JPS58213444A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58213444A
JPS58213444A JP9640182A JP9640182A JPS58213444A JP S58213444 A JPS58213444 A JP S58213444A JP 9640182 A JP9640182 A JP 9640182A JP 9640182 A JP9640182 A JP 9640182A JP S58213444 A JPS58213444 A JP S58213444A
Authority
JP
Japan
Prior art keywords
film
groove
semiconductor
etching
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9640182A
Other languages
Japanese (ja)
Inventor
Kazuya Kikuchi
和也 菊地
Tadanaka Yoneda
米田 忠央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9640182A priority Critical patent/JPS58213444A/en
Publication of JPS58213444A publication Critical patent/JPS58213444A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Abstract

PURPOSE:To leave a semiconductor film in a diffusing region selectively in a groove functioning as an inter-element isolation region, and to form the inter- element isolation region by using a fact that an etching rate of the semiconductor film is faster than those in other regions in a self-alignment manner. CONSTITUTION:A PSG film 13 is formed onto a P type Si substrate 10. A photo- resist pattern 14 is formed onto regions except the isolation region. Si is etched, and the concave groove 15 is formed. An ion implantation region 16 is formed to the bottom of the groove 15. The pattern 14 is removed, and an SiO2 film 17 is formed to a groove 15 section. A poly Si film 18 is further formed. The whole is thermally treated. An Si film 18' is removed through etching by a mixed liquid of HNO3, HF and CH3COOH. The etching rate of the Si film 18' is faster than that of the Si film 18 in the groove 15 at that time. Accordingly, the Si film 18 of the groove 15 remains. The PSG film 13 is etched. The groove is buried with an SiO2 film 19. The surface is further etched.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、そのうち特に、
半導体装置の素子分離領域の形成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular,
The present invention relates to a method of forming an isolation region of a semiconductor device.

従来、半導体装置の製造における素子分離領域の形成方
法として、素子分離領域となるべき部分をエツチングし
て溝を形成した後、溝内に多結晶/リコンを埋め込み分
離領域を形成するという方法がある。その従来技術の一
例を第1図により説明する。
Conventionally, as a method for forming element isolation regions in the manufacture of semiconductor devices, there is a method of etching the part to become the element isolation region to form a groove, and then burying polycrystalline/licon in the groove to form the isolation region. . An example of the prior art will be explained with reference to FIG.

シリコン酸化膜(Si02膜)2及びシリコン窒化膜(
SisN4膜)3が形成されたP形半導体基板(Si基
板)1上にホトリソ技術により所望の分離ハターン巾ヲ
有−t−るホトレジスI・パターン4を形成する。この
ホトレジストパターン4をエツチングマスクにしてSi
3N4膜3及び5i02膜2を工・ツチングした後、異
方性ドライエツチングによりSi基板1を目標の深さだ
けエツチングして溝6を形成する。そして、チャネルス
トッパ用のポロンイオン注入を行ないイオン注入領域6
を形成する(第1図a)。
Silicon oxide film (Si02 film) 2 and silicon nitride film (
A photoresist I pattern 4 having a desired separation pattern width is formed by photolithography on a P-type semiconductor substrate (Si substrate) 1 on which a SisN4 film 3 has been formed. Using this photoresist pattern 4 as an etching mask, Si
After processing and etching the 3N4 film 3 and the 5i02 film 2, the Si substrate 1 is etched to a target depth by anisotropic dry etching to form a groove 6. Then, poron ions for the channel stopper are implanted into the ion implantation region 6.
(Figure 1a).

次に、ホトレジストパターン4を除去し、加熱酸化法に
より溝6部に5i02膜7を形成する。そして、CVD
法、蒸着法、スパッタ法等によりPo1ySi膜βを形
成する(第1図b)。
Next, the photoresist pattern 4 is removed and a 5i02 film 7 is formed in the groove 6 by a thermal oxidation method. And CVD
A Po1ySi film β is formed by a method such as a method, a vapor deposition method, a sputtering method, etc. (FIG. 1b).

次に、ドライエツチングあるいはウェットエツチング法
等により、5isN4膜3上のPo1ySi膜8を除去
することによって溝5内にPo1ySi膜8′を残す(
第1図C)。
Next, the Po1ySi film 8 on the 5isN4 film 3 is removed by dry etching or wet etching, leaving the Po1ySi film 8' in the groove 5 (
Figure 1C).

次に、900〜b 加圧水蒸気中でPo1ySi膜8′を酸化し、SiO2
膜9を形成する。その後、Si 3N a膜3及びSi
O2膜2を除去することによって、第1図dの如く、溝
6の大部分がPo1ySi膜8′で埋まっている構造を
有する素子分離領域を形成することができる。
Next, the Po1ySi film 8' is oxidized in 900-b pressurized steam, and the SiO2
A film 9 is formed. After that, the Si 3N a film 3 and the Si
By removing the O2 film 2, it is possible to form an element isolation region having a structure in which most of the groove 6 is filled with the Po1ySi film 8', as shown in FIG. 1d.

しかし、上記方法においては、St、N4膜3上のPo
1ySi膜8をエツチング除去した際、溝6の領域上に
形成されたPo1ySi膜8も同じエツチングレートで
エツチングされてしまう。そのだめ、溝6内に残存する
Po1ySi膜8′には、凹部状のi差が生じ、A/配
線の断線の原因になるという問題がある。さらに、溝6
のパターン巾がいろいろと異なっている半導体装置の場
合には、上記方法を使用することが困難である。なぜな
らば、比較的微細な溝で、しかも、溝巾が一定ならば5
i3Na膜上と溝上のPo1ySi膜の厚さの差によっ
て溝内にPo1ySi膜を残存させることができる。し
かし、溝巾が広いとSi 5N 4膜上と溝上のPo1
ySi膜の厚さが同じ程度になるため5L3N4膜3上
のPo1ySi膜8をエツチングした際、溝5内のPo
1ySi膜8も同様にエツチングされてしまうため、溝
6内にPo1ySi膜が残存しないという問題がある。
However, in the above method, the Po on the St, N4 film 3
When the 1ySi film 8 is removed by etching, the Po1ySi film 8 formed on the region of the groove 6 is also etched at the same etching rate. However, there is a problem in that the Po1ySi film 8' remaining in the groove 6 has a concave i difference, which may cause disconnection of the A/wiring. Furthermore, groove 6
It is difficult to use the above method in the case of semiconductor devices whose pattern widths vary. This is because if the groove is relatively minute and the groove width is constant, 5
The difference in thickness between the Po1ySi film on the i3Na film and the Po1ySi film on the groove allows the Po1ySi film to remain in the groove. However, when the groove width is wide, Po1 on the Si 5N 4 film and on the groove
Since the thickness of the ySi films is approximately the same, when the Po1ySi film 8 on the 5L3N4 film 3 is etched, the Po1ySi film in the groove 5 is
Since the 1ySi film 8 is also etched in the same way, there is a problem that no Po1ySi film remains in the groove 6.

そこで、本発明の目的は、多結晶シリコンあるいは無定
形シリコン等の半導体膜のパターンがエツチングマスク
を用いることなく選択的に形成できる半導体装置の製造
方法を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device in which a pattern of a semiconductor film such as polycrystalline silicon or amorphous silicon can be selectively formed without using an etching mask.

そして、本発明の他の目的は、素子分離領域となる溝内
に、溝巾に依存することなく選択的に半導体膜を残存さ
せることによって半導体基板表面とほぼ同じ高さを有す
る素子分離領域を精度良く形成できる半導体装置の製造
方法を提供することである。
Another object of the present invention is to form an element isolation region having approximately the same height as the surface of the semiconductor substrate by selectively leaving a semiconductor film in the trench that will become the element isolation region without depending on the trench width. An object of the present invention is to provide a method for manufacturing a semiconductor device that can be formed with high precision.

すなわち、本発明は、拡散した領域の半導体膜のエツチ
ングレートが拡散していない領域の半導体膜のエツチン
グレートに比べて速いことをセルファライン的に用いる
ことによって、素子間分離領域となる溝内に半導体膜を
選択的に残存させ、素子間分離領域を形成することを特
徴とする半導体装置の製造方法である。
That is, the present invention utilizes the fact that the etching rate of the semiconductor film in the diffused region is faster than the etching rate of the semiconductor film in the non-diffused region in a self-aligned manner. This is a method of manufacturing a semiconductor device characterized by selectively leaving a semiconductor film to form an isolation region between elements.

以下、本発明について実施例を用いて詳細に説明する。Hereinafter, the present invention will be explained in detail using examples.

第2図は、Po1ySi膜を埋め込み素子間分離領域を
形成する本発明の第1の実施例を示す。
FIG. 2 shows a first embodiment of the present invention in which a Po1ySi film is embedded to form an isolation region between elements.

P形Si基板1o上に厚さ0.06μmのSiO2膜1
1、約0.1 μmのSi3N4膜12及び約0.2.
czmの厚さを有する不純物を含んだ堆積被膜例えばP
SG膜13を形成する。そして、ホトリソ技術により分
離領域以外の領域上にホトレジストパターン14を形成
し、溝巾lを例えば1.6μmとする(第2図a)。
SiO2 film 1 with a thickness of 0.06 μm on a P-type Si substrate 1o
1. Si3N4 film 12 of about 0.1 μm and about 0.2.
An impurity-containing deposited film having a thickness of czm, e.g.
An SG film 13 is formed. Then, a photoresist pattern 14 is formed on the region other than the isolation region by photolithography, and the groove width l is set to, for example, 1.6 μm (FIG. 2a).

次に、ホトレジストパターン14をマスクニジてスパッ
タエツチングする。例えば、04FBガスを導入し、約
0.07 Torr、  200Wでプラスマスバッタ
エツチングを行なう。そうすると、PSG膜13、Si
、5N4膜12、SiO2膜11が除去される。さらに
、例えばCF4 、00ta 、 CF2C72等のガ
スを導入し、約0.05 Torr、 aoowでプラ
ズマスパノタエソチすることによりSi基板10の表面
から約1.6μmの深さまでのSiをエツチングし、凹
部状の溝16を形成する(第2図b)。
Next, the photoresist pattern 14 is sputter etched using a mask. For example, 04FB gas is introduced and plasma grasshopper etching is performed at approximately 0.07 Torr and 200W. Then, the PSG film 13, Si
, 5N4 film 12, and SiO2 film 11 are removed. Further, by introducing a gas such as CF4, 00ta, CF2C72, etc., and performing plasma etching at about 0.05 Torr and AOOW, Si is etched from the surface of the Si substrate 10 to a depth of about 1.6 μm. A recessed groove 16 is formed (FIG. 2b).

次に、HNOs 、 HFの混合液で溝15の底面およ
び側面を0.1μmエツチングし、プラズマスパッタエ
ツチング時に生じた結晶歪、汚染領域を除去する。そし
て、60KeV、約3×101510nS/caのボロ
ンをイオン注入し、溝16の底部にチャネルストッパー
となるイオン注入領域16を形成する(第2図g)。
Next, the bottom and side surfaces of the trenches 15 are etched by 0.1 μm using a mixed solution of HNOs and HF to remove crystal distortion and contaminated areas generated during plasma sputter etching. Then, boron ions of 60 KeV and about 3×10 1510 nS/ca are implanted to form an ion implantation region 16 that will serve as a channel stopper at the bottom of the trench 16 (FIG. 2g).

次に、ホトレジストパターン14を除去し、加熱酸化法
により溝16部に絶縁性の薄膜例えば厚さ約0.1μm
のSiO2膜17を形成する。そして、CVD法、蒸着
法、スパッタ法等により、厚さ約0.6μmのPo1y
Si膜18を形成する(第2図d)。
Next, the photoresist pattern 14 is removed, and an insulating thin film, for example, about 0.1 μm thick, is applied to the groove 16 by a thermal oxidation method.
A SiO2 film 17 is formed. Then, by CVD method, vapor deposition method, sputtering method, etc., Poly
A Si film 18 is formed (FIG. 2d).

次に、1000℃、60分の熱処理を施す。このとき、
 −P S G膜13上ノPo1ySi膜1B’はps
G膜1膜上3リンが拡散され、溝16内のPo1ySi
膜18は拡散されない。また、5isN<膜12が拡散
防止膜となり、8i基板1oには拡散されない(第2図
0)。
Next, heat treatment is performed at 1000° C. for 60 minutes. At this time,
-PS The Po1ySi film 1B' on the G film 13 is ps
The 3 phosphorus on the G film 1 is diffused, and the Po1ySi in the groove 16 is
Membrane 18 is not diffused. Further, the 5isN< film 12 serves as a diffusion prevention film and is not diffused into the 8i substrate 1o (FIG. 20).

次に、HNO3,HF 、 CHs(300Hの混合液
でPo1ySi膜18′をエツチング除去する。この場
合、PSG膜13によりリンが拡散されているPo1y
Si膜18′は、溝16内の拡散されていないPo1y
Si膜18に比べて10〜20倍程度エツチングレート
が速い。したがって、溝16内のPo1ySi膜18を
ほとんどエツチングすることなく、PSG膜1膜上3上
o1ySi膜18′をエツチングすることができ、溝1
6内にPo1ySi膜18が残存する(第2図f)。
Next, the Po1ySi film 18' is removed by etching with a mixed solution of HNO3, HF, and CHs (300H).
The Si film 18' covers the undiffused Po1y in the trench 16.
The etching rate is about 10 to 20 times faster than that of the Si film 18. Therefore, the olySi film 18' on the PSG film 1 can be etched without substantially etching the Po1ySi film 18 in the groove 16, and the o1ySi film 18' on the PSG film 1 can be etched.
The Po1ySi film 18 remains within the wafer 6 (FIG. 2f).

次に、HF 、 H2Oの混合液あるいはHF、NHd
Fの混合液でPSG膜13をエツチングする。その後、
900〜1000℃、 −6〜10 TCf/、i、の
加圧水蒸気中で酸化する。この場合、Po1y Si膜
18を酸化すると消費されたSiの厚さの約2倍のSi
O2厚さになる。そこで、Po1ySi膜18間の距離
Xが0,6μmの場合、厚さ0.6μmのSiO2膜を
形成する。そうすると、Po1ySi膜18が0.25
 pm消費され、0.26μm盛り上ってSiO2膜1
9で溝が埋まる(第2図g)。
Next, a mixture of HF and H2O or HF and NHd
The PSG film 13 is etched with a mixed solution of F. after that,
Oxidize in pressurized steam at 900-1000°C, -6-10 TCf/,i. In this case, when the PolySi film 18 is oxidized, the thickness of Si is approximately twice the thickness of the consumed Si.
It becomes O2 thickness. Therefore, when the distance X between the Po1ySi films 18 is 0.6 μm, a SiO2 film with a thickness of 0.6 μm is formed. Then, the Po1ySi film 18 becomes 0.25
pm is consumed and the SiO2 film 1 rises by 0.26 μm.
9 fills the groove (Fig. 2g).

次に、Si3N 4膜12 、5iOz膜11及ヒ5i
o2膜19の表面層をエツチングすることによって、第
2図りの如(Si基板1oの表面とほぼ平坦な5i02
膜19表面を有する素子間分離領域を形成することがで
きる。
Next, Si3N4 film 12, 5iOz film 11 and
By etching the surface layer of the O2 film 19, the surface layer 5i02, which is almost flat with the surface of the Si substrate 1o, is etched as shown in the second diagram.
An element isolation region having the surface of the film 19 can be formed.

以上、第2図の方法によれば、溝16内に選択的に、し
かも、容易にPo1ySi膜18を残存させることがで
き、はぼ完全に溝16内をSiO2膜19で埋めること
ができる。
As described above, according to the method shown in FIG. 2, the Po1ySi film 18 can be selectively and easily left in the trench 16, and the trench 16 can be almost completely filled with the SiO2 film 19.

次に、溝内の大部分をPo1ySi膜で埋める本発明の
他の実施例を第3図に従って説明する。P形S1基板2
o上K SiO2模21.5j−sea膜22、PSG
膜23を形成した後、ホトリソ技術により溝巾m(例え
ば3μm)+n(例えば1,5μm)を有するホトレジ
ストパターン24を形成する。そして、ホトレジストパ
ターン24をマスクニジて、P S G膜23 、5i
3Na膜22,5i02膜21及びSi基板20の表面
から約1.6μmの深さまでSi・をスパッタエツチン
グし、溝26.26を形成する。その後、HNO3,H
Fの混合液で溝16の底面及び側面をエツチングを0.
1μmエツチングする。そして、60 KeV 、約’
3 X 1 o13ions/caのボロンをイオン注
入し、溝25.26の底部にチャネルストッパーとなる
イオン注入領域27゜28を形成する(第3図a)。
Next, another embodiment of the present invention in which most of the trench is filled with a Po1ySi film will be described with reference to FIG. P type S1 board 2
o K SiO2 pattern 21.5j-sea film 22, PSG
After forming the film 23, a photoresist pattern 24 having a groove width m (for example, 3 μm)+n (for example, 1.5 μm) is formed by photolithography. Then, by masking the photoresist pattern 24, the PSG film 23, 5i
Si is sputter-etched from the surfaces of the 3Na film 22, 5i02 film 21 and Si substrate 20 to a depth of approximately 1.6 μm to form grooves 26 and 26. After that, HNO3, H
Etch the bottom and side surfaces of the groove 16 with a mixed solution of F.
Etch 1 μm. and 60 KeV, about'
Boron ions of 3×1 o13 ions/ca are ion-implanted to form an ion-implanted region 27° 28 serving as a channel stopper at the bottom of the groove 25.26 (FIG. 3a).

次に、ホトレジストパターン24を除去し、加熱酸化法
により溝25.26部に厚さ約0.1μmノ5i02膜
29.30を形成する。そして、cvD法、蒸着法、ス
パッタ法等により、溝26.26の深さに相当する厚さ
約1゜6μmのPo1ySi膜31を形成する(第3図
b)。
Next, the photoresist pattern 24 is removed, and a 5i02 film 29.30 with a thickness of about 0.1 μm is formed in the groove 25.26 by a thermal oxidation method. Then, a Po1ySi film 31 having a thickness of approximately 1.6 μm, which corresponds to the depth of the grooves 26.26, is formed by CVD, vapor deposition, sputtering, or the like (FIG. 3b).

次に、1000’C,60分の熱処理を施す。このとき
、Po1ySi膜31′はPSG膜23によりリンが拡
散され、溝25.26内のPo1y8i膜31は拡散さ
れない(第3図g)。
Next, heat treatment is performed at 1000'C for 60 minutes. At this time, phosphorus is diffused in the Po1ySi film 31' by the PSG film 23, but not in the Po1y8i film 31 in the grooves 25.26 (FIG. 3g).

次ニ、HNOs 、 HF 、 CaHs Cool 
ノ混合液でPo1ySi膜31′をエツチング除去する
。この場倫PSG膜23によりリンが拡散されているP
o1ySi膜31′は、溝25.26内の拡散されてい
ないPO17Si膜31に比べて10〜20倍程度エッ
チングレートが速い。したがって溝25.26内のPo
1ySi膜31はほとんどエツチングすることなく、P
o1ySi膜31′をエツチングすることができ、溝2
5.26内にPo1ySj、膜31が残存する(第3図
d)。
Next, HNOs, HF, CaHs Cool
The Po1ySi film 31' is removed by etching with the mixed solution. P where phosphorus is diffused by the PSG film 23
The etching rate of the o1ySi film 31' is about 10 to 20 times faster than that of the undiffused PO17Si film 31 in the groove 25.26. Therefore Po in groove 25.26
The 1ySi film 31 is hardly etched and P
The o1ySi film 31' can be etched to form the groove 2.
5.26, Po1ySj and film 31 remain (FIG. 3d).

次に、HF 、 H2Oの混合液あるいは、HF。Next, a mixture of HF and H2O or HF.

NH4Fの混合液でPSG膜23をエツチングする。The PSG film 23 is etched with a mixed solution of NH4F.

その後、9oO〜10oO℃、θ〜10KF / cA
の加圧水蒸気中で酸化し、厚さ0.3 tl mの5i
02膜32.33を形成する(第3図e)。
Then 9oO~10oO℃, θ~10KF/cA
5i with a thickness of 0.3 tl m.
02 films 32 and 33 are formed (FIG. 3e).

次に、Si 3N a膜22 、 SiO2膜21及び
SiO2膜32の表面層をエツチングするととによって
、第3図fの如< Si基板20の表面とほぼ平坦なS
iO2膜32.33表面を有する素子間分離領域を形成
することができる。
Next, by etching the surface layers of the Si 3 Na film 22, the SiO 2 film 21, and the SiO 2 film 32, as shown in FIG.
An interelement isolation region having the iO2 film 32, 33 surface can be formed.

以上、第3図の方法によれば、溝rjJの異なる溝25
.26内に選択的に、シかも、容易にPo1ySi膜3
1を残存させることができ、溝25.26の大部分をP
o ly Si膜31で埋めることができる。
As described above, according to the method shown in FIG. 3, the grooves 25 with different grooves rjJ
.. Po1ySi film 3 can be selectively and easily deposited within 26
1 can remain, and most of the grooves 25 and 26 can be
It can be filled with an o ly Si film 31.

、  上記第2図及び第3図においては、F3i、sN
a膜のパターン巾とPSG膜のパターン巾を同一に形成
しているが、第4図に示す如く、5i5N4膜42のパ
ターン+1−J YよりもPSG膜のパターン巾Zを広
く形成しても良い。すなわち、81基板40−」−にS
iO2膜41 、5isN+膜42.PSG膜43を形
成した後、ホトリソ技術によりパターン巾Yを有するホ
トレジストパタ、−744を形成する。そして、ホトレ
ジストパターン44をマスクにし7てPSG膜43 、
513N4膜42 、5i02膜41及びSi基板40
を所望の深さだけスパッタエツチングし溝46を形成す
る。その後、HFとH2Oの混合液でエツチングすれば
、PSO膜43のエツチングレートが速いだめ、ザイド
エソチングさJ1パターン中が広がりZとなる。このよ
うに、PSG膜43のバター/巾ZをSi、sN4膜の
パターン巾Yよりも広く形成しておけば、PSG膜43
によってPo1ySi膜へリン整拡散した際、溝46内
に形成されているPo1ySi膜への拡散を少なくする
ことができる。
, In FIGS. 2 and 3 above, F3i, sN
Although the pattern width of the a film and the pattern width of the PSG film are formed to be the same, as shown in FIG. good. That is, S on the 81 board 40-''-
iO2 film 41, 5isN+ film 42. After forming the PSG film 43, a photoresist pattern -744 having a pattern width Y is formed by photolithography. Then, using the photoresist pattern 44 as a mask, the PSG film 43 is removed.
513N4 film 42, 5i02 film 41 and Si substrate 40
A groove 46 is formed by sputter etching to a desired depth. After that, if etching is performed using a mixed solution of HF and H2O, the Zide etching pattern J1 will be expanded to form Z because the etching rate of the PSO film 43 is fast. In this way, if the butter/width Z of the PSG film 43 is formed wider than the pattern width Y of the Si, sN4 film, the PSG film 43
When phosphorus is uniformly diffused into the Po1ySi film, the diffusion into the Po1ySi film formed in the groove 46 can be reduced.

以上のように、本発明によれば、除去したい領域のPo
1ySi膜に選択的に不純物の拡散ができ、l−かも、
不純物の拡散されている領域のPo1ySj、膜と不純
物の拡散きれていない領域のPo1ySi膜のエツチン
グレートの差によって選択的に不純物の拡散されている
領域をエツチング除去することができる。このことによ
り、素子間分離領域となる溝に容易にしかも、素子分離
領域のパターン巾に依存することな(Po1ySi膜を
残存させることができる。したがって、本発明は、素子
間分離領域のパターン巾が溝巾によって決まるため、溝
巾以上に素子間分離領域が広がることがなく、しかも、
凸部の少ない素子間分離領域が形成でき、高密度な半導
体装置の製造に大きく寄与するものである。
As described above, according to the present invention, Po
Impurities can be selectively diffused into the 1ySi film, and l-
The region where the impurity is diffused can be selectively etched away due to the difference in etching rate between the Po1ySj film in the region where the impurity has been diffused and the Po1ySi film in the region where the impurity has not been diffused. This allows the Po1ySi film to be left easily in the groove that becomes the element isolation region without depending on the pattern width of the element isolation region. is determined by the groove width, so the isolation region between elements does not expand beyond the groove width.
It is possible to form an inter-element isolation region with fewer protrusions, which greatly contributes to the manufacture of high-density semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a % dは従来の素子間分離領域の製造工程図
、第2図a −hは本発明の一実施例にかかる素子間分
離領域の製造工程図、第3図h −fは本発明の他の実
施例にかかる素子間分離領域の製造工程図、第4図は本
発明における他の製造途中における工程図である。 10 、20 、30 、4()−’−,・Si基板、
12゜22.42・・・・・・Si3N4膜、13,2
3.43・・・・・・PSG膜、18.31・・・・・
・Po1ySi膜、11,17゜21.29,30.4
1・・・・・・SiO2膜、15 、26 。 26.45・・・・・・溝、16,27.28・・・・
・・不純物層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (3’/ 第2図
Figure 1 a% d is a manufacturing process diagram of a conventional element isolation region, Figures 2 a - h are manufacturing process diagrams of an element isolation region according to an embodiment of the present invention, and Figures 3 h - f are the actual manufacturing process diagrams of an element isolation region according to an embodiment of the present invention. FIG. 4 is a process diagram for manufacturing an inter-element isolation region according to another embodiment of the present invention. 10, 20, 30, 4()-'-, Si substrate,
12゜22.42...Si3N4 film, 13,2
3.43...PSG film, 18.31...
・PolySi film, 11,17°21.29,30.4
1...SiO2 film, 15, 26. 26.45...groove, 16,27.28...
...Impurity layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (3'/ Figure 2

Claims (1)

【特許請求の範囲】 (11半導体基板の一主面上に拡散防止膜を形成する工
程と、前記拡散防止膜上に不純物を含む堆積被膜を形成
する工程と、所定の領域の前記堆積被膜及び前記拡散防
止膜をエツチングし、さらに前記半導体基板を所望の深
さまでエツチングし凹部を形成する工程と、前記半導体
基板上に半導体膜を形成する工程と、熱処理を施して前
記半導体膜に前記堆積被膜から不純物を拡散し、拡散領
域を形成する工程と、前記拡散領域の半導体膜を選択的
にエツチングし、前記凹部内に半導体膜を残存させる工
程とを有することを特徴とする半導体装置の製造方法。 (2)ホトレジストパターンをマスクとして凹部を形成
した後、前記凹部底面に半導体基板の導電形と同導電形
を有するイオン注入領域を形成する工程を備えているこ
とを特徴とする特許請求の範囲第1項に記載の半導体装
置の製造方法。 (3)堆積被膜にPSG膜を用いていることを特徴とす
る特許請求の範囲第1項に記載の半導体装置の製造方法
。 (4)半導体膜に多結晶シリコン膜を用いていることを
特徴とする特許請求の範囲第1項に記載の半導体装置の
製造方法。 (6)拡散領域の半導体膜の選択エツチング液として、
弗化水素酸と硝酸と酢酸の混合液を用いていることを特
徴とする特許請求の範囲第1項に記載の半導体装置の製
造方法。 (6)拡散防止膜にシリコン窒化膜を用いていることを
特徴とする特許請求の範囲第1項に記載の半導体装置の
製造方法。
Scope of Claims (11) A step of forming a diffusion prevention film on one principal surface of a semiconductor substrate, a step of forming a deposited film containing impurities on the diffusion prevention film, and a step of forming a deposited film containing an impurity on a predetermined region. A step of etching the diffusion prevention film, further etching the semiconductor substrate to a desired depth to form a recess, a step of forming a semiconductor film on the semiconductor substrate, and a heat treatment to form the deposited film on the semiconductor film. A method for manufacturing a semiconductor device comprising the steps of: diffusing impurities to form a diffusion region; and selectively etching a semiconductor film in the diffusion region to leave the semiconductor film in the recess. (2) A method comprising the step of forming a recess using a photoresist pattern as a mask, and then forming an ion implantation region having the same conductivity type as that of the semiconductor substrate on the bottom surface of the recess. A method for manufacturing a semiconductor device according to claim 1. (3) A method for manufacturing a semiconductor device according to claim 1, characterized in that a PSG film is used as the deposited film. (4) Semiconductor film A method for manufacturing a semiconductor device according to claim 1, characterized in that a polycrystalline silicon film is used in the semiconductor device. (6) As a selective etching solution for the semiconductor film in the diffusion region,
2. The method of manufacturing a semiconductor device according to claim 1, wherein a mixed solution of hydrofluoric acid, nitric acid, and acetic acid is used. (6) The method for manufacturing a semiconductor device according to claim 1, wherein a silicon nitride film is used as the diffusion prevention film.
JP9640182A 1982-06-04 1982-06-04 Manufacture of semiconductor device Pending JPS58213444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9640182A JPS58213444A (en) 1982-06-04 1982-06-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9640182A JPS58213444A (en) 1982-06-04 1982-06-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58213444A true JPS58213444A (en) 1983-12-12

Family

ID=14163935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9640182A Pending JPS58213444A (en) 1982-06-04 1982-06-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58213444A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299361A (en) * 1987-05-29 1988-12-06 Sony Corp Manufacture of semiconductor device
JPH01276641A (en) * 1988-03-24 1989-11-07 Motorola Inc Manufacture of semiconductor device
CN105514020A (en) * 2014-10-14 2016-04-20 中芯国际集成电路制造(上海)有限公司 Manufacturing method of groove isolation structure and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299361A (en) * 1987-05-29 1988-12-06 Sony Corp Manufacture of semiconductor device
JPH01276641A (en) * 1988-03-24 1989-11-07 Motorola Inc Manufacture of semiconductor device
CN105514020A (en) * 2014-10-14 2016-04-20 中芯国际集成电路制造(上海)有限公司 Manufacturing method of groove isolation structure and semiconductor device

Similar Documents

Publication Publication Date Title
JPH04346229A (en) Method of separating element of semiconductor device
US5371036A (en) Locos technology with narrow silicon trench
JPH03145730A (en) Manufacture of ic semiconductor device
JPH0628282B2 (en) Method for manufacturing semiconductor device
JPS58213444A (en) Manufacture of semiconductor device
US5763316A (en) Substrate isolation process to minimize junction leakage
JP2788889B2 (en) Separation forming method in semiconductor device
JPH0268930A (en) Manufacture of semiconductor device
JPH0729971A (en) Manufacture of semiconductor device
JPH04151852A (en) Manufacture of semiconductor device
JP2586431B2 (en) Method for manufacturing semiconductor device
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
JPH05283404A (en) Manufacture of element isolation region of semiconductor
EP0111097B1 (en) Method for making semiconductor devices having a thick field dielectric and a self-aligned channel stopper
JPS5965448A (en) Manufacture of semiconductor device
JPS5965447A (en) Manufacture of semiconductor device
US5541136A (en) Method of forming a field oxide film in a semiconductor device
JP2820465B2 (en) Method for manufacturing semiconductor device
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
JPS59101851A (en) Manufacture of semiconductor device
JPS5965449A (en) Manufacture of semiconductor device
JP2766000B2 (en) Method for manufacturing semiconductor device
JP3042804B2 (en) Element isolation method and semiconductor device
JP3000130B2 (en) Method for manufacturing semiconductor device
JPH04267336A (en) Manufacture of semiconductor device