JP3953884B2 - 走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP3953884B2
JP3953884B2 JP2002133038A JP2002133038A JP3953884B2 JP 3953884 B2 JP3953884 B2 JP 3953884B2 JP 2002133038 A JP2002133038 A JP 2002133038A JP 2002133038 A JP2002133038 A JP 2002133038A JP 3953884 B2 JP3953884 B2 JP 3953884B2
Authority
JP
Japan
Prior art keywords
capacitor
piezoelectric element
piezoelectric
sample
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133038A
Other languages
English (en)
Other versions
JP2003156424A5 (ja
JP2003156424A (ja
Inventor
明 江川
竜也 宮谷
克則 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002133038A priority Critical patent/JP3953884B2/ja
Publication of JP2003156424A publication Critical patent/JP2003156424A/ja
Publication of JP2003156424A5 publication Critical patent/JP2003156424A5/ja
Application granted granted Critical
Publication of JP3953884B2 publication Critical patent/JP3953884B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position Or Direction (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、走査型トンネル顕微鏡(STM)、走査型原子間力顕微鏡(AFM)などに代表される走査型プローブ顕微鏡(SPM)に関する。
【0002】
【従来の技術】
現在、微小な試料の表面形状を観察する手段として、走査型トンネル顕微鏡(STM)や走査型原子間力顕微鏡(AFM)に代表される走査型プローブ顕微鏡(SPM)が広く用いられている。SPMは、プローブと試料表面の物理的相互作用によって、試料表面の形状、物性等を観察するものであり、その特徴は、サブナノメートルオーダーという高い分解能にある。その高分解能を達成するためには、試料あるいはプローブをXYZそれぞれの方向に微小駆動する必要があるが、通常その駆動には、圧電素子が用いられている。圧電素子は、外部応力によって形成されると、電圧を発生する圧電効果と、逆に電圧を印加すると変形する逆圧電効果を持つことが知られており、SPMでは逆圧電効果を利用してプローブあるいは試料を微動している。圧電素子は、用途に応じて様々な構造のものが開発されているが、SPMで最も一般的に用いられているのが、円筒型圧電素子である。
【0003】
円筒型圧電素子は、個別に駆動信号を印加可能な電極を設けることで、一個の圧電素子でX,Y,Zそれぞれの方向に駆動することができ、X、Y方向の変位量を比較的大きく確保することができる、などの利便性を有する。 図6は、円筒型圧電素子を用いた微動手段の構造の一例を示す模式図である。円筒型圧電素子101の内側面の全域にグラウンド電極が形成される。一方、外側面の1部には4分割の電極を形成し、それぞれは電気的に絶縁されている。この4分割のX1電極102、X2電極103、Y1電極104、Y2電極105は、図6に示すように、2極が対向する位置関係にある。外側面の残りの部分には1極のZ1電極106が形成され、内側のグランド用電極、外側の4分割電極とは電気的に絶縁される。
【0004】
4分割のX1電極102、X2電極103、Y1電極104、Y2電極105、もう一つのZ1電極106は、それぞれ、円筒型圧電素子内側のグランド用電極との間で高電圧を掛け、電極の形成される部分の圧電材料の分極を行う。この時、対向する電極の形成される部分の圧電材料は、同じ極性の電圧を印加された場合に、それぞれ反対の効果、すなわち、「伸び」「縮み」を起こすように分極される。
【0005】
対極に同じ極性の電圧を印加すると、それぞれの電極部分の圧電材料が逆方向に伸縮するため、円筒型圧電素子101が弯曲する。つまり、円筒型圧電素子101の一端を固定し、もう一方を自由端とすれば、その自由端をXあるいはY方向に変位することが可能となる。一方、Z1電極106に電圧を印加すると、電極部分の圧電材料がZ方向に伸縮され、Z方向へ自由端を駆動することができる。つまり、円筒型圧電素子101の自由端に、プローブあるいは試料を固定することで、X、Y、Zそれぞれの方向に微動させることが可能となる。
【0006】
SPMでは、この円筒型圧電素子に印加するXYZそれぞれの駆動信号を3次元的にマッピングすることにより、試料の表面形状等の観察像を再現することができる。図7は、円筒型圧電素子を利用した従来のSPMの構成例を示す。円筒型圧電素子110に、プローブ支持台111を介してプローブ112が取り付けられる。試料台114の試料115との物理的相互作用に応じたプローブ112の変化を、相互作用検出手段116により検出する。
【0007】
なお、相互作用検出手段116で実際に検出する対象となるのは、相互作用が原子間力である場合には、原子間力に応じたプローブ112のたわみであり、またトンネル電流の場合には、プローブ112と試料115との間に流れるトンネル電流である。この相互作用検出手段116の出力信号が制御手段117によって設定した一定の値となるように、補償器118を介して円筒型圧電素子110のZ電極に入力され、Z方向の変位量を制御する。つまり、試料115とプローブ112のZ方向の相対距離が一定となるようフィードバック制御を行う。この状態で制御手段117から円筒型圧電素子110のX,Y電極に走査信号入力し、プローブ112と試料115を相対的に走査するとともに、その際のZ駆動信号をモニタすることで、試料表面の形状情報を得ることができる。なお、図7の構成例では、Z駆動信号のモニタも制御手段117で行っている。
【0008】
【発明が解決しようとする課題】
SPMは、その高い分解能から、今後ますます微細化、高集積化が進む、光ディスクなどの記録媒体や、半導体パターンなどの検査・計測装置としての応用が期待されている。しかし、検査・計測装置として使用するためには、精度および走査速度の向上が必要である。
【0009】
SPMで用いられる圧電素子は、微小位置決めを行う手段として非常に有効であり、広く用いられているが、その動作にはヒステリシスが存在することが知られている。図8は、圧電素子のヒステリシス特性を模式的に示したものである。横軸120が圧電素子に印加する電圧、縦軸121が変位量である。ここで、圧電素子に印加する電圧をv1からv2に上げ、またv1に戻した場合、図8で示されたような、非線形なヒステリシス曲線122が得られる。従来の例で示したように、SPMでは、圧電素子に印加する駆動信号を形状情報とするため、このヒステリシス特性によりSPMの形状情報にも誤差が生じる。
【0010】
次にSPMにおける走査時のヒステリシスの影響を、図9を用いて説明する。図9(a)では、左右対称な凸構造をもつ試料132の上を、圧電素子130に固定したプローブ131と試料132表面との距離が一定となるようにフィードバック制御しながら、紙面に向かって左から右に走査する例を示している。
【0011】
また、図9(b)は、その際の圧電素子130への印加電圧波形である。縦軸133が入力電圧、横軸134が時間を表している。フィードバック制御が正常に機能していれば、図9(a)に図示されているように、圧電素子130の変位量も左右対称となるはずである。しかし、その際の印加電圧は、図9(b)で示したように、試料132の高さが変化する部分で、非線形性が現れ、左右対称な電圧変化とならない。従来のSPMでは、この印加電圧の変化を形状情報とするため、精度の面で問題となる。
【0012】
圧電素子のヒステリシスを補正する手段としては、変位センサで圧電素子の変位量を測定し、補正するという手段が最も一般的である。図10は、静電容量型変位センサを用いた、SPM走査機構の構成例である。(a)が上面図、(b)が側面図である。円筒型圧電素子140により、カンチレバー台141に固定されたカンチレバー142を3次元的に駆動するが、円筒型圧電素子140の先端には、静電容量型変位センサのターゲット電極143を備えている。また、ターゲット電極と対向するように、X,Y,Zそれぞれの方向に対して、静電容量型変位センサ144が配置されている。この構成により、X,Y,Zそれぞれの変位量を正確に測定できるため、ヒステリシスの影響を補正することが可能となる。
【0013】
しかし、この方法では、ターゲット電極143の質量が負荷となり、円筒型圧電素子140の機械的共振周波数の低下、すなわち、走査速度の低下を引き起こす可能性がある。一般的に、圧電素子の共振周波数は、以下の式で表される。
【0014】
=1/2π{K/(M+M/2)}1/2
ここで、fは共振周波数、Kは圧電素子のバネ定数、Mは圧電素子にかかる負荷質量、Mは圧電素子の質量である。この式から、圧電素子の質量に対して負荷質量が大きい場合には、共振周波数に多大な影響を及ぼすことが分かる。そのため、圧電素子を高速に駆動する場合には、負荷質量を極力小さくすることが必要とされる。
【0015】
また、この手法のもう一つの問題として、SPMで用いる際に求められるサブナノメートルの分解能、精度を有する変位センサは非常に高価である点も挙げられる。
【0016】
圧電素子のヒステリシスを改善する手段として、その他に圧電素子を電圧ではなく、電荷(電流)で制御する手法が知られている。この手法は、変位センサを用いる手法と比べて、負荷質量がないこと、また低コストである点で有利であるが、圧電素子の漏れ電流の影響により、圧電素子の直流駆動が困難である。また、圧電素子の電荷量を正確に測定することが困難であるという問題点もある。
【0017】
【課題を解決するための手段】
以上の課題を解決するため本発明は、先端部が尖鋭化されたプローブと、プローブ又は測定対象となる試料を3次元的に微動可能な微動手段を有し、プローブ先端部と試料の相対距離に依存する物理的相互作用に従って、微動手段のZ方向の変位を調節しながらXY方向に走査することで、物理的相互作用に基づく試料の特性を測定する走査型プローブ顕微鏡において、微動手段がZ方向に駆動可能な少なくとも1つ以上の圧電素子から構成され、圧電素子の圧電効果により発生した電圧を検出する圧電効果検出手段を有し、圧電効果検出手段の出力から試料の形状情報を得ることを特徴とする走査型プローブ顕微鏡を構成する。
【0018】
また本発明は、先端部が尖鋭化されたプローブと、プローブ又は測定対象となる試料を3次元的に微動可能な微動手段を有し、プローブ先端部と試料の相対距離に依存する物理的相互作用に従って、微動手段のZ方向の変位を調節しながらXY方向に走査することで、物理的相互作用に基づく試料の特性を測定する走査型プローブ顕微鏡において、微動手段がXあるいはY方向に駆動可能な少なくとも1つ以上の圧電素子から構成され、圧電素子の圧電効果により発生した電圧を検出する圧電効果検出手段と、圧電効果検出手段の出力に従い圧電素子の変位量を制御する変位量制御手段と、を有することを特徴とする走査型プローブ顕微鏡を構成する。
【0019】
また本発明は、以上の走査型プローブ顕微鏡の圧電効果検出手段として、圧電素子と接続される少なくとも1つ以上のコンデンサと、2個以上のコンデンサあるいは抵抗器を接続することによって構成されるブリッジ回路を有する走査型プローブ顕微鏡を構成する。
【0020】
さらに、圧電効果検出手段が、圧電素子と直列接続される少なくとも1つ以上のコンデンサを有し、コンデンサの電圧値と、圧電素子の印加電圧値から、圧電効果を推定することを特徴とする走査型プローブ顕微鏡と、以上の圧電素子効果検出手段における、圧電素子漏れ電流に起因する誤差を低減するための漏れ電流補正手段を有する走査型プローブ顕微鏡を構成する。
【0021】
【発明の実施の形態】
(実施の形態1)
本発明における実施の形態1として、図1に本発明の走査型プローブ顕微鏡の構成図を示す。従来の例として挙げた図7と同様に、微動手段として、円筒型圧電素子を用いている。円筒型圧電素子1には、プローブ台2を介してプローブ3が取り付けられており、プローブ3と試料台9上の試料4との相対位置を3次元的に調節することが可能となっている。プローブ3と試料4の物理的相互作用を検出する相互作用検出手段5の出力が一定の値となるように、つまりプローブ3と試料4のZ方向の相対距離が一定となるように、円筒型圧電素子1のZ方向の変位をフィードバック制御するためのZ補償器6、および制御手段8が取り付けられている。このZ補償器6には、比例制御、積分制御を行うPI補償器が用いられる。
【0022】
また、Zフィードバック制御時、円筒型圧電素子1は、印加電圧に対して非線形な変位量を持つが、その変位量は圧電効果検出手段7によって高精度に求めることが可能である。このZ方向のフィードバック制御を行いながら、XY方向に走査し、その際の圧電効果検出手段7の出力に従って求めた形状情報をマッピングすることで、高精度な形状像を得ることが可能となる。なお、実際には、XY方向に走査するためには、円筒型圧電素子1に、XY駆動信号を入力する必要があるが、従来の例と同様であるので、図1では省略している。
(実施の形態2)
次に実施の形態2について、図2の構成図を参照しながら説明する。図2では、実施の形態1でZ方向に対して取り付けていた圧電効果検出手段7を、XY方向に付加している。制御手段12からの基準信号と、それぞれの圧電効果検出手段7の出力信号に基づき、X補償器10,Y補償器11を介してフィードバック制御することで、線形なXY変位制御が可能となる。なお、X補償器10や、Y補償器11は図1におけるZ補償器と同様にPIあるいはPID補償器といった、一般的な方法を用いることが可能である。なお、図2では、円筒型圧電素子のZ方向の制御は省略しているが、実施の形態1で用いた手法をそのまま利用することができる。
(実施の形態3)
次に、実施の形態3として、圧電効果検出手段の詳細について説明する。圧電素子に電圧を印加し、逆圧電効果を利用して変位させる場合には、その印加した電圧とは別に、圧電効果による電圧が発生する。また、圧電素子は一種のコンデンサとしての性質を示すため、電気的等価回路は図3に示すように、圧電効果により発生する電圧Vの電圧源20と静電容量Cのコンデンサ21を組み合わせとして表すことができる。圧電素子を駆動する際には、駆動用の電圧が印加されているため、直接Vを測定することはできない。そこで図4に示す圧電素子を含むブリッジ回路を利用する。図4の破線で囲まれた部分が図3で示した圧電素子の等価回路である。
【0023】
ブリッジ回路は、圧電素子の他にコンデンサ32,コンデンサ33、コンデンサ34を接続した構成となっている。このブリッジ回路に電圧源35を接続することで、圧電素子に対する制御を行う。ここで、電圧源35による印加電圧をV、圧電素子の圧電効果による発生電圧(電圧源30の電圧)をV,圧電素子の静電容量(コンデンサ31の静電容量)をC,コンデンサ32の静電容量をCとし、コンデンサ33とコンデンサ34の静電容量は等しい値Cを有するものとする。圧電素子とコンデンサ33の間の端子36における電圧をv、コンデンサ32とコンデンサ34の間の端子37における電圧をvとすると、それぞれ以下のように表される。
【0024】
=C/(C+C)×(V+V
=C/(C+C)V
ここで、C=Cとし、vとvの差を取ると、
−v=C/(C+C)V
つまり、vとvの差をとることで、印加電圧Vの影響を排除し、圧電効果に対応した電圧Vを求めることができる。このVが、本発明の圧電効果検出手段の出力信号となる。なお、図4では、コンデンサのみでブリッジ回路を構成したが、コンデンサ33、コンデンサ34を抵抗器に置き換えてもよい。
【0025】
次に、前述のブリッジ回路を用いた走査型プローブ顕微鏡の構成ブロック図を、図5に示す。図5は、実施の形態1で示した図1の圧電効果検出手段をブリッジ回路に置き換えたものである。その他の基本的な構成およびその動作は、図1と同様であるので、説明は省略する。ブリッジ回路は、円筒型圧電素子1と可変コンデンサ41、コンデンサ42、コンデンサ43で構成されている。図4と異なり、可変コンデンサ41を採用した理由は、圧電素子の静電容量が温度変化などに伴い、変化する場合のことを想定してのことである。Z補償器6からのZ駆動信号は、円筒型圧電素子1のZ電極に接続されるが、同じく可変コンデンサ41にも接続される。
【0026】
一方、コンデンサ42とコンデンサ43の片側は同じくグラウンドに接地される。Z補償器6も片側の端子がグラウンドに接地されているため、図4と同様接続されていることが分かる。円筒型圧電素子1のグラウンド電極と41コンデンサ42接続部分の電圧、および可変コンデンサとコンデンサ43接続部分の電圧を、バッファアンプ44、バッファアンプ45を介して差分をとることで、実際の圧電素子の変位量に比例した電圧を得られる。この電圧を形状情報として制御手段8により処理する。
【0027】
ここでは、図1の圧電効果検出手段をブリッジ回路に置き換えて説明したが、当然のことながら、図2にも適用することが可能である。
【0028】
以上、主に円筒型圧電素子を用いた実施の形態を説明したが、圧電素子を用いた微動手段であれば、その他の構造でも適用可能であることは、明らかである。特に本発明の特徴として、圧電素子に何ら特別な部品を取り付ける必要がなく、単純な構造の微動手段を構築できる点が挙げられる。つまり、高剛性な微動手段を構築することが可能となるため、走査型プローブ顕微鏡の高速化を達成するためには、非常に有益な発明である。
(実施の形態4)
次に、実施の形態4について説明する。実施の形態3では、圧電素子と並列にコンデンサを接続することで、圧電素子の変位量に比例した電圧を検出したが、図4における並列のコンデンサ32,34は省略することも可能である。圧電効果に応じた電圧Vは、変位量に比例した値であり、次のような式で表される。
【0029】
Vp≒A・X+B
ここで、Xが圧電素子の変位量、A、Bが比例定数である。この式を前述の電圧vの式に代入すると、
≒C/(C+C)×(A・X+B+V)≒K(A・X+B+V)(K=C/(C+C))
となり、圧電素子へ電圧Vを印可した際の、電圧vと圧電素子の変位量Xを測定することで、各定数値を最小自乗法等により推定することが可能となる。その求めた定数を式に代入すれば、圧電素子の変位量をソフトウェア上で、あるいはデジタル信号処理の中で容易に算出できる。この手法により、回路の簡素化とともに、並列コンデンサ自体の持つ性能誤差を考慮する必要がなくなる。また、回路に印可する電流値を、約1/2に低減できる、つまり消費電力を低減できるという利点も挙げられる。
(実施の形態5)
次に、実施の形態5として、圧電素子の漏れ電流の影響を低減する手法を説明する。圧電素子には、内部抵抗成分が存在し、微量ながら漏れ電流が存在する。図11では、破線で示した圧電素子の等価回路内に、圧電素子内部抵抗50を示している。圧電素子を静的、あるいは準静的な動作をさせた場合、漏れ電流が存在すると、圧電素子内に蓄えられた電荷量が変化し、電圧vに誤差を生ずる結果をもたらす。その漏れ電流の影響を低減するためには、図11に示したように、圧電素子内部抵抗50と釣り合うように、圧電素子と直列に接続したコンデンサ33にも並列に抵抗51を負荷すればよい。この際、負荷する抵抗値Rは、次の式を満たすように決定する。
【0030】
・C=R・C
また、図11に示すように、圧電素子の並列に接続したコンデンサ32にも同様にコンデンサ内部抵抗52が存在する場合、コンデンサ34に抵抗53を負荷することで誤差を少なくすることができる。この場合に付加する抵抗値Rも、前述と同様に以下の式により決定される。
【0031】
・C=R・C
【0032】
【発明の効果】
以上説明したように、本発明により、変位センサなどの高価な手段を要することなく、また従来の走査速度を維持したまま、圧電素子のヒステリシスによる変位誤差を低減した高精度な走査型プローブ顕微鏡を、提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかわる走査型プローブ顕微鏡の構成を示す図である。
【図2】本発明の実施の形態2にかかわる走査型プローブ顕微鏡の構成を示す図である。
【図3】圧電素子の等価回路を示す図である。
【図4】本発明にかかわる圧電効果検出手段を示す回路図である。
【図5】本発明の圧電効果検出手段を用いた走査型プローブ顕微鏡の構成を示す図である。
【図6】円筒型圧電素子を用いた微動手段の例を示す模式図である。
【図7】円筒型圧電素子を用いた従来のSPMの構成例を示す図である。
【図8】圧電素子のヒステリシス特性を示す模式図である。
【図9】SPM走査時のヒステリシスの影響を表す模式図である。
【図10】静電容量型変位センサを用いた、SPM走査機構の構成例を示す図である。
【図11】本発明の実施の形態にかかわる漏れ電流補正手段を有する圧電効果検出手段を示す回路図である。
【符号の説明】
1 円筒型圧電素子
2 プローブ台
3 プローブ
4 試料
5 相互作用検出手段
6 Z補償器
7 圧電効果検出手段
8 制御手段
9 試料台
10 X補償器
11 Y補償器
12 制御手段
20 電圧源
21 コンデンサ
30 電圧源
31 コンデンサ
32 コンデンサ
33 コンデンサ
34 コンデンサ
35 電圧源
36 端子
37 端子
41 可変コンデンサ
42 コンデンサ
43 コンデンサ
44 バッファアンプ
45 バッファアンプ
50 圧電素子内部抵抗
51 抵抗
52 コンデンサ内部抵抗
53 抵抗
101 円筒型圧電素子
102 X1電極
103 X2電極
104 Y1電極
105 Y2電極
110 円筒型圧電素子
111 プローブ支持台
112 プローブ
114 試料台
115 試料
116 相互作用検出手段
117 制御手段
118 補償器
120 横軸
121 縦軸
122 ヒステリシス曲線
130 圧電素子
131 プローブ
132 試料
133 縦軸
134 横軸
135 印加電圧波形
140 円筒型圧電素子
141 カンチレバー台
142 カンチレバー

Claims (5)

  1. 先端部が尖鋭化されたプローブと、プローブ又は測定対象となる試料を3次元的に微動可能な微動手段とを有し、プローブ先端部と試料の相対距離に依存する物理的相互作用に従って、微動手段のZ方向の変位を調節しながらXY方向に走査することで、物理的相互作用に基づく試料の特性を測定する走査型プローブ顕微鏡であって、
    前記微動手段は、Z方向に駆動するための駆動電圧が印加される圧電素子を備えており、
    前記圧電素子の変位により発生した内部電圧を検出する圧電効果検出手段と、
    前記圧電効果検出手段により検出された前記内部電圧に基づいて試料の形状情報を取得する形状情報取得手段とを備えており、
    前記圧電効果検出手段は、
    第1端部及び第2端部を有し、前記第1端部が前記圧電素子の一端に接続され、前記第2端部がグランドに接続されたコンデンサAと、
    第3端部及び第4端部を有し、前記第3端部が前記圧電素子の他端に接続されたコンデンサBと、
    第5端部及び第6端部を有し、前記第5端部が前記コンデンサBの前記第4端部に接続され、前記第6端部がグランドに接続されたコンデンサCとを備えており、
    前記コンデンサA及び前記コンデンサCは、互いに同じ静電容量を有し、前記圧電素子及びコンデンサBは、互いに同じ静電容量を有し、
    前記圧電効果検出手段は、前記圧電素子、前記コンデンサA、前記コンデンサB、前記コンデンサCのそれぞれの静電容量と、前記第1端部−前記第4端部間の端部電圧とを用いて、前記内部電圧を検出することを特徴とする走査型プローブ顕微鏡。
  2. 先端部が尖鋭化されたプローブと、プローブ又は測定対象となる試料を3次元的に微動可能な微動手段を有し、プローブ先端部と試料の相対距離に依存する物理的相互作用に従って、微動手段のZ方向の変位を調節しながらXY方向に走査することで、物理的相互作用に基づく試料の特性を測定する走査型プローブ顕微鏡であって、
    前記微動手段は、XあるいはY方向に駆動するための駆動電圧が印加される圧電素子を備えており、
    前記圧電素子の変位により発生した内部電圧を検出する圧電効果検出手段と、
    前記圧電効果検出手段により検出された前記内部電圧に基づいて圧電素子の変位量を制御する変位量制御手段とを有し、
    前記圧電効果検出手段は、
    第1端部及び第2端部を有し、前記第1端部が前記圧電素子の一端に接続され、前記第2端部がグランドに接続されたコンデンサAと、
    第3端部及び第4端部を有し、前記第3端部が前記圧電素子の他端に接続されたコンデンサBと、
    第5端部及び第6端部を有し、前記第5端部が前記コンデンサBの前記第4端部に接続され、前記第6端部がグランドに接続されたコンデンサCとを備えており、
    前記コンデンサA及び前記コンデンサCは、互いに同じ静電容量を有し、前記圧電素子及びコンデンサBは、互いに同じ静電容量を有し、
    前記圧電効果検出手段は、前記圧電素子、前記コンデンサA、前記コンデンサB、前記コンデンサCのそれぞれの静電容量と、前記第1端部−前記第4端部間の端部電圧とを用いて、前記内部電圧を検出することを特徴とする走査型プローブ顕微鏡。
  3. 前記圧電効果検出手段が、前記圧電素子の漏れ電流による誤差を補正するための漏れ電流補正手段を有することを特徴とする請求項1または2記載の走査型プローブ顕微鏡。
  4. 前記漏れ電流補正手段は、前記圧電素子に並列に接続された圧電並列抵抗器と、前記コンデンサAに並列に接続された抵抗器Aとを有し、
    前記圧電並列抵抗器の抵抗値と前記圧電素子の静電容量との積は、前記抵抗器Aの抵抗値と前記コンデンサAの静電容量との積の大きさに等しいことを特徴とする請求項3に記 載の走査型プローブ顕微鏡。
  5. 前記漏れ電流補正手段は、前記コンデンサBに並列に接続された抵抗器Bと、前記コンデンサCに並列に接続された抵抗器Cとを有し、
    前記抵抗器Bの抵抗値と前記コンデンサBの静電容量との積は、前記抵抗器Cの抵抗値と前記コンデンサCの静電容量との積の大きさに等しいことを特徴とする請求項3又は請求項4に記載の走査型プローブ顕微鏡。
JP2002133038A 2001-09-07 2002-05-08 走査型プローブ顕微鏡 Expired - Fee Related JP3953884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133038A JP3953884B2 (ja) 2001-09-07 2002-05-08 走査型プローブ顕微鏡

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001271935 2001-09-07
JP2001-271935 2001-09-07
JP2002133038A JP3953884B2 (ja) 2001-09-07 2002-05-08 走査型プローブ顕微鏡

Publications (3)

Publication Number Publication Date
JP2003156424A JP2003156424A (ja) 2003-05-30
JP2003156424A5 JP2003156424A5 (ja) 2005-09-22
JP3953884B2 true JP3953884B2 (ja) 2007-08-08

Family

ID=26621831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133038A Expired - Fee Related JP3953884B2 (ja) 2001-09-07 2002-05-08 走査型プローブ顕微鏡

Country Status (1)

Country Link
JP (1) JP3953884B2 (ja)

Also Published As

Publication number Publication date
JP2003156424A (ja) 2003-05-30

Similar Documents

Publication Publication Date Title
US7555941B2 (en) Scanner for probe microscopy
Jesse et al. Dynamic behaviour in piezoresponse force microscopy
US5469734A (en) Scanning apparatus linearization and calibration system
JPH0348102A (ja) 微少変位検出装置、この微少変位検出装置を有する圧電アクチュエーター及びこの圧電アクチュエータを有する走査型プローブ顕微鏡
US7041963B2 (en) Height calibration of scanning probe microscope actuators
US5808435A (en) Micropositioning device for disk head testing system
US6194813B1 (en) Extended-range xyz linear piezo-mechanical scanner for scanning-probe and surface force applications
JP5164743B2 (ja) カンチレバー、カンチレバーシステム及びプローブ顕微鏡並びに吸着質量センサ
JP3953884B2 (ja) 走査型プローブ顕微鏡
JP4758405B2 (ja) センサ素子および物理センサ装置
KR101566178B1 (ko) 절대 변위 센서를 이용한 광학식 원자현미경
US5200617A (en) PMN translator and linearization system in scanning probe microscope
JP2008215934A (ja) 力センサ、荷重検出装置及び形状測定装置
US8028343B2 (en) Scanning probe microscope with independent force control and displacement measurements
JP2001305036A (ja) 微小領域走査装置および走査型プローブ顕微鏡
Nastro et al. Electrostatic-Capacitive MEMS Stiffness Sensor with Position-Feedback Mechanism
Frigerio et al. Mitigating hysteresis effects in open-loop-driven PZT MEMS micromirrors with piezoresistive sensing
Otero et al. Reduced dimensions autonomous AFM system for working in microbiorobotics
JP3204784B2 (ja) 集積型spmセンサー、及び、その駆動回路、及び、それを有する走査型プローブ顕微鏡
JP3188022B2 (ja) 集積型afmセンサー駆動回路
JPH0989913A (ja) 走査型プローブ顕微鏡
JP3402495B2 (ja) プローブ顕微鏡
Holman A novel scanning tunneling microscope with inherent scan linearisation.
Nam et al. Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy
JP2002350319A (ja) 走査型プローブ顕微鏡

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees