14 having a depth of about 0.3 μm is formed in the element isolation region (FIG. 2(C)).
溝14は図示のようにほぼ垂直側壁をもって形成される
。Groove 14 is formed with generally vertical sidewalls as shown.
次に必要に応じて溝14の内壁をアルカリ溶液を含むエ
ツチング液で50〜100人エツチングし、RIE時の
ダメージ層を除去する。そして熱酸化を行なって溝14
の内壁に30nm程度の酸化膜2.を形成する(第2図
(d))。なおこのとき素子分離領域の溝底部にフィー
ルド反転防止のためにボロンをイオン注入してp型層を
形成しても良い。この反転防止層形成の工程を入れる場
合は、まず10rv程度の薄い熱酸化膜を形成してイオ
ン注入を行い、さらに熱酸化を行って2On11程度酸
化膜を形成する・。Next, if necessary, the inner wall of the groove 14 is etched by 50 to 100 etches with an etching solution containing an alkaline solution to remove the layer damaged by RIE. Then, thermal oxidation is performed to form the groove 14.
An oxide film of about 30 nm on the inner wall of 2. (Fig. 2(d)). At this time, a p-type layer may be formed by implanting boron ions into the groove bottom of the element isolation region to prevent field reversal. When including the step of forming this anti-inversion layer, first a thin thermal oxide film of about 10 rv is formed, ions are implanted, and then thermal oxidation is performed to form an oxide film of about 2On11.
次に全面にCVDによるシリコン酸化膜2□を約400
nm堆積し、フォトレジスト15を塗布して表面を平
坦化する(第2図(e))。その後、フォトレジスト1
5と酸化膜2に対してエツチング速度が等しくなるよう
にエツチング条件を調整したガス条件で全面エツチング
(所謂エッチバック)を行い、基板上の窒化膜12を露
出させる(第2図(r))。Next, apply a silicon oxide film of about 400 cm by CVD to the entire surface.
nm is deposited, and a photoresist 15 is applied to flatten the surface (FIG. 2(e)). After that, photoresist 1
The entire surface is etched (so-called etch-back) under gas conditions in which the etching conditions are adjusted so that the etching speed is equal to that of the oxide film 2 and the nitride film 12 on the substrate (FIG. 2(r)). .
次にケミカル・ドライエッチング(CD E)により選
択的に窒化膜12を除去し、ついで例えばNH4F液を
用いてその下の熱酸化膜11をエツチングして素子領域
の基板面を露出させる(第2図(g))。この酸化膜エ
ツチングの工程で、溝の上部コーナー7に曲率半径0.
05μm以上の丸みを形成する。この丸みの曲率半径は
、酸化膜11および2.の膜厚に依存している。Next, the nitride film 12 is selectively removed by chemical dry etching (CD E), and then the underlying thermal oxide film 11 is etched using, for example, NH4F solution to expose the substrate surface in the element region (second Figure (g)). In this oxide film etching step, the upper corner 7 of the groove has a radius of curvature of 0.
Form a roundness of 0.05 μm or more. The radius of curvature of this roundness is determined by the radius of curvature of the oxide films 11 and 2. depends on the film thickness.
その後、素子領域にゲート酸化膜3を形成し、この上に
リンをドープした多結晶シリコン膜をCVDにより堆積
してこれをバターニングしてゲート電極4を形成する。Thereafter, a gate oxide film 3 is formed in the element region, and a phosphorous-doped polycrystalline silicon film is deposited thereon by CVD and patterned to form a gate electrode 4.
そしてこの後通常の工程にしたがって、ヒ素またはリン
をイオン注入してソース5.ドレイン6を形成する(第
2図(h))。Thereafter, arsenic or phosphorus is ion-implanted into the source 5 according to a normal process. A drain 6 is formed (FIG. 2(h)).
このときゲート電極側壁にスペーサを設けた状態でイオ
ン注入を行うことにより、ソース、ドレインをLDD構
造としてもよい。At this time, the source and drain may have an LDD structure by performing ion implantation with a spacer provided on the side wall of the gate electrode.
最後に図では省略したが、全面にCVD酸化膜を堆積し
、コンタクト孔を開け、AI配線を形成して完成する。Finally, although not shown in the figure, a CVD oxide film is deposited on the entire surface, contact holes are opened, and AI wiring is formed to complete the process.
この実施例によるMOS)ランリスタのゲート電圧Vg
とドレイン電流1dの特性を第6図に示す。71F1定
条件は、ドレイン電圧Vd−0,IV。Gate voltage Vg of the MOS) run lister according to this embodiment
FIG. 6 shows the characteristics of the drain current 1d and the drain current 1d. 71F1 constant condition is drain voltage Vd-0, IV.
ソース電圧OV、基板電圧Ovである。第6図の曲線(
ロ)は、溝上部コーナーの曲率半径を「−0,05μm
とした場合であり、従来例に比べてハンプ特性は抑制さ
れている。また、r−1μmとした場合には、理想状態
の場合の曲線(イ)とほぼ同じ特性が得られている。以
上により、コーナーの丸みを曲率半径0.05μm以上
とすることにより、MOSトランジスタのサブスレッシ
ョルド特性が改善され、優れたカットオフ特性が得られ
る。The source voltage OV and the substrate voltage Ov. The curve in Figure 6 (
b) The radius of curvature of the upper corner of the groove is set to ``-0.05 μm.
In this case, the hump characteristic is suppressed compared to the conventional example. In addition, when it is set to r-1 μm, almost the same characteristics as the curve (A) in the case of the ideal state are obtained. As described above, by making the corners round with a radius of curvature of 0.05 μm or more, the subthreshold characteristics of the MOS transistor are improved and excellent cutoff characteristics can be obtained.
第3図(a) (b)は、別の実施例の要部工程を示す
。先の実施例と対応する部分には先の実施例と同一符号
を付しである。この実施例では、酸化膜11と窒化膜1
2の積層膜をパターン形成した後、まずこれをマスクと
して用いてRIEにより素子分離領域に溝14を形成す
る(第3図(a))。その後、水蒸気を含む1000℃
程度の雰囲気中で熱酸化を行って、溝14の内壁に20
nm程度の酸化膜21を形成する(第3図(b))。こ
のとき、熱酸化膜21が素子領域に食い込むことにより
、溝上部コーナー7に曲率半径0.05μm以上の丸み
が形成される。この後は、第2図(e)の工程に移れば
よい。FIGS. 3(a) and 3(b) show the main steps of another embodiment. Parts corresponding to those in the previous embodiment are given the same reference numerals as in the previous embodiment. In this embodiment, an oxide film 11 and a nitride film 1
After patterning the laminated film No. 2, grooves 14 are first formed in the element isolation region by RIE using this as a mask (FIG. 3(a)). After that, it is heated to 1000℃ including water vapor.
Thermal oxidation is performed in an atmosphere of
An oxide film 21 with a thickness of approximately nm is formed (FIG. 3(b)). At this time, the thermal oxide film 21 bites into the element region, so that the upper corner 7 of the trench is rounded with a radius of curvature of 0.05 μm or more. After this, it is sufficient to proceed to the step shown in FIG. 2(e).
第4図(a)〜(c)は上記実施例を変形した別の実施
例の要部工程である。この実施例では、第3図の実施例
でのRIE時のマスク効果を高めるために、窒化膜12
上には重ねてCVD酸化膜16を20r+m程度形成し
ており、これらの積層膜をマスクとして素子分離領域に
溝14を形成する(第4図(a))。次に、酸化時のバ
ーズビークがより入り易くなるように、溝14に端面が
露出している酸化膜11を溶液エツチングにより僅かに
横方向に例えば0.1μm程度エツチングしてその端面
を後退させる(第4図(b))。その後先の実施例と同
様に熱酸化膜2.を形成する(第4図(C))。FIGS. 4(a) to 4(c) show main steps of another embodiment that is a modification of the above embodiment. In this embodiment, in order to enhance the masking effect during RIE in the embodiment of FIG.
A CVD oxide film 16 of about 20 r+m is overlaid thereon, and a trench 14 is formed in the element isolation region using these laminated films as a mask (FIG. 4(a)). Next, in order to make it easier for bird's beaks to form during oxidation, the oxide film 11 whose end surface is exposed in the groove 14 is slightly laterally etched, for example, by about 0.1 μm, by solution etching, and the end surface is set back ( Figure 4(b)). Thereafter, as in the previous embodiment, a thermal oxide film 2. (Fig. 4(C)).
これにより、−層滑らかな丸みを形成することができる
。As a result, a smooth roundness can be formed in the layer.
第5図(a)〜(d)は更に第4図の実施例を変形した
実施例で、溝上部コーナーに丸みをつける方法にCDE
を利用した場合の要部工程を示す。第5図(a) (b
)までは、第4図(a) (b)と同じである。この後
、CF4と02ガスを混合したガス条件でCDEにより
溝側面のエツチングを行う(第5図(C))。これによ
り、溝14の上部コーナー7に丸みが形成されると同時
に、底部コーナーにも丸みが形成される。その後必要に
応じてウェット雰囲気により熱酸化を行ない、溝内壁に
5OnI11程度の酸化膜21を形成する(第5図(d
))。この後は先の実施例と同様である。FIGS. 5(a) to 5(d) are further modified embodiments of the embodiment shown in FIG.
The following shows the main steps when using . Figure 5(a)(b)
) are the same as in Figures 4(a) and (b). Thereafter, the groove side surfaces are etched by CDE using a mixture of CF4 and 02 gas (FIG. 5(C)). As a result, the upper corner 7 of the groove 14 is rounded, and at the same time the bottom corner is also rounded. Thereafter, if necessary, thermal oxidation is performed in a wet atmosphere to form an oxide film 21 of about 5OnI11 on the inner wall of the groove (see Fig. 5 (d).
)). The rest is the same as in the previous embodiment.
この実施例によれば、丸み形成にCDEを利用すること
により、コーナーの曲率の大きさをエツチング時間によ
り高精度に制御することができる。According to this embodiment, by using CDE to form the roundness, the magnitude of the curvature of the corner can be controlled with high precision by the etching time.
またRIE時のダメージ層も除去される。またこの実施
例では、溝底部のコーナーにも丸みがつけられる結果、
後に埋め込まれる絶縁膜と基板の熱膨張係数の違いによ
るストレスが緩和されるという効果が得られる。これは
結晶欠陥の発生を抑制し、ソース、ドレイン接合のリー
ク電流を抑制して、優れた素子特性を得ることを可能と
する。Furthermore, the damaged layer during RIE is also removed. In addition, in this embodiment, the corners at the bottom of the groove are also rounded, resulting in
This has the effect of alleviating stress due to the difference in thermal expansion coefficient between the insulating film and the substrate that will be embedded later. This suppresses the occurrence of crystal defects and suppresses leakage current at the source and drain junctions, making it possible to obtain excellent device characteristics.
本発明は上記実施例に限られない。例えば、実施例では
CVD酸化膜を素子分離膜として埋め込んだが、酸化膜
を介して多結晶シリコン膜やPSGなどを素子分離膜と
して埋め込むこともでき、その場合も本発明は有効であ
る。ゲート電極材料も、多結晶シリコン膜に限らず、モ
リブデン(M o )やタングステン(W)などの高融
点金属でもよいし、M o S i 2. W S i
2. T t S i 2などのシリサイドを用いた
ポリサイド膜でもよい。The present invention is not limited to the above embodiments. For example, in the embodiment, a CVD oxide film is buried as an element isolation film, but a polycrystalline silicon film, PSG, or the like can also be buried as an element isolation film through the oxide film, and the present invention is also effective in that case. The gate electrode material is not limited to a polycrystalline silicon film, but may also be a high melting point metal such as molybdenum (M o ) or tungsten (W), or M o S i 2. W Si
2. A polycide film using silicide such as T t S i 2 may also be used.
基板もp型St基板の他、n型基板にp型ウェルを形成
した基板などを用いることができる。As for the substrate, in addition to a p-type St substrate, a substrate in which a p-type well is formed on an n-type substrate can be used.
本発明によるMOS)ランリスタは、1トランジスタ/
1キヤパシタのDRAMにおけるセル・トランジスタの
ほか、各種MO5集禎回路。The MOS) run lister according to the invention consists of one transistor/
In addition to cells and transistors in 1-capacitor DRAM, various MO5 integrated circuits.
CMO3集積回路或いはBiCMO5回路などに適用す
ることができる。It can be applied to a CMO3 integrated circuit or a BiCMO5 circuit.
第1図(a) (b)は、本6発明の一実施例によるM
OS)ランリスタの構造を示す斜視図と断面図、第2−
図(a)〜(h)はその製造工程を示す断面図、第3図
(a) (b)は他め実施例の要部製造工程を示す断面
図、
第4図(a)〜(c)はさらに他の実施例の要部製造工
程を示す断面図、
第5図(a)〜(d)はさらに他の実施例の要部製造工
程を示す断面図、
第6図は本発明の実施例によるMOSトランジスタの特
性を従来例と比較して示す図、第7図(a) (b)は
従来技術を説明するための断面図である。
1・・・p型Si基板、2・・・素子分離膜、2I・・
・熱酸化膜、2□・・・CVD酸化膜、3・・・ゲート
酸化膜、4・・・ゲート電極、5・・・ソース、6・・
・ドレイン、7・・・コーナー 11・・・熱酸化膜、
12・・・CVDシリコン窒化膜、13・・・熱酸化膜
、14・・・素子分離溝、15・・・フォトレジスト、
16・・・CVD酸化膜。FIGS. 1(a) and 1(b) show M according to an embodiment of the sixth invention.
OS) Perspective view and cross-sectional view showing the structure of the run lister, Part 2-
Figures (a) to (h) are cross-sectional views showing the manufacturing process, Figures 3 (a) and (b) are cross-sectional views showing the manufacturing process of the main parts of the other embodiment, and Figures 4 (a) to (c). ) is a cross-sectional view showing the manufacturing process of the main part of yet another embodiment, FIGS. 5(a) to (d) are cross-sectional views showing the manufacturing process of the main part of still another embodiment, and FIG. FIGS. 7(a) and 7(b) are cross-sectional views for explaining the conventional technology. 1...p-type Si substrate, 2...element isolation film, 2I...
・Thermal oxide film, 2□...CVD oxide film, 3...gate oxide film, 4...gate electrode, 5...source, 6...
・Drain, 7... Corner 11... Thermal oxide film,
12...CVD silicon nitride film, 13...thermal oxide film, 14...element isolation trench, 15...photoresist,
16...CVD oxide film.
Claims (4)
の積層膜からなるマスクを形成する工程と熱酸化を行っ
て素子分離領域の基板面に一部素子形成領域に食い込む
ように酸化膜を形成する工程と、 前記素子分離領域の酸化膜を前記耐酸化性膜をマスクと
して溶液エッチングにより除去する工程と、 前記耐酸化性膜をマスクとして反応性イオンエッチング
により素子分離領域に溝を形成する工程と、 前記溝の内壁面に熱酸化膜を形成し、同時に溝の上部コ
ーナーに丸みをつける工程と、 前記溝に気相成長法により素子分離膜を埋め込む工程と
、 前記素子分離膜で囲まれた基板面にゲート絶縁膜を介し
てゲート電極を形成する工程と、 前記ゲート電極をマスクとして不純物を導入してソース
およびドレインを形成する工程と、を備えたことを特徴
とするMOS型半導体装置の製造方法。(1) Forming a mask consisting of a laminated film of an oxide film and an oxidation-resistant film in the element formation area of the semiconductor substrate and performing thermal oxidation to oxidize the substrate surface in the element isolation area so as to partially penetrate into the element formation area. forming a film; removing the oxide film in the element isolation region by solution etching using the oxidation-resistant film as a mask; and forming a groove in the element isolation region by reactive ion etching using the oxidation-resistant film as a mask. forming a thermal oxide film on the inner wall surface of the trench and rounding the upper corner of the trench at the same time; embedding an element isolation film in the trench by vapor phase growth; A MOS comprising: forming a gate electrode on a substrate surface surrounded by a gate insulating film via a gate insulating film; and forming a source and a drain by introducing impurities using the gate electrode as a mask. A method for manufacturing a type semiconductor device.
の積層膜からなるマスクを形成する工程と、前記マスク
を用いて反応性イオンエッチングにより素子分離領域に
溝を形成する工程と、 熱酸化を行って素子分離領域の内壁面に一部素子形成領
域に食い込むように酸化膜を形成し、同時に前記溝の上
部コーナーに丸みを形成する工程と、 前記溝に気相成長法により素子分離膜を埋め込む工程と
、 前記素子分離絶縁膜で囲まれた基板面にゲート絶縁膜を
介してゲート電極を形成する工程と、前記ゲート電極を
マスクとして不純物を導入してソースおよびドレインを
形成する工程と、を備えたことを特徴とするMOS型半
導体装置の製造方法。(2) forming a mask made of a laminated film of an oxide film and an oxidation-resistant film in the element formation region of the semiconductor substrate; and forming a groove in the element isolation region by reactive ion etching using the mask; A step of forming an oxide film on the inner wall surface of the element isolation region by thermal oxidation so as to partially penetrate into the element forming area, and at the same time forming a rounded upper corner of the groove, and forming an element in the groove by vapor phase growth. a step of embedding an isolation film; a step of forming a gate electrode on a substrate surface surrounded by the element isolation insulating film via a gate insulating film; and forming a source and a drain by introducing impurities using the gate electrode as a mask. A method for manufacturing a MOS type semiconductor device, comprising the steps of:
エッチングにより酸化膜エッチングを行って溝内壁にろ
露出する酸化膜の端面を後退させる工程を有する請求項
2記載のMOS型半導体装置の製造方法。3. The MOS semiconductor device according to claim 2, further comprising the step of etching the oxide film by solution etching using the oxidation-resistant film as a mask after forming the groove to retreat the end face of the oxide film exposed on the inner wall of the groove. manufacturing method.
クを形成する工程と、 前記マスクを用いて反応性イオンエッチングにより素子
分離領域に溝を形成する工程と、 等方性エッチングにより溝内壁に露出する下層膜の端面
を後退させ、その後ケミカル・ドライエッチングにより
素子分離領域の基板露出面をエッチングし、同時に前記
溝の上部コーナーに丸みをつける工程と、 前記溝に気相成長法により素子分離膜を埋め込む工程と
、 前記素子分離膜で囲まれた基板面にゲート絶縁膜を介し
てゲート電極を形成する工程と、 前記ゲート電極をマスクとして不純物を導入してソース
およびドレインを形成する工程と、を備えたことを特徴
とするMOS型半導体装置の製造方法。(4) forming a mask made of a laminated film in the element formation region of the semiconductor substrate; forming a groove in the element isolation region by reactive ion etching using the mask; and forming a groove on the inner wall of the groove by isotropic etching. Retreating the exposed end face of the lower layer film, then etching the exposed surface of the substrate in the element isolation region by chemical dry etching, and simultaneously rounding the upper corner of the groove, and forming element isolation in the groove by vapor phase growth. a step of embedding a film; a step of forming a gate electrode on a substrate surface surrounded by the element isolation film via a gate insulating film; and a step of introducing impurities using the gate electrode as a mask to form a source and a drain. A method for manufacturing a MOS type semiconductor device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8350789A JPH02260660A (en) | 1989-03-31 | 1989-03-31 | Manufacture of mos type semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8350789A JPH02260660A (en) | 1989-03-31 | 1989-03-31 | Manufacture of mos type semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02260660A true JPH02260660A (en) | 1990-10-23 |
Family
ID=13804398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8350789A Pending JPH02260660A (en) | 1989-03-31 | 1989-03-31 | Manufacture of mos type semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02260660A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081662A (en) * | 1996-05-27 | 2000-06-27 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including trench isolation structure and a method of manufacturing thereof |
US6090684A (en) * | 1998-07-31 | 2000-07-18 | Hitachi, Ltd. | Method for manufacturing semiconductor device |
US6242323B1 (en) | 1997-02-18 | 2001-06-05 | Hitachi, Ltd. | Semiconductor device and process for producing the same |
US6469345B2 (en) | 2000-01-14 | 2002-10-22 | Denso Corporation | Semiconductor device and method for manufacturing the same |
US6482701B1 (en) | 1999-08-04 | 2002-11-19 | Denso Corporation | Integrated gate bipolar transistor and method of manufacturing the same |
US6521538B2 (en) | 2000-02-28 | 2003-02-18 | Denso Corporation | Method of forming a trench with a rounded bottom in a semiconductor device |
US6562695B1 (en) | 1999-03-03 | 2003-05-13 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of manufacturing involving the scale-down width of shallow groove isolation using round processing |
US6657248B1 (en) | 1998-11-02 | 2003-12-02 | Hitachi, Ltd. | Semiconductor device having groove isolation structure and gate oxide films with different thickness |
JP2004095886A (en) * | 2002-08-30 | 2004-03-25 | Fujitsu Ltd | Semiconductor device and its manufacturing method |
US6864532B2 (en) | 2000-01-14 | 2005-03-08 | Denso Corporation | Semiconductor device and method for manufacturing the same |
JP2007096339A (en) * | 2006-11-24 | 2007-04-12 | Renesas Technology Corp | Method of manufacturing semiconductor integrated circuit device |
US7303951B2 (en) | 2004-01-14 | 2007-12-04 | Renesas Technology Corp. | Method of manufacturing a trench isolation region in a semiconductor device |
US7524729B2 (en) | 1998-12-28 | 2009-04-28 | Renesas Technology Corp. | Method of manufacturing a semiconductor integrated circuit device having a trench |
JP2012033950A (en) * | 2011-10-03 | 2012-02-16 | Hitachi Ltd | Method for manufacturing semiconductor device |
CN106328536A (en) * | 2015-06-30 | 2017-01-11 | 台湾积体电路制造股份有限公司 | Semiconductor device and manufacturing method thereof |
-
1989
- 1989-03-31 JP JP8350789A patent/JPH02260660A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081662A (en) * | 1996-05-27 | 2000-06-27 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device including trench isolation structure and a method of manufacturing thereof |
US7402473B2 (en) | 1997-02-18 | 2008-07-22 | Renesas Technology Corp. | Semiconductor device and process for producing the same |
US6242323B1 (en) | 1997-02-18 | 2001-06-05 | Hitachi, Ltd. | Semiconductor device and process for producing the same |
US6881646B2 (en) | 1997-02-18 | 2005-04-19 | Renesas Technology Corp. | Semiconductor device and process for producing the same |
US6559027B2 (en) | 1997-02-18 | 2003-05-06 | Hitachi, Ltd. | Semiconductor device and process for producing the sme |
US6403446B1 (en) | 1998-07-31 | 2002-06-11 | Hitachi, Ltd. | Method for manufacturing semiconductor device |
US6090684A (en) * | 1998-07-31 | 2000-07-18 | Hitachi, Ltd. | Method for manufacturing semiconductor device |
US6657248B1 (en) | 1998-11-02 | 2003-12-02 | Hitachi, Ltd. | Semiconductor device having groove isolation structure and gate oxide films with different thickness |
US7524729B2 (en) | 1998-12-28 | 2009-04-28 | Renesas Technology Corp. | Method of manufacturing a semiconductor integrated circuit device having a trench |
US7397104B2 (en) | 1999-03-03 | 2008-07-08 | Elpida Memory, Inc. | Semiconductor integrated circuit device and a method of manufacturing the same |
US6562695B1 (en) | 1999-03-03 | 2003-05-13 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of manufacturing involving the scale-down width of shallow groove isolation using round processing |
US6720234B2 (en) | 1999-03-03 | 2004-04-13 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of manufacturing involving the scale-down width of shallow groove isolation using round processing |
US6482701B1 (en) | 1999-08-04 | 2002-11-19 | Denso Corporation | Integrated gate bipolar transistor and method of manufacturing the same |
US6469345B2 (en) | 2000-01-14 | 2002-10-22 | Denso Corporation | Semiconductor device and method for manufacturing the same |
US6864532B2 (en) | 2000-01-14 | 2005-03-08 | Denso Corporation | Semiconductor device and method for manufacturing the same |
US7354829B2 (en) | 2000-01-14 | 2008-04-08 | Denso Corporation | Trench-gate transistor with ono gate dielectric and fabrication process therefor |
US6521538B2 (en) | 2000-02-28 | 2003-02-18 | Denso Corporation | Method of forming a trench with a rounded bottom in a semiconductor device |
JP2004095886A (en) * | 2002-08-30 | 2004-03-25 | Fujitsu Ltd | Semiconductor device and its manufacturing method |
US7221030B2 (en) | 2002-08-30 | 2007-05-22 | Fujitsu Limited | Semiconductor device |
US7303951B2 (en) | 2004-01-14 | 2007-12-04 | Renesas Technology Corp. | Method of manufacturing a trench isolation region in a semiconductor device |
JP2007096339A (en) * | 2006-11-24 | 2007-04-12 | Renesas Technology Corp | Method of manufacturing semiconductor integrated circuit device |
JP4571116B2 (en) * | 2006-11-24 | 2010-10-27 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor integrated circuit device |
JP2012033950A (en) * | 2011-10-03 | 2012-02-16 | Hitachi Ltd | Method for manufacturing semiconductor device |
CN106328536A (en) * | 2015-06-30 | 2017-01-11 | 台湾积体电路制造股份有限公司 | Semiconductor device and manufacturing method thereof |
US10319857B2 (en) | 2015-06-30 | 2019-06-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
CN106328536B (en) * | 2015-06-30 | 2019-11-22 | 台湾积体电路制造股份有限公司 | Semiconductor devices and its manufacturing method |
US10818790B2 (en) | 2015-06-30 | 2020-10-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device |
US11411108B2 (en) | 2015-06-30 | 2022-08-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5077228A (en) | Process for simultaneous formation of trench contact and vertical transistor gate and structure | |
US5324673A (en) | Method of formation of vertical transistor | |
KR100227766B1 (en) | Semiconductor device and the manufacturing method thereof | |
US5795801A (en) | MethodS of fabricating profiled device wells for improved device isolation | |
US5920108A (en) | Late process method and apparatus for trench isolation | |
JPH0513566A (en) | Manufacture of semiconductor device | |
JPH0821613B2 (en) | Method for manufacturing isolation structure of MOS device | |
US5872044A (en) | Late process method for trench isolation | |
JPH02260660A (en) | Manufacture of mos type semiconductor device | |
US6143623A (en) | Method of forming a trench isolation for semiconductor device with lateral projections above substrate | |
US6780695B1 (en) | BiCMOS integration scheme with raised extrinsic base | |
US5742088A (en) | Process having high tolerance to buried contact mask misalignment by using a PSG spacer | |
US5137843A (en) | Isolation method for semiconductor device | |
WO1988001436A1 (en) | Process for fabricating stacked mos structures | |
US6326272B1 (en) | Method for forming self-aligned elevated transistor | |
US5547903A (en) | Method of elimination of junction punchthrough leakage via buried sidewall isolation | |
JPH11145273A (en) | Manufacture of semiconductor device | |
JPH01130542A (en) | Semiconductor device having interelement isolation region and manufacture thereof | |
JPH08125010A (en) | Isolation structure of semiconductor device and formation thereof | |
JP2533003B2 (en) | Field oxide film formation method | |
JP3265836B2 (en) | Method for manufacturing semiconductor device | |
JPH07297275A (en) | Manufacture of semiconductor device | |
KR940011096B1 (en) | Device for isolation of semiconductor apparatus | |
JPH0334655B2 (en) | ||
JP3204872B2 (en) | MOSFET and manufacturing method thereof |