JPS5965449A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5965449A
JPS5965449A JP17572782A JP17572782A JPS5965449A JP S5965449 A JPS5965449 A JP S5965449A JP 17572782 A JP17572782 A JP 17572782A JP 17572782 A JP17572782 A JP 17572782A JP S5965449 A JPS5965449 A JP S5965449A
Authority
JP
Japan
Prior art keywords
film
semiconductor
etching
forming
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17572782A
Other languages
Japanese (ja)
Inventor
Kazuya Kikuchi
菊池 和也
Tadanaka Yoneda
米田 忠央
Hideaki Shimoda
秀明 下田
Haruhide Fuse
玄秀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17572782A priority Critical patent/JPS5965449A/en
Publication of JPS5965449A publication Critical patent/JPS5965449A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To form element isolation region with good accuracy in such a height as almost equal to the semiconductor substrate surface by selectively remaining semiconductor film within the recessed part where becoms the element isolation region without depending on a pattern width of recessed part. CONSTITUTION:An SiO2 film 11, PSG film 12, and an Si3N4 film 13 are formed on a P type Si substrate 10. A recessed part 15 is formed by etching, an SiO2 film 17 is formed by thermal oxidation method, the Si3N4 film 13 is removed by etching, and a poly-Si film 18 is formed and finally heat treatment is also conducted. The poly-Si film 18a, PSG film 12 and the SiO2 film 11 are removed by etching, an SiO2 film 19 is formed by the oxidation to the entire part. Thereby, an element isolating region having the surface of poly-Si film 18 which is almost equal in height to the surface of substrate 10 can be formed. Thereby, difference of etching rate between the poly-Si film 18a where phosphorus is diffused and the poly-Si film 18 where phosphorus is not diffused becomes large and the poly-Si film 18 can selectively be left in the recessed part 15.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法、特に半導体装置の素子
分離領域の形成方法に関するものである゛。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming an isolation region of a semiconductor device.

従来例の構成とその問題点 従来、−半導体装置の製造における素子分離領域の形成
方法として、素子分離領域となるべき部分をエツチング
して凹部を形成した後、凹部内に多結晶シリコンを埋め
込み素子分離領域を形成するという方法がある。その従
来技術の一例を第1図により説明する。
Conventional structure and its problems Conventionally, - As a method of forming an element isolation region in the manufacture of semiconductor devices, a recess is formed by etching the part to be the element isolation region, and then polycrystalline silicon is buried in the recess to form an element. There is a method of forming a separation region. An example of the prior art will be explained with reference to FIG.

シリコン酸化膜(S i02膜)2及びシリコン窒化膜
(813N4膜)3が形成されたp形半導体基板(Si
基板)1上にホトリソ技術により所望の分離パターン巾
を有するホトレジストパターン4を形成スる。
A p-type semiconductor substrate (Si02 film) 2 and a silicon nitride film (813N4 film) 3 are formed.
A photoresist pattern 4 having a desired separation pattern width is formed on a substrate 1 by photolithography.

このホトレジストパターン4をエツチングマスクにして
Si3N4膜2をエツチングした後、異方性ドライエツ
チングによりSi基板1を目標の深さだけエツチングし
て凹部5を形成する。そしテ、チャネルストッパー用の
ボロンイオン注入ヲ行ない凹部5底面にイオン注入領域
6を形成する(第1図a)() 次にホトレジストパターン4を除去し、加熱酸化法によ
り凹部6表面に5102膜7を形成するOその後、Po
1ySi膜8を形成する(第゛1;凶b)。
After etching the Si3N4 film 2 using the photoresist pattern 4 as an etching mask, the Si substrate 1 is etched to a target depth by anisotropic dry etching to form the recess 5. Then, boron ion implantation for a channel stopper is performed to form an ion implantation region 6 on the bottom surface of the recess 5 (FIG. 1a) () Next, the photoresist pattern 4 is removed and a 5102 film is formed on the surface of the recess 6 by thermal oxidation. O forming 7 then Po
A 1ySi film 8 is formed (No. 1; No. b).

次に、ドライエツチングあるいはウェットエツチング法
等によりSi3N4膜3上のPo177Si膜8を除去
することによって凹部6内(/i:Po1ySi膜8a
を残す(第1図C)。
Next, by removing the Po177Si film 8 on the Si3N4 film 3 by dry etching or wet etching, the inside of the recess 6 (/i: Po1ySi film 8a
(Figure 1C).

次に、Po 1yS i膜8a’i酸化し、S 102
膜9を形成する。その後、Si3N4膜3及びb 10
2膜2fz!:除去することによって、第1図(d)の
如く、凹部5の大部分がPo1ySi膜8aで埋まつ−
Cいる構造を有する素子分離領域を形成することができ
る。
Next, the Po 1yS i film 8a'i is oxidized, and the S 102
A film 9 is formed. After that, Si3N4 film 3 and b 10
2 membranes 2fz! : By removing it, most of the recess 5 is filled with the PolySi film 8a, as shown in FIG. 1(d).
An element isolation region having a C-containing structure can be formed.

しかし、上記方法においては、S l sN4膜3上の
PoLySi膜8tエツチング除去した際、凹部5の領
域上に形成されたPo 1ysi膜8も同じエツチング
レートでエツチングされてしまう。そのため、凹部5内
に残存するPo1ySi膜8aには、段差が生じ、M配
線の断線の原因になるという問題がある。さらに、凹部
5のパターン巾がいろいろと異なっている半導体装置の
場合には、上記の方法を使用することが困難である。な
ぜならば、比較的微細なパターン巾を有する凹部で、し
かも、ノくターン巾が一定ならばSi3N4膜3上と凹
部5上のPo l yS i膜の厚さの差によって凹部
5内にPo1ySi膜8aを残存させることができる。
However, in the above method, when the PoLySi film 8t on the S l sN4 film 3 is removed by etching, the Po lySi film 8 formed on the region of the recess 5 is also etched at the same etching rate. Therefore, there is a problem that a step is formed in the Po1ySi film 8a remaining in the recess 5, which causes disconnection of the M wiring. Furthermore, in the case of semiconductor devices in which the pattern widths of the recesses 5 are different, it is difficult to use the above method. This is because, if the recess has a relatively fine pattern width and the turn width is constant, the difference in thickness between the PolySi film on the Si3N4 film 3 and the PolySi film on the recess 5 causes the Po1ySi film to form inside the recess 5. 8a can remain.

しかし、凹部6のパターン巾が広いとSi3N4膜上と
凹部上のPo l yS i膜の厚さが同じ程度になる
ため、Si3N4膜上のPo1ySi膜をエツチングし
た際、凹部5内のPo1ySi膜も同様にエツチングさ
れてしまうため、凹部内にPo1ySiが残存しないと
いう問題点がある。
However, if the pattern width of the recess 6 is wide, the thickness of the PolySi film on the Si3N4 film and the recess will be approximately the same, so when the PolySi film on the Si3N4 film is etched, the PolySi film in the recess 5 will also be etched. Since it is etched in the same way, there is a problem that Po1ySi does not remain in the recess.

また、特開昭60−107877号公報には、凹部にホ
トレジストを残存させ、ホトレジストをマスクにして埋
込物質をエツチングし、溝中にのみ埋込物質を残存させ
るという提案がされている0しかしながら上記の例でも
、凹部のrIJが広いとホトレジストが残存しないので
、エツチングマスクの役目を果さず、溝中に埋込物質を
残存させることができないという問題点がある。
Furthermore, Japanese Patent Laid-Open No. 60-107877 proposes leaving photoresist in the recesses, etching the buried material using the photoresist as a mask, and leaving the buried material only in the grooves. In the above example as well, there is a problem that if the rIJ of the recess is wide, no photoresist remains, so it does not function as an etching mask, and the buried material cannot remain in the groove.

ところで、本発明者らの検討によれば、拡散領域の半導
体膜のエツチングレートが、拡散していない領域の半導
体膜のエツチングI/ −トに比べて10〜20倍程度
速いことを見い出し、その結果、所望領域以外の半導体
膜に選択拡散をした後、選択エッチすれば拡散されてい
ない所望領域の半導体膜のみが残存することが判明し/
と。
By the way, the inventors have found that the etching rate of the semiconductor film in the diffusion region is about 10 to 20 times faster than the etching rate of the semiconductor film in the non-diffused region. As a result, it was found that if selective etching is performed after selectively diffusing the semiconductor film in areas other than the desired area, only the semiconductor film in the desired area that has not been diffused remains.
and.

発明の目的 本発明はこのような従来の問題に鑑み、半導体膜のパタ
ーンの形成においてエツチングマスクを用いることなく
選択的に形成できる半導体装置の製造方法を提供するこ
とを目的とする0そして、本発明の他の目的は、素子分
離領域となる凹部内に凹部のパターン1]に依存するこ
となく、選択的に半導体膜を残存させることによって半
導体基板表面とほぼ同じ高さを有する素子分離領域全精
度良く形成できる半導体装置の製造方法全提供すること
である。
OBJECTS OF THE INVENTION In view of these conventional problems, an object of the present invention is to provide a method for manufacturing a semiconductor device that can selectively form a pattern of a semiconductor film without using an etching mask. Another object of the invention is to selectively leave the semiconductor film in the recesses forming the element isolation region without depending on the pattern 1 of the recesses, so that the entire element isolation region having approximately the same height as the surface of the semiconductor substrate can be formed. An object of the present invention is to provide a complete method for manufacturing a semiconductor device that can be formed with high precision.

発明の構成 本発明は、半導体基板上に不純物を含んだ堆積被膜(例
えばPSG 膜、Asドープド5IO2膜)、酸化防止
膜のパターンを形成した後、半導体膜(例えばPo l
 yS i膜、アモルファスSi膜)を形成し熱処理に
より堆積被膜パターンから選択的に半導体膜中へ不純物
を拡散して不純物拡散領域を形成する。その後エツチン
グレートの差によって選択的にエツチングレートの速い
不純物拡散領域の半導体膜は除去し、エツチングレート
の遅い不純物の拡散されていない領域の半導体膜は残存
させるという独特の方法を用いていることを特徴とする
ものである。すなわち、素子分離領域形成において、素
子分離領域となる凹部領域見、外の半導体基板表面に不
純物を含む堆積被膜を形成しておく。そうずれば、半導
体膜形成後、熱処理により凹部内以外の半導体膜に選択
的に不純物を拡散することかできる。選択拡散後、エツ
チングレートの差によって選択エッチすれば、凹部内の
不純物の拡散されていない半導体膜のみが残存するとい
うものである。
Structure of the Invention The present invention involves forming a pattern of a deposited film containing impurities (for example, a PSG film, an As-doped 5IO2 film) or an oxidation prevention film on a semiconductor substrate, and then depositing a semiconductor film (for example, a Pol
ySi film, amorphous Si film) is formed, and impurities are selectively diffused into the semiconductor film from the deposited film pattern by heat treatment to form impurity diffusion regions. Then, based on the difference in etching rates, the semiconductor film in the impurity diffusion region where the etching rate is fast is selectively removed, while the semiconductor film in the region where the impurity is not diffused and where the etching rate is slow is left. This is a characteristic feature. That is, in forming the element isolation region, a deposited film containing impurities is formed on the surface of the semiconductor substrate outside the recessed region that will become the element isolation region. In this case, after the semiconductor film is formed, impurities can be selectively diffused into the semiconductor film other than the inside of the recess by heat treatment. After selective diffusion, if selective etching is carried out based on the difference in etching rate, only the semiconductor film in the recesses in which the impurities have not been diffused remains.

実施例の説明 第2図は半導体膜を埋込み、素子分離領域を形成する本
発明の第1の実施例を示す。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 shows a first embodiment of the present invention in which a semiconductor film is buried to form an element isolation region.

p形St基板10上にSiO2膜11 、不純物を含ん
だ堆積被膜例えばPSG 膜12及びSi3N4膜13
’fc 形成スル。5in2膜11 iJ、PSG 膜
12カラSi基板10への拡散を防止するための拡散防
止膜であり、Si3N4膜13は選択酸化の際の酸化防
止膜となる。その後、ホトリソ技術により分離領域以外
の領域上にホトレジストパターン14を形成スる(第2
図a)。
A SiO2 film 11 is deposited on a p-type St substrate 10, a deposited film containing impurities, such as a PSG film 12, and a Si3N4 film 13.
'fc formation. 5in2 film 11 iJ, PSG film 12 This is a diffusion prevention film for preventing diffusion into the empty Si substrate 10, and the Si3N4 film 13 becomes an oxidation prevention film during selective oxidation. Thereafter, a photoresist pattern 14 is formed on the area other than the isolation area by photolithography (second
Diagram a).

次にホトレジストパターン14をマスクにしてSi3N
4膜13 、 PSG膜12 + 5102膜11及び
Si基板1oを所望の深さまでエツチングする。例えば
、Si3N4膜13 、 PSG 膜12 、 Si○
2膜11のエツチングは、反応性スパッタエツチング法
でエツチングガスとしてC2F6.C3F8.C4F8
.CF4(Si3N4膜エッチの場合)のいずれかを用
いて行なう。また、Si基板1oのエツチングは、反応
性スパッタエツチング法あるいは反応性イオンビームエ
ツチング法等のドライエツチング技術でエツチングガス
トシテCF4.CCu4,0120℃2.SF6ノイず
れかを用いてSi基板1oの表面から所望の深さまでS
iiエツチングし、凹部15を形成する0その後、Si
基板10の導電形と同じ導電形を有する例えばボロンを
イオン注入し、凹部15の底部にチャネルストッパーと
なるイオン注入領域16を形成する(第2図b)。
Next, using the photoresist pattern 14 as a mask, Si3N
4 film 13, PSG film 12+5102 film 11, and Si substrate 1o are etched to a desired depth. For example, Si3N4 film 13, PSG film 12, Si○
The etching of the second film 11 is carried out using a reactive sputter etching method using C2F6. C3F8. C4F8
.. This is done using either CF4 (in the case of Si3N4 film etching). The Si substrate 1o is etched using a dry etching technique such as a reactive sputter etching method or a reactive ion beam etching method. CCu4,0120℃2. S is applied to the desired depth from the surface of the Si substrate 1o using either SF6 noise.
ii. etching to form the recess 15. Then, Si
Boron, for example, having the same conductivity type as the substrate 10 is ion-implanted to form an ion-implanted region 16 serving as a channel stopper at the bottom of the recess 15 (FIG. 2b).

次に、ホトレジストパターン14を除去した後、Si3
N4膜13を酸化防止マスクにして加熱酸化法により凹
部15表面に絶縁性の薄膜例えばSi○2膜17全17
する(第2図・C)。
Next, after removing the photoresist pattern 14, the Si3
Using the N4 film 13 as an oxidation prevention mask, an insulating thin film such as a Si○2 film 17 is formed on the surface of the recess 15 by a thermal oxidation method.
(Figure 2, C).

次に、813N4膜13を熱リン酸あるいはCF4プラ
ズマ法でエツチング除去する。その後、半導体膜例えば
Po1ySi膜をCVD法、蒸着法、スパッタ法等のい
ずれかの方法で形成する。それから、熱処理を例えば1
oOo℃で30分間施す。このとき、PSG膜1膜上2
上a 1 yS i膜18aはPSG膜1膜上2リンが
拡散され、凹部16内のPo l yS i膜18には
拡散されない(第2図d)。
Next, the 813N4 film 13 is removed by etching using hot phosphoric acid or CF4 plasma. Thereafter, a semiconductor film such as a Po1ySi film is formed by any method such as CVD, vapor deposition, or sputtering. Then, heat treatment is performed for example 1
Apply for 30 minutes at oOo°C. At this time, on PSG film 1 film 2
The diphosphorus on the PSG film 1 is diffused into the upper a 1 yS i film 18a, but is not diffused into the PolyS i film 18 in the recess 16 (FIG. 2d).

次に、Po1ySi膜18aiエツチングする。エツチ
ング液としては、例えば硝酸と弗化水素酸と酢酸から成
る混合液を用いて行なう。この場合、PSG 膜12に
よりリンが拡散されているPo l yS i膜18a
は、凹部15内の拡散されていないPo1ySi膜18
に比べて10〜20倍程度エツチングレートが速い。し
たがって、凹部16内のPo1ySi膜18をほとんど
エツチングすることなく、PSG膜1膜上2上o1yS
i膜18a’(Hエツチングすることができ、凹部15
内にはPo1ySi膜18か残存する(第2図e)。
Next, the Po1ySi film 18ai is etched. As the etching solution, for example, a mixed solution consisting of nitric acid, hydrofluoric acid, and acetic acid is used. In this case, the PolySi film 18a in which phosphorus is diffused by the PSG film 12
is the undiffused Po1ySi film 18 in the recess 15.
The etching rate is about 10 to 20 times faster than that of . Therefore, the olyS film on the PSG film 1 and the film 2 is etched almost without etching the PolySi film 18 in the recess 16.
I film 18a' (H etching can be performed, recess 15
A Po1ySi film 18 remains inside (FIG. 2e).

次に、PSG 膜12及びSiO2膜11全11チング
除去する0その後、全面酸化を例えば900〜1050
℃、6〜10にμ肩の加圧水蒸気中で行ないS 102
膜19を形成すれば、第2図(f)の如(Si基板10
の表面とほぼ平坦なPo1ySi膜18表面を有する素
子分離領域を形成するこAができる。
Next, the entire PSG film 12 and SiO2 film 11 are removed by oxidation, for example, 900 to 1050.
Performed in pressurized steam at 6-10°C
Once the film 19 is formed, as shown in FIG. 2(f) (Si substrate 10
It is possible to form an element isolation region having a surface of the Po1ySi film 18 that is substantially flat with the surface of .

以上、第1の実施例によれば、PSG 膜12上にSi
3N4膜13が形成されているため、凹部15表面にS
i○2膜17全17した際、PSG  膜12表面のリ
ン濃度は低下しない。したかって、Si3N4膜13を
エツチングした後、Po1ySi膜18を形成し熱処理
を施せばPSCi 膜12よ!;l Po1ySi膜1
8aへ容易にリンを拡散することができる。それによっ
て、リンを拡散したPo XyS i膜18aと拡散し
ていないPo1ySi膜18とのエツチングレートの差
が大きくなり、凹部15内に選択的に、しかも容易にP
o1ySi膜18を残存させることができる。
As described above, according to the first embodiment, Si is formed on the PSG film 12.
Since the 3N4 film 13 is formed, S is formed on the surface of the recess 15.
When the i○2 film 17 is completely removed, the phosphorus concentration on the surface of the PSG film 12 does not decrease. Therefore, after etching the Si3N4 film 13, a Po1ySi film 18 is formed and a heat treatment is performed to form a PSCi film 12! ;l PolySi film 1
Phosphorus can be easily diffused into 8a. As a result, the difference in etching rate between the Po XySi film 18a in which phosphorus is diffused and the Po1ySi film 18 in which phosphorus is not diffused increases, and P is selectively and easily deposited in the recess 15.
The o1ySi film 18 can remain.

次に、本発明の第2の実施例について第3図を用いて説
明する。
Next, a second embodiment of the present invention will be described using FIG. 3.

本発明の第1の実施例である第2図(a)から第2図(
C)の工程と同様な方法により、第2図(c)と同様な
構造を有する第3図(a)の構造を得る。第3図(a)
において、1QはSi基板、11はSiO2膜、12は
PSG膜、13はSi3N4膜、16は凹部、16はイ
オン注入領域、17はS 102膜である。
FIGS. 2(a) to 2(a) show the first embodiment of the present invention.
The structure of FIG. 3(a) having the same structure as FIG. 2(c) is obtained by a method similar to step C). Figure 3(a)
1Q is a Si substrate, 11 is an SiO2 film, 12 is a PSG film, 13 is a Si3N4 film, 16 is a recess, 16 is an ion implantation region, and 17 is an S102 film.

次に、Si3N4膜13を熱リン酸あるいはCF4プラ
ズマ法でエツチング除去する。その後、半導体膜例(i
d’ Po1ySi 膜18 f CV D法、蒸着法
、スパッタ法等のいずれかの方法で形成する。そして、
Po l yS i膜18上に外方拡散防止膜となる保
護膜例えばSiO2膜20全20D法、プラズマCvD
法、加熱酸化法等のいずれかの方法により形成する(第
3図b)。
Next, the Si3N4 film 13 is removed by etching using hot phosphoric acid or CF4 plasma. After that, the semiconductor film example (i
d'PolySi film 18f is formed by any method such as CVD method, vapor deposition method, or sputtering method. and,
A protective film serving as an outward diffusion prevention film is formed on the PolyS i film 18, for example, a SiO2 film 20 using a 20D method, plasma CvD.
It is formed by a method such as a heat oxidation method or a thermal oxidation method (FIG. 3b).

次に、熱処理を例えば1000’Cで30分間施す(第
3図C)。このとき、PSG 膜12上のPo1ySi
膜18aはPSG膜1膜上2リンが拡散され、凹部15
内のPo l yS i膜18には拡散されない。しか
も、Po 1 yS i膜18a表面がb 102膜2
0により保護されているため、PSG膜1膜上2Po1
ySi膜18a中に拡散されたリンがPo l yS 
i膜18aの表面から外方拡散せず、Po1yTi膜1
8aの表面濃度が低下しない。
Next, heat treatment is performed at, for example, 1000'C for 30 minutes (FIG. 3C). At this time, Po1ySi on the PSG film 12
In the film 18a, 2 phosphorus is diffused on the PSG film 1, and the recess 15
It is not diffused into the PolyS i film 18 inside. Moreover, the surface of the Po 1 yS i film 18a is b 102 film 2
0, 2Po1 on PSG film 1
Phosphorus diffused into the ySi film 18a is PolyS
The Po1yTi film 1 does not diffuse outward from the surface of the i film 18a.
The surface concentration of 8a does not decrease.

次に、5102膜2oを除去した後、第1の実施例であ
る第2図(e)から(f)の工程と同様な方法によって
、第2図(f)と同様な構造を有する素子分離領域を形
成することができる。
Next, after removing the 5102 film 2o, an element isolation device having a structure similar to that shown in FIG. 2(f) is separated by a method similar to the steps shown in FIGS. A region can be formed.

以上、第2の実施例によれば、Po1ySi膜18上に
Sio2膜20全20しているため、熱処理の際、Po
 l yS i膜18a表面からリンが外方拡散しない
ので、Po1ySi膜18aの表面濃度が低下しない。
As described above, according to the second embodiment, since all 20 of the Sio2 films 20 are formed on the Po1ySi film 18, during the heat treatment, the Po1ySi film 18 is
Since phosphorus does not diffuse outward from the surface of the Po1ySi film 18a, the surface concentration of the Po1ySi film 18a does not decrease.

したがって、Po1ySi膜18aを選択エツチングし
た際、Po1ySi膜18a表面のリン濃度低下による
エツチングレートの低下かなく、拡散していないPo 
1 yS i膜18とのエツチングレートの差が大きく
なり、凹部15内に選択的に、しかも容易にPo1yS
i膜18を残存させることができるO なお、第1及び第2の実施例において不純物を含んだ堆
積被膜12としてPSG 膜を用いて説明したが、A6
  ドープド5lo2 膜でもよい。
Therefore, when the Po1ySi film 18a is selectively etched, the etching rate does not decrease due to a decrease in the phosphorus concentration on the surface of the Po1ySi film 18a, and the etching rate does not decrease due to a decrease in the phosphorus concentration on the surface of the Po1ySi film 18a.
The difference in etching rate with the 1yS i film 18 becomes large, and Po1yS is selectively and easily deposited in the recess 15.
Note that in the first and second embodiments, the PSG film is used as the deposited film 12 containing impurities, but the A6
A doped 5lo2 film may also be used.

また、第1及び第2の実施例において半導体膜18とし
てPo l yS i膜を用いて説明したが、アモルフ
ァスSi膜でもよいことは言うまでもない。
Further, although the first and second embodiments have been described using a PolySi film as the semiconductor film 18, it goes without saying that an amorphous Si film may also be used.

さらに、第2の実施例において保護膜2oとしテSi○
2膜を用いて説明したが、813N4膜あるいはプラズ
マSi3N4膜でもよい。
Furthermore, in the second embodiment, as the protective film 2o, Si○
Although the explanation has been made using two films, an 813N4 film or a plasma Si3N4 film may be used.

発明の効果 以上のように、本発明によれば、除去したい領域の半導
体膜に半導体膜下に形成した不純物を含む堆積被膜から
選択的に不純物の拡散でき、しかも、不純物の拡散され
ている領域の半導体膜と不純物の拡散されていない領域
の半導体膜のエツチングレートの差に゛よって選択的に
不純物の拡散されている領域をエツチング除去すること
ができる。
Effects of the Invention As described above, according to the present invention, impurities can be selectively diffused into the semiconductor film in the region to be removed from the impurity-containing deposited film formed under the semiconductor film, and moreover, the impurity can be diffused into the region where the impurity is diffused. Due to the difference in etching rate between the semiconductor film in the semiconductor film and the semiconductor film in the region where impurities are not diffused, the region where impurities are diffused can be selectively etched away.

このことにより、素子分離領域となる凹部内に容易に、
しかも、素子分離領域のパターンII] vc依存する
ことなく、半導体膜を残存させることかできる。したが
って、本発明は、素子分肉1を領域のパターン巾が上部
巾によって決捷るため、凹部11]以上に素子間分離領
域が広がることがなく、しかも、凸部の少ない素子間分
離領域が形成でき、高密度な半導体装置の製造に大きく
寄与するものである。
As a result, it is possible to easily fill the concave portion which becomes the element isolation region.
Moreover, the semiconductor film can be left without depending on pattern II of the element isolation region vc. Therefore, in the present invention, since the pattern width of the region of the element thickness 1 is determined by the upper width, the inter-element isolation region does not expand beyond the concave portion 11], and the inter-element isolation region with few convex portions is formed. This technology greatly contributes to the production of high-density semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は従来の素子間分離領域の製造工
程断面図、第2図(、)〜(f)は本発明の一実施例に
かかる素子間分離領域の製造工程断面図、第3図(a)
〜(C)は本発明の他の実施例にかかる素子間分離領域
の製造途中工程断面図である0 10−、・・SL基板、11 .17,19,20.、
、、・・SiO2膜、12・・・PSG嘆、13・・・
・Si3N4膜、15・・・・・凹部、16・・・・イ
オン注入領域、18・−= Po 1ysi膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 s
FIGS. 1(a) to (d) are cross-sectional views of a conventional device isolation region manufacturing process, and FIGS. 2(a) to (f) are cross-sectional views of a manufacturing process of a device isolation region according to an embodiment of the present invention. Figure, Figure 3(a)
~(C) are cross-sectional views during the manufacturing process of an isolation region between elements according to another embodiment of the present invention; 010-, SL substrate, 11. 17, 19, 20. ,
,,...SiO2 film, 12...PSG lament, 13...
- Si3N4 film, 15... recess, 16... ion implantation region, 18... = Po 1ysi film. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 s

Claims (1)

【特許請求の範囲】 (1)半導体基板の一生面上に拡散防止膜を形成する工
程と、前記拡散防止膜上に不純物を含む堆積被膜を形成
する工程と、前記堆積被膜上に酸化防止膜を形成する工
程と、前記酸化防止膜、前記堆積被膜及び前記拡散防止
膜の所定の領域をエツチングし、さらに前記半導体基板
を所望の深さまでエツチングし凹部を形成する工程と、
前記凹部表面に薄膜を形成する工程と、前記酸化防止膜
をエツチングする工程と、前記半導体基板上に半導体膜
を形成する工程と、熱処理により前記堆積被膜から前記
半導体膜に不純物を拡散し、不純物拡散領域を形成する
工程と、前記半導体膜を1選択的にエツチングし、エツ
チングレートの速い前記不純物拡散領域の半導体膜は除
去し、エツチングレートの遅い不純物の拡散されていな
い凹部内の半導体膜を残存させる工程とを有することを
特徴とする半導体装置の製造方法。 ?)堆積被膜にPSG 膜を用いていることを特徴とす
る特許請求の範囲第1項に記載の半導体装置の製造方法
。 (3)半導体膜にPo 1 yS i膜を用いているこ
とを特徴とする特許請求の範囲第1項に記載の半導体装
置の製造方法。 (4)半導体膜の選択エツチングにおいて、弗化水素酸
と硝酸と酢酸の混合液を用いることを特徴とする特許請
求の範囲第1項に記載の半導体装置の製造方法。 (6)半導体基板の一生面上に拡散防止膜を形成する工
程と、前記拡散防止膜上に不純物を含む堆積被膜を形成
する工程と、前記堆積被膜上に酸化防止膜を形成する工
程と、前記酸化防止膜、前記堆積被膜及び前記拡散防止
膜の所定の領域をエツチングし、さらに前記半導体基板
を所望の深さまでエツチングし凹部を形成する工程と、
前記凹部表面に薄膜を形成する工程と、前記酸化防止膜
をエツチングする工程と、前記半導体基板上に半導体膜
を形成する工程と、前記半導体膜上に保護膜を形成する
工程と、熱処理により前記堆積被膜から前記半導体膜に
不純物を拡散し、不純物拡散領域を形成する工程と、前
記保護膜をエツチングする工程と、前記半導体膜を選択
的にエーノチングし、エツチングレートの速い前記不純
物拡散領域の半導体膜は除去し、エツチングレートの遅
い不純物の拡散されていない凹部内の半導体膜を残存さ
せる工程とを有することを特徴とする半導体装置の製造
方法。 (6)堆積被膜にPSG 膜を用いていることを特徴と
する特許請求の範囲第6項に記載の半導体装置の製造方
法。 (7)半導体膜にPo1ySi膜を用いていることを特
徴とする特許請求の範囲第5項に記載の半導体装置の製
造方法。 (8)半導体膜の選択エツチングにおいて、弗化水素酸
と硝酸と酢酸の混合液を用いることを特徴とする特許請
求の範囲第・↓項に記載の半導体装置の製造方法。 (9)保護膜に8102膜を用いていることを特徴とす
る特許請求の範囲第6項に記載の半導体装置の製造方法
[Scope of Claims] (1) A step of forming a diffusion prevention film on the whole surface of a semiconductor substrate, a step of forming a deposited film containing impurities on the diffusion prevention film, and a step of forming an oxidation prevention film on the deposited film. etching predetermined regions of the oxidation prevention film, the deposited film, and the diffusion prevention film, and further etching the semiconductor substrate to a desired depth to form a recess;
A step of forming a thin film on the surface of the recess, a step of etching the anti-oxidation film, a step of forming a semiconductor film on the semiconductor substrate, and a step of diffusing impurities from the deposited film into the semiconductor film by heat treatment. a step of forming a diffusion region, selectively etching the semiconductor film, removing the semiconductor film in the impurity diffusion region with a fast etching rate, and removing the semiconductor film in the recess where impurities with a slow etching rate are not diffused; 1. A method of manufacturing a semiconductor device, comprising a step of leaving the semiconductor device remaining. ? ) The method for manufacturing a semiconductor device according to claim 1, wherein a PSG film is used as the deposited film. (3) The method for manufacturing a semiconductor device according to claim 1, wherein a Po 1 yS i film is used as the semiconductor film. (4) The method for manufacturing a semiconductor device according to claim 1, wherein a mixed solution of hydrofluoric acid, nitric acid, and acetic acid is used in the selective etching of the semiconductor film. (6) forming a diffusion prevention film on the entire surface of a semiconductor substrate; forming a deposited film containing impurities on the diffusion prevention film; and forming an oxidation prevention film on the deposited film; etching predetermined regions of the oxidation prevention film, the deposited film, and the diffusion prevention film, and further etching the semiconductor substrate to a desired depth to form a recess;
forming a thin film on the surface of the recess, etching the anti-oxidation film, forming a semiconductor film on the semiconductor substrate, forming a protective film on the semiconductor film, and removing the a step of diffusing an impurity from a deposited film into the semiconductor film to form an impurity diffusion region; a step of etching the protective film; and selectively etching the semiconductor film to form a semiconductor in the impurity diffusion region with a high etching rate. 1. A method of manufacturing a semiconductor device, comprising the step of removing the film and leaving the semiconductor film in the recess where impurities with a slow etching rate are not diffused. (6) The method for manufacturing a semiconductor device according to claim 6, wherein a PSG film is used as the deposited film. (7) The method for manufacturing a semiconductor device according to claim 5, wherein a Po1ySi film is used as the semiconductor film. (8) A method for manufacturing a semiconductor device according to claim 1, wherein a mixed solution of hydrofluoric acid, nitric acid, and acetic acid is used in the selective etching of the semiconductor film. (9) The method for manufacturing a semiconductor device according to claim 6, characterized in that an 8102 film is used as the protective film.
JP17572782A 1982-10-06 1982-10-06 Manufacture of semiconductor device Pending JPS5965449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17572782A JPS5965449A (en) 1982-10-06 1982-10-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17572782A JPS5965449A (en) 1982-10-06 1982-10-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5965449A true JPS5965449A (en) 1984-04-13

Family

ID=16001175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17572782A Pending JPS5965449A (en) 1982-10-06 1982-10-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5965449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554728A (en) * 1984-06-27 1985-11-26 International Business Machines Corporation Simplified planarization process for polysilicon filled trenches

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554728A (en) * 1984-06-27 1985-11-26 International Business Machines Corporation Simplified planarization process for polysilicon filled trenches
EP0166207A2 (en) * 1984-06-27 1986-01-02 International Business Machines Corporation Simplified planarization process for polysilicon-filled trenches

Similar Documents

Publication Publication Date Title
JPS58210634A (en) Preparation of semiconductor device
JPS5837987B2 (en) Method for forming buried oxide isolation regions
JPS6072268A (en) Method of producing bipolar transistor structure
JPH0574927A (en) Production of semiconductor device
JPS5965449A (en) Manufacture of semiconductor device
JPH0897202A (en) Manufacture of semiconductor device
JPS5965447A (en) Manufacture of semiconductor device
JPS5965448A (en) Manufacture of semiconductor device
JPS58213444A (en) Manufacture of semiconductor device
JPH0729971A (en) Manufacture of semiconductor device
JPS6130046A (en) Manufacture of semiconductor integrated circuit device
JPH0974132A (en) Manufacture for semiconductor device
JPS59101851A (en) Manufacture of semiconductor device
JPS63228732A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPS63228730A (en) Manufacture of semiconductor integrated circuit
JPS5928358A (en) Manufacture of semiconductor device
JPS6161431A (en) Manufacture of semiconductor device
JPS5837991B2 (en) Manufacturing method of semiconductor device
JPS61112343A (en) Manufacture of semiconductor device
JPS597222B2 (en) Manufacturing method of semiconductor device
JPH03203324A (en) Manufacture of semiconductor device
JPS61241941A (en) Manufacture of semiconductor device
JPH0191433A (en) Semiconductor device and manufacture thereof
JPS6177343A (en) Manufacture of semiconductor device