JPH0483104A - 走査型トンネル顕微鏡 - Google Patents
走査型トンネル顕微鏡Info
- Publication number
- JPH0483104A JPH0483104A JP2198593A JP19859390A JPH0483104A JP H0483104 A JPH0483104 A JP H0483104A JP 2198593 A JP2198593 A JP 2198593A JP 19859390 A JP19859390 A JP 19859390A JP H0483104 A JPH0483104 A JP H0483104A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- probe
- guard ring
- voltage
- tunnel current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005641 tunneling Effects 0.000 title claims description 10
- 239000000523 sample Substances 0.000 claims abstract description 87
- 238000005259 measurement Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/10—STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
- G01Q60/16—Probes, their manufacture, or their related instrumentation, e.g. holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
- G01Q10/04—Fine scanning or positioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q20/00—Monitoring the movement or position of the probe
- G01Q20/04—Self-detecting probes, i.e. wherein the probe itself generates a signal representative of its position, e.g. piezoelectric gauge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/849—Manufacture, treatment, or detection of nanostructure with scanning probe
- Y10S977/86—Scanning probe structure
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は走査型トンネル顕微鏡(STM;Scann
ing Tunneling Microscope)
に関する。
ing Tunneling Microscope)
に関する。
[従来の技術]
STMは、先鋭な導電性探針を導電性試料に数人程度ま
で近づけ1両者間にバイアス電圧を印加した際に流れる
トンネル電流を利用した表面形状計測装置である。一般
にSTMでは、探針が試料の表面を走査する間、探針と
試料との間の距離を一定に保つように探針・試料間距離
がサーボ制御される。 この探針の走査およびサーボ制
御には高電圧で駆動される圧電素子が主に使用される。
で近づけ1両者間にバイアス電圧を印加した際に流れる
トンネル電流を利用した表面形状計測装置である。一般
にSTMでは、探針が試料の表面を走査する間、探針と
試料との間の距離を一定に保つように探針・試料間距離
がサーボ制御される。 この探針の走査およびサーボ制
御には高電圧で駆動される圧電素子が主に使用される。
[発明が解決しようとする課題〕
トンネル電流は、絶縁部材を介して圧電素子に取り付け
られた探針電極から検出される。圧電素子には、探針が
試料表面を一定の間隔を置いて走査するように、試料表
面の凹凸に対応したサーボ電圧が供給される。このサー
ボ電圧が供給される圧電素子の駆動電極と探針電極との
間には絶縁部材が介在し、駆動電極と探針電極との間に
コンデンサーを構成する。このため、圧電素子の駆動電
極に時間的に変化するサーボ電圧が印加された際に、
コンデンサーの電極に交流電圧が供給されたときのよう
に、探針電極に電流が流れてしまう。
られた探針電極から検出される。圧電素子には、探針が
試料表面を一定の間隔を置いて走査するように、試料表
面の凹凸に対応したサーボ電圧が供給される。このサー
ボ電圧が供給される圧電素子の駆動電極と探針電極との
間には絶縁部材が介在し、駆動電極と探針電極との間に
コンデンサーを構成する。このため、圧電素子の駆動電
極に時間的に変化するサーボ電圧が印加された際に、
コンデンサーの電極に交流電圧が供給されたときのよう
に、探針電極に電流が流れてしまう。
[課題を解決するための手段]
このような課題を解決するため、本発明者は、特願平2
−134837号の中で、探針電極と圧電素子との間に
絶縁部材を介して接地されたガードリング電極を設ける
方法や、圧電素子自体にガードリング電極を設は接地す
る方法を提案している。
−134837号の中で、探針電極と圧電素子との間に
絶縁部材を介して接地されたガードリング電極を設ける
方法や、圧電素子自体にガードリング電極を設は接地す
る方法を提案している。
このような方法は、探針に一定にバイアス電圧を印加す
る場合や、探針を仮想接地して試料に変調バイアス電圧
を印加し、試料の局所的な電気特性をトンネル電流を介
して測定するSTS(Scanning Tunnel
ing 5petroscopy)測定を行う場合など
には有効である。 しかしながら、液体中STM等のよ
うに、試料を接地または一定電位に保つ必要がある場合
、バイアス電圧は探針に印加される。このとき、探針に
印加しているバイアス電圧を変調させるSTS測定を行
おうとすると、ガードリング電極が接地されているため
に、探針電極とガードリング電極に挟まれた絶縁部材を
介して、探針電極に電流が流れ込んでしまい、 トンネ
ル電流として誤検出される。 二のため、 正確なST
S測定を行うことができない。
る場合や、探針を仮想接地して試料に変調バイアス電圧
を印加し、試料の局所的な電気特性をトンネル電流を介
して測定するSTS(Scanning Tunnel
ing 5petroscopy)測定を行う場合など
には有効である。 しかしながら、液体中STM等のよ
うに、試料を接地または一定電位に保つ必要がある場合
、バイアス電圧は探針に印加される。このとき、探針に
印加しているバイアス電圧を変調させるSTS測定を行
おうとすると、ガードリング電極が接地されているため
に、探針電極とガードリング電極に挟まれた絶縁部材を
介して、探針電極に電流が流れ込んでしまい、 トンネ
ル電流として誤検出される。 二のため、 正確なST
S測定を行うことができない。
二の発明は、探針電極に変調バイアス電圧を印加してS
TS測定を行う際に、探針電極とガードリング電極との
間に流れる電流の交流成分をなくし、検出されるトンネ
ル電流のS/N比を向上させ、正確なSTS測定を可能
にすることを目的とす る。
TS測定を行う際に、探針電極とガードリング電極との
間に流れる電流の交流成分をなくし、検出されるトンネ
ル電流のS/N比を向上させ、正確なSTS測定を可能
にすることを目的とす る。
この発明の走査型トンネル顕微鏡は、試料を走査する探
針と、探針に接続されたトンネル電流を取り出すための
探針電極と、探針を移動させる圧電素子と、圧電素子の
駆動電極と探針電極との間に設けられ、 これらの電極
から絶縁されたガードリング電極と、探針に印加される
電圧に等しい電圧をガードリング電極に印加する手段と
を備える。
針と、探針に接続されたトンネル電流を取り出すための
探針電極と、探針を移動させる圧電素子と、圧電素子の
駆動電極と探針電極との間に設けられ、 これらの電極
から絶縁されたガードリング電極と、探針に印加される
電圧に等しい電圧をガードリング電極に印加する手段と
を備える。
[作用]
この発明の走査型トンネル顕微鏡では、 ガードリング
電極には常に探針電極に印加される電圧と同じ電圧が印
加され、ガードリング電極と探針電極とが等電位に保た
れる。従って、探針電極とガードリング電極との間に電
流は流れない、 また、圧電素子の駆動電極に時間的に
変化する電圧が印加さ゛れたときに発生する電流は、
ガードリング電極と駆動電極との間で流れ、探針電極に
は流れ込まない、従って、検出されるトンネル電流のS
/N比が向上する。
電極には常に探針電極に印加される電圧と同じ電圧が印
加され、ガードリング電極と探針電極とが等電位に保た
れる。従って、探針電極とガードリング電極との間に電
流は流れない、 また、圧電素子の駆動電極に時間的に
変化する電圧が印加さ゛れたときに発生する電流は、
ガードリング電極と駆動電極との間で流れ、探針電極に
は流れ込まない、従って、検出されるトンネル電流のS
/N比が向上する。
[実施例]
以下、図面を参照しながら、 この発明による走査型ト
ンネル顕微鏡の実施例について説明する。
ンネル顕微鏡の実施例について説明する。
第1図に示されるように、試料10を走査する探針12
は探針電極14に取り付けられ、探針電極14は円筒型
圧電アクチュエーター16によって支持される6 円筒
型圧電アクチュエーター16は周壁に4つの駆動電極1
8を備え、各駆動電極18に印加される電圧の組合せに
応じて3軸方向に変形可能で、これにより探針12を3
軸方向に移動する0円筒型圧電アクチュエーター16と
探針電極14との間にはガードリング電極20が設けら
れ、ガードリング電極20はその上下に設けられた絶縁
部材22によって、探針電極14及び円筒型圧電アクチ
ュエーター16の駆動電極18から絶縁される。
は探針電極14に取り付けられ、探針電極14は円筒型
圧電アクチュエーター16によって支持される6 円筒
型圧電アクチュエーター16は周壁に4つの駆動電極1
8を備え、各駆動電極18に印加される電圧の組合せに
応じて3軸方向に変形可能で、これにより探針12を3
軸方向に移動する0円筒型圧電アクチュエーター16と
探針電極14との間にはガードリング電極20が設けら
れ、ガードリング電極20はその上下に設けられた絶縁
部材22によって、探針電極14及び円筒型圧電アクチ
ュエーター16の駆動電極18から絶縁される。
バイアス電圧信号Slを入力とするオペアンプ26は、
その出力がガードリング電極20に接続され、 ガード
リング電極20をバイアス電圧信号S1と同電位に保つ
電圧フォロワである。オペアンプ28は、非反転入力に
バイアス電圧信号S1が入力され、反転入力は探針電極
14に接続されて、探針電極14をバイアス入力電圧と
同電位に保ちながら、探針12と試料10との間に流れ
るトンネル電流を電圧信号に変換する。オペアンプ30
は、オペアンプ28から出力されるバイアス加算トンネ
ル電流信号S2から、バイアス電圧分を引算し、電圧増
幅する差動増幅器で、 トンネル電流信号S3を出力す
る。
その出力がガードリング電極20に接続され、 ガード
リング電極20をバイアス電圧信号S1と同電位に保つ
電圧フォロワである。オペアンプ28は、非反転入力に
バイアス電圧信号S1が入力され、反転入力は探針電極
14に接続されて、探針電極14をバイアス入力電圧と
同電位に保ちながら、探針12と試料10との間に流れ
るトンネル電流を電圧信号に変換する。オペアンプ30
は、オペアンプ28から出力されるバイアス加算トンネ
ル電流信号S2から、バイアス電圧分を引算し、電圧増
幅する差動増幅器で、 トンネル電流信号S3を出力す
る。
STS測定の際、交流成分を有するバイアス電圧信号S
lを入力すると、探針12及びガードリング電極14の
電位は、バイアス電圧信号S1と同電位に保たれながら
推移する。 このため、絶縁部材24の容量成分を介し
て探針電極14とガードリング電極20との間に漏れ電
流が流れなくなり、探針12と試料10との間に流れる
トンネル電流だけが検出される。
lを入力すると、探針12及びガードリング電極14の
電位は、バイアス電圧信号S1と同電位に保たれながら
推移する。 このため、絶縁部材24の容量成分を介し
て探針電極14とガードリング電極20との間に漏れ電
流が流れなくなり、探針12と試料10との間に流れる
トンネル電流だけが検出される。
STM測定の際、走査のための電圧が駆動電極18に印
加されると5 駆動電極18から絶縁部材2224の容
量成分を介して探針電極14に向かう電流は途中に設け
られたガードリング電極20に流れ込み、探針電極14
には流入しない、従って、探針12と試料10との間に
流れるトンネル電流だけが検出される。
加されると5 駆動電極18から絶縁部材2224の容
量成分を介して探針電極14に向かう電流は途中に設け
られたガードリング電極20に流れ込み、探針電極14
には流入しない、従って、探針12と試料10との間に
流れるトンネル電流だけが検出される。
このように、 STS測定特定時STM測定のための走
査時を問わず、探針電極14からは純粋に探針12と試
料10との間に流れるトンネル電流だけが検出されるよ
うになり、高精度でのSTS測定及びSTM測定が可能
になる。なお、 STS測定を行わない時、バイアス電
圧信号Slは一定電位に保たれるが、 この場合にもS
TM測定特定時様に、駆動電極18からの漏れ電流をカ
ットできる効果は損なわれない、すなわち、 この漏れ
電流はガードリングによってカットされる。
査時を問わず、探針電極14からは純粋に探針12と試
料10との間に流れるトンネル電流だけが検出されるよ
うになり、高精度でのSTS測定及びSTM測定が可能
になる。なお、 STS測定を行わない時、バイアス電
圧信号Slは一定電位に保たれるが、 この場合にもS
TM測定特定時様に、駆動電極18からの漏れ電流をカ
ットできる効果は損なわれない、すなわち、 この漏れ
電流はガードリングによってカットされる。
次に第2図を参照しながら、別の実施例について説明す
る0図において、上述の実施例と同等な部材には同一符
号を付し、その詳細な説明は省略する。
る0図において、上述の実施例と同等な部材には同一符
号を付し、その詳細な説明は省略する。
探針12が取り付けられた探針電極14は、絶縁部材2
4を介して、円筒型圧電アクチュエーター16に取り付
けられる0円筒型圧電アクチュエーター16は円筒状の
圧電体32を有し、圧電体32の外壁に4つの駆動電極
18、 これらの駆動電極18に対向して圧電体32の
内壁に共通電極34を備える。
4を介して、円筒型圧電アクチュエーター16に取り付
けられる0円筒型圧電アクチュエーター16は円筒状の
圧電体32を有し、圧電体32の外壁に4つの駆動電極
18、 これらの駆動電極18に対向して圧電体32の
内壁に共通電極34を備える。
これらの電極18.34で挟まれた部分の圧電体32の
伸縮によって、探針12が3次元方向に移動される。
さらに、圧電体32は、内外壁に対向して帯状に設けら
れた1対のガードリング電極20を下端部に備える。
伸縮によって、探針12が3次元方向に移動される。
さらに、圧電体32は、内外壁に対向して帯状に設けら
れた1対のガードリング電極20を下端部に備える。
この実施例では、上述の実施例と同様、第1図に示した
回路が使用され、 ガードリング電極20はオペアンプ
26の出力に、探針電極14はオペアンプ28の反転入
力に接続される。その作用及び効果については、上述の
実施例と同様であるため、 ここでは省略する。
回路が使用され、 ガードリング電極20はオペアンプ
26の出力に、探針電極14はオペアンプ28の反転入
力に接続される。その作用及び効果については、上述の
実施例と同様であるため、 ここでは省略する。
この発明は、上述の実施例に限定されることなく、発明
の要旨を逸脱しない範囲で種々の変更や変形が可能であ
る0例えば、探針を移動させる圧電素子は円筒型圧電ア
クチュエーターに限らず、トライボッド型、平板型や積
層型圧電素子を適用することもできる。 また、探針を
移動する代わりに試料を移動するなど、試料の近くに圧
電素子等の高圧電源を配置する場合、試料側に上述のガ
ードリング機構を設けて適用してもよい。
の要旨を逸脱しない範囲で種々の変更や変形が可能であ
る0例えば、探針を移動させる圧電素子は円筒型圧電ア
クチュエーターに限らず、トライボッド型、平板型や積
層型圧電素子を適用することもできる。 また、探針を
移動する代わりに試料を移動するなど、試料の近くに圧
電素子等の高圧電源を配置する場合、試料側に上述のガ
ードリング機構を設けて適用してもよい。
[発明の効果コ
この発明によれば、ガードリング電極と探針電極は常に
等電位に保たれるので、探針電極への電流の流入がなく
なるため、探針と試料との間に流れるトンネル電流を精
度良く検出でき、従ってSTM測定は勿論のこと、 S
TS測定を高精度に行うことができる。
等電位に保たれるので、探針電極への電流の流入がなく
なるため、探針と試料との間に流れるトンネル電流を精
度良く検出でき、従ってSTM測定は勿論のこと、 S
TS測定を高精度に行うことができる。
鏡の一実施例の構成を示す図、
第2図は、別の実施例を説明するための図である。
12・・・探針、 14・・探針電極、 16・・・円
筒型圧電アクチュエーター、 20・・・ガードリング
電極、 26、 28. 30・・オペアンプ。
筒型圧電アクチュエーター、 20・・・ガードリング
電極、 26、 28. 30・・オペアンプ。
Claims (1)
- 【特許請求の範囲】 試料を走査する探針と、 探針に接続されたトンネル電流を取り出すための探針電
極と、 探針を移動させる圧電素子と、 圧電素子の駆動電極と探針電極との間に設けられ、これ
らの電極から絶縁されたガードリング電極と、 探針に印加される電圧に等しい電圧をガードリング電極
に印加する手段とを備える走査型トンネル顕微鏡。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2198593A JPH0483104A (ja) | 1990-07-26 | 1990-07-26 | 走査型トンネル顕微鏡 |
US07/730,475 US5136162A (en) | 1990-07-26 | 1991-07-16 | Measuring device in a scanning probe microscope |
DE4124871A DE4124871A1 (de) | 1990-07-26 | 1991-07-26 | Messvorrichtung in einem abtastsonden-mikroskop |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2198593A JPH0483104A (ja) | 1990-07-26 | 1990-07-26 | 走査型トンネル顕微鏡 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0483104A true JPH0483104A (ja) | 1992-03-17 |
Family
ID=16393770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2198593A Pending JPH0483104A (ja) | 1990-07-26 | 1990-07-26 | 走査型トンネル顕微鏡 |
Country Status (3)
Country | Link |
---|---|
US (1) | US5136162A (ja) |
JP (1) | JPH0483104A (ja) |
DE (1) | DE4124871A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3198355B2 (ja) * | 1991-05-28 | 2001-08-13 | キヤノン株式会社 | 微小変位素子及びこれを用いた走査型トンネル顕微鏡、情報処理装置 |
US5689063A (en) * | 1993-07-15 | 1997-11-18 | Nikon Corporation | Atomic force microscope using cantilever attached to optical microscope |
US5537863A (en) * | 1993-07-15 | 1996-07-23 | Nikon Corporation | Scanning probe microscope having a cantilever used therein |
US5463897A (en) * | 1993-08-17 | 1995-11-07 | Digital Instruments, Inc. | Scanning stylus atomic force microscope with cantilever tracking and optical access |
DE4438960A1 (de) * | 1994-10-31 | 1996-05-02 | Forschungszentrum Juelich Gmbh | Strom-Spannungswandler zur Erfassung eines Tunnelstroms eines Rastertunnelmikroskops |
US5744704A (en) * | 1995-06-07 | 1998-04-28 | The Regents, University Of California | Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy |
DE19638977A1 (de) * | 1996-09-23 | 1998-03-26 | Siemens Ag | Kraftmikroskopiesonde |
US6198299B1 (en) | 1998-08-27 | 2001-03-06 | The Micromanipulator Company, Inc. | High Resolution analytical probe station |
US6744268B2 (en) * | 1998-08-27 | 2004-06-01 | The Micromanipulator Company, Inc. | High resolution analytical probe station |
US6881954B1 (en) * | 1999-07-27 | 2005-04-19 | Hitachi Construction Machinery Co., Ltd. | Scanning probe microscope and method of measurement |
US12091313B2 (en) | 2019-08-26 | 2024-09-17 | The Research Foundation For The State University Of New York | Electrodynamically levitated actuator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906840A (en) * | 1988-01-27 | 1990-03-06 | The Board Of Trustees Of Leland Stanford Jr., University | Integrated scanning tunneling microscope |
JPH0758164B2 (ja) * | 1988-04-22 | 1995-06-21 | 三菱電機株式会社 | 走査型トンネル顕微鏡の微動機構 |
US4924091A (en) * | 1989-02-01 | 1990-05-08 | The Regents Of The University Of California | Scanning ion conductance microscope |
JPH02243906A (ja) * | 1989-03-17 | 1990-09-28 | Nakagawa Applied Res:Kk | 補助電極付き走査型トンネル顕微鏡用探針 |
JP2821005B2 (ja) * | 1989-10-02 | 1998-11-05 | オリンパス光学工業株式会社 | 微細表面形状計測装置 |
US5066858A (en) * | 1990-04-18 | 1991-11-19 | Digital Instruments, Inc. | Scanning tunneling microscopes with correction for coupling effects |
-
1990
- 1990-07-26 JP JP2198593A patent/JPH0483104A/ja active Pending
-
1991
- 1991-07-16 US US07/730,475 patent/US5136162A/en not_active Expired - Fee Related
- 1991-07-26 DE DE4124871A patent/DE4124871A1/de not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
US5136162A (en) | 1992-08-04 |
DE4124871A1 (de) | 1992-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ATE155579T1 (de) | Biegebalkenmessfühler und mit dem messfühler ausgestattete informationsverarbeitungsvorrichtung | |
JPH0483104A (ja) | 走査型トンネル顕微鏡 | |
DE69121868D1 (de) | Freitragende Sonde und Apparat zur Anwendung derselben | |
JPH1048224A (ja) | 走査型プローブ顕微鏡 | |
JP4758405B2 (ja) | センサ素子および物理センサ装置 | |
KR940018647A (ko) | 미소갭폭측정방법 | |
US5831264A (en) | Electrostrictive actuator for scanned-probe microscope | |
JPS63142202A (ja) | 高周波トンネル顕微鏡 | |
JP2967647B2 (ja) | 振動観察方法とその回路 | |
JP2002071301A (ja) | 静電容量型変位センサ | |
JPS63204673A (ja) | 圧電素子制御装置 | |
JP2624008B2 (ja) | 走査型トンネル顕微鏡 | |
JP3167287B2 (ja) | 微小振動付与装置、微小振動付与方法及び表面状態検出装置 | |
Hadjiloucas et al. | Performance limitations of piezoelectric and force feedback electrostatic transducers in different applications | |
NL1000815C2 (nl) | XY-verplaatsingsinrichting. | |
JP3045164B1 (ja) | 3次元電荷分布測定装置 | |
JPH06273110A (ja) | 走査型トンネル顕微鏡 | |
JPS63204672A (ja) | 圧電素子制御装置 | |
JP3953884B2 (ja) | 走査型プローブ顕微鏡 | |
JPH04348204A (ja) | 走査型探針装置 | |
JP2554764B2 (ja) | 表面形状測定方法及びその装置 | |
JPH06241776A (ja) | 走査型プロ−ブ顕微鏡 | |
JPH02206705A (ja) | 電荷積分型走査トンネル顕微鏡 | |
JPH02262001A (ja) | 圧電素子駆動型探針装置およびその駆動方法 | |
JPH04171644A (ja) | 電位測定方法及び電位測定装置 |