JPH05129594A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05129594A
JPH05129594A JP28780691A JP28780691A JPH05129594A JP H05129594 A JPH05129594 A JP H05129594A JP 28780691 A JP28780691 A JP 28780691A JP 28780691 A JP28780691 A JP 28780691A JP H05129594 A JPH05129594 A JP H05129594A
Authority
JP
Japan
Prior art keywords
polysilicon
film
heat treatment
impurity
bit line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28780691A
Other languages
Japanese (ja)
Other versions
JP2818060B2 (en
Inventor
Akitsu Ayukawa
あきつ 鮎川
Shigeo Onishi
茂夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3287806A priority Critical patent/JP2818060B2/en
Publication of JPH05129594A publication Critical patent/JPH05129594A/en
Application granted granted Critical
Publication of JP2818060B2 publication Critical patent/JP2818060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent generation of a crystal defect and to improve the yield by forming by the steps of first heat treating parts to become source and drain regions by ion implanting an impurity, forming a bit line and second heat treating it. CONSTITUTION:An SiO2 film is deposited on a silicon substrate 1 and a gate electrode 3, and a sidewall 4 made of SiO2 is formed on the electrode 3. A first heat treatment is conducted so as to ion implant an impurity in source and drain regions on the electrode 3 and the substrate 1 through a polysilicon 6 and to diffuse the impurity. Further, a WSi film 9 is formed on the polysilicon 6 to form a bit line 10. Then, a second heat treatment is conducted to oxidize tungsten. Thus, a crystal defect such as a stacking fault defect, etc., can be prevented, and the line 10 of a low resistance can be simultaneously formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、より詳細にはLDD(Lightly Doped Drain) 構造
を有するMOS型半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a MOS type semiconductor device having an LDD (Lightly Doped Drain) structure.

【0002】[0002]

【従来の技術】従来のLDD構造を有するMOS型メモ
リセルの製造方法を図面に基づいて説明する。まず、図
2(a)に示したように、P型のシリコン基板(21)
上に活性領域及びフィールド酸化膜からなる素子分離領
域を形成することによって、素子形成領域を確保した
後、ゲート酸化膜としてSiO2 膜(22)が形成され
た素子形成領域上に3500〜4000Åの厚さのポリ
シリコンからなるゲート電極(23)を形成し、CVD
法でSiO2 膜を2500〜3500Åの厚さで堆積さ
せ、ゲート電極(23)にSiO2からなるサイドウォ
ール(24)を反応性イオンエッチング(RIE)法及
びHFウェットエッチング法によって形成するととも
に、シリコン基板(21)上に約100〜400ÅのS
iO2 膜(26)を形成する。
2. Description of the Related Art A conventional method of manufacturing a MOS type memory cell having an LDD structure will be described with reference to the drawings. First, as shown in FIG. 2A, a P-type silicon substrate (21)
After securing an element formation region by forming an element isolation region composed of an active region and a field oxide film on the element formation region, a 3500 to 4000 Å layer is formed on the element formation region where the SiO 2 film (22) is formed as a gate oxide film. A gate electrode (23) made of polysilicon having a thickness is formed, and CVD is performed.
A SiO 2 film is deposited to a thickness of 2500 to 3500Å by a method, and a sidewall (24) made of SiO 2 is formed on the gate electrode (23) by a reactive ion etching (RIE) method and an HF wet etching method. About 100-400Å S on the silicon substrate (21)
An iO 2 film (26) is formed.

【0003】次いで、ゲート電極(23)をマスクとし
てソース/ドレイン領域となる領域にSiO2 膜(2
6)を介してAs等のN型不純物イオン(25)の注入
を行う。そして、ソース/ドレイン領域の不純物を拡散
させるため、例えば、800℃の温度で1時間の第1の
熱処理を行う。
Then, using the gate electrode (23) as a mask, the SiO 2 film (2
N-type impurity ions (25) such as As are implanted through 6). Then, in order to diffuse the impurities in the source / drain regions, for example, a first heat treatment is performed at a temperature of 800 ° C. for 1 hour.

【0004】その後、図2(b)示したように、ソース
/ドレイン領域の外方拡散を抑制するためにSiO2
(26)上にNSG膜(27)を堆積し、その上にNS
G膜(27)上の層間段差を少なくするためにBPSG
膜(28)を堆積して、例えば950℃で30分間の第
2の熱処理を行い、ソース/ドレイン領域を形成する。
Thereafter, as shown in FIG. 2B, an NSG film (27) is deposited on the SiO 2 film (26) in order to suppress the outward diffusion of the source / drain regions, and the NS film is deposited on the NSG film (27).
BPSG to reduce the step difference between layers on the G film (27)
A film (28) is deposited and a second heat treatment is performed, for example, at 950 ° C. for 30 minutes to form the source / drain regions.

【0005】[0005]

【発明が解決しようとする課題】微細MOS型トランジ
スタの諸特性の変動をもたらす原因の一つとして、ソー
ス/ドレイン領域の結晶欠陥の存在があげられるが、上
記の半導体装置の製造方法においては、イオン注入がS
iO2 膜(26)を通して行われるので、注入されるイ
オンがSiO2 膜(26)を通過する際に、SiO2
(26)中の酸素原子が反跳されて注入イオンとともに
シリコン基板(21)に打ち込まれることとなる。そし
てシリコン基板(21)に打ち込まれた酸素はシリコン
基板(21)内に結晶欠陥(29)を発生させるという
問題があった。
The existence of crystal defects in the source / drain regions is one of the causes of variations in various characteristics of the fine MOS transistor. However, in the method of manufacturing a semiconductor device described above, Ion implantation is S
Since occurs through iO 2 film (26), when implanted ions pass through the SiO 2 film (26), a silicon substrate (21 with the oxygen atom of the SiO 2 film (26) in the recoil has been implanted ions ) Will be driven into. Then, there is a problem that oxygen implanted into the silicon substrate (21) causes crystal defects (29) in the silicon substrate (21).

【0006】また、この結晶欠陥(29)はその後の熱
処理でも消失せず、半導体装置の電気的リークの原因と
なり、歩留り低下の原因となるという問題もあった。本
発明はこのような問題を鑑みなされたものであり、結晶
欠陥を発生させることなく、歩留りの高い半導体装置の
製造方法を提供することを目的としている。
Further, there is a problem that the crystal defects (29) do not disappear even in the subsequent heat treatment, which causes an electric leak of the semiconductor device and a decrease in yield. The present invention has been made in view of such a problem, and an object thereof is to provide a method for manufacturing a semiconductor device having a high yield without causing crystal defects.

【0007】[0007]

【課題を解決するための手段】上記記載の問題を解決す
るために本発明によれば、ゲート電極及びNSG膜の側
壁にサイドウォールが形成され、前記ゲート電極がゲー
ト酸化膜を介して配設されている半導体基板に、ポリシ
リコンを積層した後、ソース/ドレイン領域となる部分
に前記ポリシリコンを介して不純物をイオン注入して第
1の熱処理を行う工程、前記ポリシリコン上にシリサイ
ドを積層させてビットラインを形成する工程、しかる
後、第2の熱処理を行う工程を含むことを特徴としてい
る。
In order to solve the above-mentioned problems, according to the present invention, sidewalls are formed on the side walls of the gate electrode and the NSG film, and the gate electrode is provided via the gate oxide film. A layer of polysilicon on a semiconductor substrate that has been formed, a step of performing a first heat treatment by ion-implanting impurities into the source / drain regions through the polysilicon, and a layer of silicide on the polysilicon. The method is characterized by including the step of forming the bit line and then performing the second heat treatment.

【0008】本発明においては、半導体基板(例えば、
シリコン基板)に予めゲート酸化膜(例えばSiO
2 膜)を介して、サイドウォールが形成されてゲート電
極が形成されている。そして、この半導体基板にはCV
D法等の公知の方法で200〜500Å程度のポリシリ
コンが積層され、このポリシリコンを介して半導体基板
のソース/ドレイン領域となる部分に不純物であるA
s、P等のイオン注入が、公知の方法によって行われ
る。なお、ポリシリコンを介してN+ 不純物をイオン注
入する際、浅い接合のできるイオンを注入することが好
ましい。たとえば、Asイオンの場合、60〜100K
eV、2×1015〜1×1016ions/cm2 でイオ
ン注入することが好ましい。
In the present invention, a semiconductor substrate (for example,
A gate oxide film (eg, SiO 2) is previously formed on the silicon substrate.
The gate electrode is formed by forming the sidewall through the two films). And this semiconductor substrate has CV
Polysilicon having a thickness of about 200 to 500 Å is laminated by a known method such as the D method, and impurities A are contained in the source / drain regions of the semiconductor substrate through the polysilicon.
Ion implantation of s, P, etc. is performed by a known method. When the N + impurity is ion-implanted through polysilicon, it is preferable to implant the ions capable of forming a shallow junction. For example, in the case of As ion, 60 to 100K
It is preferable to perform ion implantation at eV and 2 × 10 15 to 1 × 10 16 ions / cm 2 .

【0009】その後、本発明ではこの不純物をソース/
ドレイン領域に拡散させるために、第1の熱処理が行わ
れる。この第1の熱処理は約750〜850℃の温度範
囲で、30〜60分間程度行うことによって達すること
ができる。そして、ポリシリコン上にシリサイドを積層
させてビットラインを形成する。なお、ポリシリコン上
に積層するシリサイドはスパッタリング法等の公知の方
法で堆積することができシリサイドとしてはMoS
2 、WSi2 、TiSi2 等を用いることができる
が、WSiを300〜600Å積層させるのが好まし
い。そしてしかる後、第2の熱処理を行う。第2の熱処
理としては、約900〜950℃、10〜30分間行う
ことによって、欠陥のない不純物拡散領域を形成するこ
とができる。
Then, in the present invention, this impurity is added to the source / source.
A first heat treatment is performed to diffuse into the drain region. This first heat treatment can be achieved by performing the first heat treatment in the temperature range of about 750 to 850 ° C. for about 30 to 60 minutes. Then, a silicide is stacked on the polysilicon to form a bit line. The silicide laminated on the polysilicon can be deposited by a known method such as a sputtering method, and MoS can be used as the silicide.
Although i 2 , WSi 2 , TiSi 2 and the like can be used, it is preferable to stack WSi in the range of 300 to 600 Å. Then, after that, a second heat treatment is performed. By performing the second heat treatment at about 900 to 950 ° C. for 10 to 30 minutes, a defect-free impurity diffusion region can be formed.

【0010】[0010]

【作用】上記した方法によれば、ソース/ドレイン領域
に不純物をイオン注入する際に半導体基板内に生じる挿
入型の積層欠陥等の結晶欠陥が、ポリシリコンを介して
イオン注入されることにより抑制されるとともに、前記
ポリシリコン上にシリサイドを積層させてビットライン
を形成した後、第2の熱処理を行うことにより、ポリシ
リコン及び半導体基板からSi原子が飛びだし、半導体
基板内に空孔が強制的に導入されることとなる。そし
て、その空孔が半導体基板内に生じた欠陥を解消させて
欠陥のない不純物拡散領域が形成されることとなる。
According to the above-described method, crystal defects such as insertion type stacking faults that occur in the semiconductor substrate when impurities are ion-implanted into the source / drain regions are suppressed by ion-implanting via polysilicon. At the same time, after forming a bit line by stacking silicide on the polysilicon, a second heat treatment is performed to eject Si atoms from the polysilicon and the semiconductor substrate and force vacancies in the semiconductor substrate. Will be introduced in. Then, the vacancy eliminates the defect generated in the semiconductor substrate and an impurity-diffused region having no defect is formed.

【0011】また、ポリシリコンを介してイオン注入を
行うことにより、不純物拡散領域が浅く形成されるとと
もに、ポリシリコン/シリサイド膜界面の抵抗が低下し
て、低抵抗のビットラインが同時に形成されることとな
る。
By implanting ions through polysilicon, the impurity diffusion region is formed shallow, and the resistance of the polysilicon / silicide film interface is reduced, so that a low resistance bit line is simultaneously formed. It will be.

【0012】[0012]

【実施例】本発明に係る半導体装置の製造方法の実施例
を図面に基づいて説明する。まず、シリコン基板(1)
上に活性領域及びフィールド酸化膜からなる素子分離領
域を形成することによって、素子形成領域を確保し、ゲ
ート酸化膜としてSiO2 膜(2)を積層したのち、こ
の素子形成領域上に3500〜4000Åの厚さのポリ
シリコンからなるゲート電極(3)を形成する。つい
で、ゲート電極(3)上に1500Å程度のNSG膜
(4)を形成する。そして、シリコン基板(1)及びゲ
ート電極(3)上にCVD法でSiO2 膜を2500〜
3500Åの厚さで堆積させ、ゲート電極(3)にSi
2 からなるサイドウォール(4)を反応性イオンエッ
チング(RIE)法及びHFウェットエッチング法によ
って形成する。この際、シリコン基板(1)上に積層さ
れたSiO2 膜はすべてエッチングによって除去してシ
リコン基板(1)を露出しておく(図1(a))。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described with reference to the drawings. First, silicon substrate (1)
An element formation region is secured by forming an element isolation region composed of an active region and a field oxide film thereon, and a SiO 2 film (2) is laminated as a gate oxide film. Then, 3500 to 4000 Å Forming a gate electrode (3) of polysilicon having a thickness of. Then, an NSG film (4) of about 1500 Å is formed on the gate electrode (3). Then, an SiO 2 film is formed on the silicon substrate (1) and the gate electrode (3) by a CVD method in a range of 2500 to 2500.
Deposited to a thickness of 3500Å and Si on the gate electrode (3)
The side wall (4) made of O 2 is formed by the reactive ion etching (RIE) method and the HF wet etching method. At this time, the SiO 2 film laminated on the silicon substrate (1) is entirely removed by etching to expose the silicon substrate (1) (FIG. 1A).

【0013】次いで、ゲート電極(3)及びシリコン基
板(1)上に、例えば300Å程度のポリシリコンをC
VD法によって積層させ、このポリシリコンを介してソ
ース/ドレイン領域(8)に不純物としてAsイオン
(7)を80KeV、5×10 15ions/cm2 で注
入し、ソース/ドレイン領域(8)の不純物を拡散させ
るため、例えば、800℃の温度で1時間の第1の熱処
理を行う(図1(b))。そしてさらに、このポリシリ
コン(6)上にWSi膜(9)を500Å程度積層さ
せ、公知のフォトエッチング工程によりビットライン
(10)を形成する。次いで、950℃で30分間程
度、第2の熱処理を行い、タングステン酸化する。
Next, the gate electrode (3) and the silicon base
On the plate (1), for example, about 300 Å polysilicon is C
The layers are laminated by the VD method, and the
As ions as impurities in the source / drain region (8)
(7) is 80 KeV, 5 × 10 15ions / cm2Note in
To diffuse the impurities in the source / drain region (8)
Therefore, for example, the first heat treatment for 1 hour at a temperature of 800 ° C.
(Fig. 1 (b)). And moreover, this police
WSi film (9) is laminated on controller (6) to about 500Å
Bit line by a known photo-etching process.
(10) is formed. Then, at 950 ° C for about 30 minutes
The second heat treatment is then performed to oxidize tungsten.

【0014】このように製造される半導体装置におい
て、半導体基板(1)内に生じる挿入型の積層欠陥等の
結晶欠陥を解消することができ、ポリシリコン(6)/
WSi膜(9)界面の抵抗を低下させて、低抵抗のビッ
トライン(10)を同時に形成することができる。
In the semiconductor device manufactured as described above, crystal defects such as insertion type stacking faults occurring in the semiconductor substrate (1) can be eliminated, and the polysilicon (6) /
The resistance of the interface of the WSi film (9) can be reduced to form the low resistance bit line (10) at the same time.

【0015】[0015]

【発明の効果】本発明に係る半導体装置の製造方法によ
れば、ソース/ドレイン領域に不純物をイオン注入した
際に半導体基板内に生じる挿入型の積層欠陥等の結晶欠
陥を、ポリシリコンを介してイオン注入することによ
り、抑制することができるとともに、前記ポリシリコン
上にシリサイドを積層させてビットラインを形成した
後、第2の熱処理を行うことにより、ポリシリコン及び
半導体基板からSi原子が飛びだし、半導体基板内に空
孔が強制的に導入されることとなる。これにより、その
空孔が半導体基板内に生じた欠陥を解消させて、欠陥の
ない不純物拡散領域を形成することができる。
According to the method of manufacturing a semiconductor device of the present invention, crystal defects such as insertion type stacking faults that occur in a semiconductor substrate when impurities are ion-implanted into the source / drain regions are mediated by polysilicon. By performing ion implantation, the silicide can be suppressed on the polysilicon, and a bit line is formed by stacking silicide on the polysilicon, and then a second heat treatment is performed to cause Si atoms to fly out from the polysilicon and the semiconductor substrate. The voids are forcibly introduced into the semiconductor substrate. As a result, the defects caused by the holes in the semiconductor substrate can be eliminated, and a defect-free impurity diffusion region can be formed.

【0016】また、ポリシリコンを介してイオン注入を
行うことにより、不純物拡散領域を浅く形成することが
できるとともに、ポリシリコン/シリサイド膜界面の抵
抗を低下させて、低抵抗のビットラインを同時に形成す
ることができる。従って、欠陥のない不純物拡散領域を
形成することにより、リーク電流を低下させることが可
能となるとともに、低抵抗のビットラインを不純物拡散
層の無欠陥化と同時に形成することができ、歩留りを向
上させることが可能となる。
Further, by implanting ions through polysilicon, the impurity diffusion region can be formed shallowly, and the resistance of the polysilicon / silicide film interface is lowered to simultaneously form a low resistance bit line. can do. Therefore, by forming a defect-free impurity diffusion region, it is possible to reduce the leak current, and it is possible to form a low resistance bit line at the same time as making the impurity diffusion layer defect-free, thus improving the yield. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体装置の製造方法の実施例を
示す製造工程説明図である。
FIG. 1 is a manufacturing process explanatory view showing an embodiment of a semiconductor device manufacturing method according to the present invention.

【図2】従来の半導体装置の製造方法を示す概略断面図
である。
FIG. 2 is a schematic cross-sectional view showing a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 シリコン基板(半導体基板) 2 SiO2 膜(ゲート酸化膜) 3 ゲート電極 4 NSG膜 5 サイドウォール 6 ポリシリコン 7 不純物イオン 8 ソース/ドレイン領域 9 WSi膜(シリサイド膜) 10 ビットライン1 Silicon substrate (semiconductor substrate) 2 SiO 2 film (gate oxide film) 3 Gate electrode 4 NSG film 5 Sidewall 6 Polysilicon 7 Impurity ion 8 Source / drain region 9 WSi film (silicide film) 10 Bit line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゲート電極及びNSG膜にサイドウォー
ルが形成され、前記ゲート電極がゲート酸化膜を介して
配設されている半導体基板に、ポリシリコンを積層した
後、ソース/ドレイン領域となる部分に前記ポリシリコ
ンを介して不純物をイオン注入して第1の熱処理を行う
工程、前記ポリシリコン上にシリサイドを積層させてビ
ットラインを形成する工程、しかる後、第2の熱処理を
行う工程を含むことを特徴とする半導体装置の製造方
法。
1. A portion which becomes a source / drain region after polysilicon is laminated on a semiconductor substrate in which a sidewall is formed on a gate electrode and an NSG film, and the gate electrode is provided through a gate oxide film. And a step of performing a first heat treatment by ion-implanting impurities through the polysilicon, a step of stacking silicide on the polysilicon to form a bit line, and a step of performing a second heat treatment thereafter. A method of manufacturing a semiconductor device, comprising:
JP3287806A 1991-11-01 1991-11-01 Method for manufacturing semiconductor device Expired - Fee Related JP2818060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287806A JP2818060B2 (en) 1991-11-01 1991-11-01 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287806A JP2818060B2 (en) 1991-11-01 1991-11-01 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05129594A true JPH05129594A (en) 1993-05-25
JP2818060B2 JP2818060B2 (en) 1998-10-30

Family

ID=17721998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287806A Expired - Fee Related JP2818060B2 (en) 1991-11-01 1991-11-01 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2818060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356471B1 (en) * 1999-12-29 2002-10-18 주식회사 하이닉스반도체 Method of manufacturing a flash EEPROM cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974668A (en) * 1982-09-20 1984-04-27 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Integrated circuit contact structure
JPS62183179A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH0194667A (en) * 1987-10-07 1989-04-13 Hitachi Ltd Manufacture of semiconductor device
JPH025411A (en) * 1988-06-24 1990-01-10 Hitachi Ltd Manufacture of semiconductor device
JPH0210739A (en) * 1988-06-28 1990-01-16 Mitsubishi Electric Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974668A (en) * 1982-09-20 1984-04-27 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Integrated circuit contact structure
JPS62183179A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH0194667A (en) * 1987-10-07 1989-04-13 Hitachi Ltd Manufacture of semiconductor device
JPH025411A (en) * 1988-06-24 1990-01-10 Hitachi Ltd Manufacture of semiconductor device
JPH0210739A (en) * 1988-06-28 1990-01-16 Mitsubishi Electric Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356471B1 (en) * 1999-12-29 2002-10-18 주식회사 하이닉스반도체 Method of manufacturing a flash EEPROM cell

Also Published As

Publication number Publication date
JP2818060B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JP4313065B2 (en) Semiconductor device using silicon germanium gate and manufacturing method thereof
US5489546A (en) Method of forming CMOS devices using independent thickness spacers in a split-polysilicon DRAM process
JPH09186245A (en) Manufacture of semiconductor device
JP2716300B2 (en) Method for manufacturing semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
JPH05129594A (en) Manufacture of semiconductor device
JP2771066B2 (en) Method for manufacturing semiconductor device
JP2931243B2 (en) Method for manufacturing semiconductor device
JPH07273326A (en) Semiconductor device and manufacture of it
JP2827962B2 (en) Method for manufacturing semiconductor device
JP2763216B2 (en) Method for manufacturing semiconductor device
JP2763225B2 (en) Method for manufacturing semiconductor device
JPH11150118A (en) Manufacture of semiconductor device
JPH05267328A (en) Manufacture of semiconductor device
JP3061892B2 (en) Method for manufacturing semiconductor device
JPH05129593A (en) Manufacture of semiconductor device
JP3311082B2 (en) Method for manufacturing semiconductor device
JP3371600B2 (en) Method for manufacturing MIS transistor
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPH11150181A (en) Manufacture of semiconductor device
JPH0629531A (en) Manufacture of semiconductor device
JPH0582784A (en) Manufacture of mis-type semiconductor device
JP3507750B2 (en) Method for manufacturing semiconductor device
JPH0226034A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070821

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080821

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080821

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110821

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees