JPH0482191B2 - - Google Patents

Info

Publication number
JPH0482191B2
JPH0482191B2 JP61221668A JP22166886A JPH0482191B2 JP H0482191 B2 JPH0482191 B2 JP H0482191B2 JP 61221668 A JP61221668 A JP 61221668A JP 22166886 A JP22166886 A JP 22166886A JP H0482191 B2 JPH0482191 B2 JP H0482191B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
absorption
output
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61221668A
Other languages
English (en)
Other versions
JPS6377180A (ja
Inventor
Hideto Iwaoka
Koji Akyama
Akira Oote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61221668A priority Critical patent/JPS6377180A/ja
Priority to GB8627744A priority patent/GB2187592B/en
Priority to US06/937,359 priority patent/US4833681A/en
Priority to US06/942,448 priority patent/US4893353A/en
Priority to US06/943,670 priority patent/US4856899A/en
Priority to GB8630375A priority patent/GB2185567B/en
Priority to DE3643553A priority patent/DE3643553C2/de
Priority to DE3643569A priority patent/DE3643569C2/de
Priority to GB8630374A priority patent/GB2185619B/en
Priority to DE3643629A priority patent/DE3643629C2/de
Publication of JPS6377180A publication Critical patent/JPS6377180A/ja
Priority to US07/293,020 priority patent/US4912526A/en
Publication of JPH0482191B2 publication Critical patent/JPH0482191B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 ≪産業上の利用分野≫ 本発明は、半導体レーザの波長を原子や分子の
吸収線に制御して安定化するとともに複数の波長
のレーザ光を出力することができる半導体レーザ
波長安定化装置に関する。
≪従来の技術≫ 第10図は従来の半導体レーザ波長安定化装置
を示す構成ブロツク図である。半導体レーザLD
の電流に周波数fnの変調信号を重畳してレーザ出
力の発振波長を変調し、ビームスプリツタBSで
分離した光の一方を特定の波長で吸収を起こす標
準物質を封入した吸収セルCLに入射する。ビー
ムスプリツタBSで分離した他方の光はミラーM
で反射されて出力光となる。吸収セルCLからの
出射光は光検出器PDで電気信号に変換され、ロ
ツクインアンプLAで同期整流される。電流制御
回路CTでロツクインアンプLAの出力が一定値と
なるように半導体レーザLDの電流を制御するこ
とにより、半導体レーザLDの波長を吸収セルCL
内の原子の吸収線にロツクさせることができる。
≪発明が解決しようとする問題点≫ しかしながら、上記のような構成の半導体レー
ザ波長安定化装置では、半導体レーザの出力光の
平均周波数は標準物質の吸収線にロツクされて安
定となるが、変調周波数fnで常に周波数が変動し
ているので、発振周波数の瞬時値は安定ではな
い。また単一の波長出力しか得られないので、2
つの波長のレーザ光が必要となる場合は、ビーム
スプリツタ等を用いて、合波しなければならない
が、この手段は、光軸を調整する必要がある時、
実用に適さない。また、それぞれの波長に対して
異なる吸収セルを必要とするので高価である。
本発明はこのような問題点を解決するためにな
されたもので、発振週波数が瞬時的にも高安定
で、かつ1個の吸収セルで複数の波長の出力が得
られる半導体レーザ波長安定化装置を実現するこ
とを目的とする。
≪問題点を解決するための手段≫ 本発明は標準物質の吸収スペクトル線に半導体
レーザの波長を制御して波長を安定化する半導体
レーザ波長安定化装置に係るもので、その特長と
するところは複数の半導体レーザのそれぞれの出
力光の一部を入射して異なる変調周波数で周波数
変調する複数の変調手段と、この各変調手段の出
力光を入射して特定の複数の波長で吸収を起こす
標準物質を封入した吸収セルと、この吸収セルの
透過光を電気信号に変換する光検出器と、この光
検出器の出力電気信号に基づく信号を入力して前
記半導体レーザの発振波長を制御する制御手段と
を備えた点にある。
≪実施例≫ 以下本発明を図面を用いて詳しく説明する。
第1図は、本発明の一実施例を示した図であ
る。その構成は、まず、半導体レーザLD1とLD
2の出力光をそれぞれビームスプリツタBS1、
BS2で分波し、一部分を光出力とする。そして、
この分波した他の部分をそれぞれ音響光学変調器
UM1,UM2にそれぞれ導入する。この音響光
学変調器UM1,UM2の出力をビームスプリツ
タBS3、BS4を用いて合波し、吸収セルCL1に
導入する。吸収セルCL1の内部には、複数種の
波長のレーザ光を吸収する物質、例えばセシウム
Cs、ルビジウムRb、アンモニアNH3、水H2O等
が封入されている。即ち、吸収セルCL1を透過
した光には、複数の吸収スペクトルが生じてい
る。吸収セルCL1を透過したレーザ光は受光素
子PD1に照射され、受光光パワーに応じた電気
信号となる。この信号をロツクインアンプLA1,
LA2に入力した後、更に電流制御回路CT1,
CT2に加える。そして、電流制御回路CT1,
CT2の出力は半導体レーザLD1,LD2に加え
られる。従つて、半導体レーザLD1,LD2は、
各電流制御回路CT1,CT2から加えられる信号
により、印加電流が定まるので、この電流値によ
り発振周波数が決定される。また前記音響光学変
換器UM1,UM2にはそれぞれスイツチSW1、
SW2を介して発振器SG2(周波数fDは例えば
80MHz)が接続され、スイツチSW1、SW2は発
振器SG11,SG12(例えばfn1=2kHz、fn2
2.5kHz)が接続されている。したがつて、音響光
学変調器UM1,UM2を透過した光はそれぞれ
異なる周波数fn1,fn2で発振波長が変調される。
また、発振器SG11,SG12の出力は、それぞ
れロツクインアンプLA1,LA2にも加えられ、
fn1,fn2で同期整流が行なわれる。電流制御回路
CT1,CT2およびロツクインアンプLA1,LA
2は制御手段を構成する。
上記のような構成の半導体レーザ波長安定化装
置の動作を以下に詳しく説明する。
ここでは、吸収セルCL1を構成する吸収物質
としてセシウムCsを用いた例で説明する。
半導体レーザLD1の出力光はビームスプリツ
タBS1で2方向に分離され、反射光は外部への出
力光となり透過光は音響光学変調器UM1に入射
する。スイツチSW1がオンの時音響光学変調器
UM1は信号発生器SG2の周波数fDの出力で駆動
されるので、周波数ν1の入射光の大部分は回折し
て周波数(ドツプラ)シフトを受け、1次回折光
として周波数ν1+fDの光が吸収セルCL1に入射す
る。スイツチSW1がオフのときは入射光は全て
0次回折光として周波数ν1で吸収セルCL1に入
射する。スイツチSW1は信号発生器SG11の周
波数fn1のクロツクで駆動されるので、吸収セル
CL1に入射する光は変調周波数fn1、変調深さfD
の周波数変調を受けることになる。同様に半導体
レーザLD2の周波数ν2の出力光は音響光学変調
器UM2により変調周波数fn2、変調深さfDの周波
数変調を受けて吸収セルCL1に入射する。
第2図は、Cs原子のエネルギー準位を示す図で
ある。同図において、波長が852.112nmの光をCs
原子に当てると、6S1/2から6P3/2へキヤリアが励
起されるため、光はエネルギーを失い吸収が起き
る。ここで6S1/2、6P3/2の準位はそれぞれ2本、
4本の超微細構造を持つ。従つて、厳密に言え
ば、この準位間で6通りの波長(または周波数)
の光で吸収が起きる。しかし、実際は、原子の運
動によるドツプラー広がりのため、吸収スペクト
ル幅は、数百MHzになるので、通常6P3/2レベル
の微細構造は観測されない。従つて、吸収スペク
トル線は第3図に示すように、(a)、(b)の2つの吸
収として観測される。第3図に示す吸収信号のう
ち(a)は、第2図に示す(a)即ちF4からのものであ
り、第3図に示す(b)は、第2図の(b)即ちF3から
のものである。吸収セルCL1に音響光学変調器
UM1で変調された光が入射すると、第4図の動
作説明図に示すように吸収信号の箇所でのみ透過
光量が変調を受けて出力に信号が現れる。この信
号を光検出器PD1で電気信号に変換しロツクイ
ンアンプLA1において周波数fn1で同期整流すれ
ば、第5図の周波数特性曲線図に示すような1次
微分波形が得られる。このときロツクインアンプ
LA1の出力はν=νs−fD/2で0となる。
このCs原子に周波数ν1、ν2の光の透過させると
透過光量は、それぞれν1、ν2の変化に応じた第3
図の吸収信号が得られる。従つて、受光素子PD
1の出力はそれらの和となる。従つて、ロツクイ
ンアンプLA1,LA2の出力波形は、この受光素
子PD1からの信号(第3図)を微分した第6図、
第7図に示すような波形となる。
今、周波数ν1の光はn1により、ν2の光はn2
より変調されているとする。そこで、ロツクイン
アンプLA1,LA2をそれぞれの変調周波数n1
n2で同期整流すると{このときk・n1≠n・n
(k、nは整数)となるようにn1n2を定めて
おく}、ロツクインアンプLA1の出力には、周波
数ν2の光の影響は現れないし、ロツクインアンプ
LA2の出力には、周波数ν1の光の影響は現れな
い。従つて、ロツクインアンプLA1,LA2の出
力は、それぞれ独立に第6図(ロツクインアンプ
LA1の出力)、第7図(ロツクインアンプLA2
の出力)のような波形となる。そして、ロツクイ
ンアンプLA1の出力が第6図のA点、ロツクイ
ンアンプLA2の出力が第7図のB点となるよう
に電流制御回路CT1,CT2で、半導体レーザ
1,2の発振周波数を制御すれば、出力から取出
されるレーザ光は、波長=852.112nm付近であつ
て、互いに9.2GHz異なる安定な2つの白鳥の光
となる。
このような構成の半導体レーザ波長安定化装置
によれば、レーザの発振周波数が変調されていな
いので、瞬時的にも非常に安定な光源となる。
また1個の吸収セルで複数の波長のレーザ光を
出力できるので構成が簡単である。
また複数のレーザ出力光は原子の吸収線にロツ
クされてので、高精度・高スペクトル純度であ
る。
次に、Csの代りにRbを用いた場合を説明する。
この場合、Csと同様に基底準位がF=1、F=2
の超微細構造を持つ。F=1からの吸収を起こす
周波数をν1、F=2からの吸収を起こす周波数を
ν2とすると、これらの差であるΔν=ν1−ν2は、
87Rbの時は、Δν=6.8GHz、85Rbの時は、Δν3G
Hzとなる。また、RbのD1線(5S1/2準位から5P3/2
への励起794.7nm)とD2線(5S1/2から5P1/2への
励起780.0nm)を使用すれば、Δλ=14.7nmとな
る。またCsとRbを通すことにより、Δλ=852.1−
780(または794.7)=72.1(または57.4)nmにもな
る。更に、H2OやNH3等の分子吸収線を使用し
ても良い。
また、半導体レーザは、2個に限るものではな
く、個数を増やせば、上の周波数の組合せで多種
類のものができる。その場合、音響光学変調器、
ロツクインアンプ、発振器、電流制御回路は、そ
の数だけ増設する。
第8図のような構成を用いると、飽和吸収分光
(参考;堀、角田、北野、薮崎、小川:飽和吸収
分光を用いた半導体レーザの周波数安定化、信学
技報OQE82−116)によりドツプラ広がりが無く
なるので、第2図で説明した超微細構造を識別す
ることができるようになる。従つて、第9図に示
すように超微細構造に基づいたロツクインアンプ
の出力信号が得られるので、そのうち、どこにロ
ツクするかで、Δνは、更に小さくすることがで
きる。なお、第8図が第1図と異なる所は、第8
図で点線で示した部分である。即ち、第8図に示
すように、ビームスプリツタBS5〜BS9、受光素
子PD10,PD2及び差動増幅器DA1を設け、
この差動増幅器DA1の出力をロツクインアンプ
に導入するようにした点である。
また、第1図で示したロツクインアンプに入力
される周波数は、n1の高周波を使用しても良い。
この場合、3倍調波を用いると、第6図、第7図
のロツクインアンプのバイアス成分が無くなる効
果がある。
また、第1図で、ビームスプリツタの代りに、
偏光ビームスプリツタを用いれば、出力レーザ光
は、直交偏波となる。
また上記の実施例では変調手段として音響光学
変調器を用いているが、これに限らず、例えば電
気光学素子を用いた位相変調器を用いてもよい。
これには例えば縦型変調器、横型変調器、進行波
形変調着などがある(Amnon Yarif:光エレク
トロニクスの基礎(丸善)、p24CL1〜p253)。
また上記の実施例では制御手段の出力で半導体
レーザの電流を制御しているが、これに限らず半
導体レーザの温度を制御してもよい。
≪発明の効果≫ 以上述べたように本発明によれば、発振周波数
が瞬時的にも高安定で、かつ1個の吸収セルで複
数の波長の出力が得られる半導体レーザ波長安定
化装置を簡単な構成で実現することもできる。
【図面の簡単な説明】
第1図は本発明に係る半導体レーザ波長安定化
装置の一実施例を示す構成ブロツク図、第2図は
Cs原子のエネルギー準位の微細構造を示す図、第
3図はCs原子による吸収を示す図、第4図は第1
図装置の動作を説明するための動作説明図、第5
図は第1図装置の動作を説明するための第2の特
性曲線図、第6図および第7図は第1図装置にお
けるロツクインアンプの出力を示す図、第8図は
第1図の変形例を示す構成ブロツク図、第9図は
第8図装置におけるロツクインアンプの出力を示
す図、第10図は従来の半導体レーザ波長安定化
装置を示す構成ブロツク図である。 LD1,LD2……半導体レーザ、UM1,UM
2……変調手段、CL1……吸収セル、PD1,
PD2,PD10……光検出器、fn1,fn2……変調
周波数、LA1,LA2……ロツクインアンプ、
CT1,CT2……電流制御回路、SG11,SG1
2……発振器、DA1……差動増幅器。

Claims (1)

  1. 【特許請求の範囲】 1 標準物質の吸収スペクトル線に半導体レーザ
    の波長を制御して波長を安定化する半導体レーザ
    波長安定化装置において、複数の半導体レーザの
    それぞれの出力光の一部を入射して異なる変調周
    波数で周波数変調する複数の変調手段と、この各
    変調手段の出力光を入射して特定の複数の波長で
    吸収を起こす標準物質を封入した吸収セルと、こ
    の吸収セルの透過光を電気信号に変換する光検出
    器と、この光検出器の出力電気信号に基づく信号
    を入力して前記半導体レーザの発振波長を制御す
    る制御手段とを備えたことを特長とする半導体レ
    ーザ波長安定化装置。 2 変調手段として音響光学変調器を用いた特許
    請求の範囲第1項記載の半導体レーザ波長安定化
    装置。 3 変調手段として電気光学素子からなる位相変
    調器を用いた特許請求の範囲第1項記載の半導体
    レーザ波長安定化装置。 4 標準物質としてRbまたはCsを用いた特許請
    求の範囲第1項記載の半導体レーザ波長安定化装
    置。
JP61221668A 1985-12-20 1986-09-19 半導体レ−ザ波長安定化装置 Granted JPS6377180A (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61221668A JPS6377180A (ja) 1986-09-19 1986-09-19 半導体レ−ザ波長安定化装置
GB8627744A GB2187592B (en) 1985-12-26 1986-11-20 Semiconductor laser wavelength stabilizer
US06/937,359 US4833681A (en) 1985-12-26 1986-12-03 Semiconductor laser wavelength stabilizer
US06/942,448 US4893353A (en) 1985-12-20 1986-12-16 Optical frequency synthesizer/sweeper
US06/943,670 US4856899A (en) 1985-12-20 1986-12-18 Optical frequency analyzer using a local oscillator heterodyne detection of incident light
GB8630375A GB2185567B (en) 1985-12-20 1986-12-19 Optical frequency analyzer
DE3643553A DE3643553C2 (de) 1985-12-20 1986-12-19 Vorrichtung zum Erzeugen und Wobbeln optischer Frequenzen
DE3643569A DE3643569C2 (de) 1985-12-20 1986-12-19 Analysator für optische Frequenzen
GB8630374A GB2185619B (en) 1985-12-20 1986-12-19 Optical frequency synthesizer/sweeper
DE3643629A DE3643629C2 (de) 1985-12-26 1986-12-19 Vorrichtung zur Stabilisierung der Wellenlänge eines Halbleiterlasers
US07/293,020 US4912526A (en) 1985-12-20 1989-01-03 Optical frequency synthesizer/sweeper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61221668A JPS6377180A (ja) 1986-09-19 1986-09-19 半導体レ−ザ波長安定化装置

Publications (2)

Publication Number Publication Date
JPS6377180A JPS6377180A (ja) 1988-04-07
JPH0482191B2 true JPH0482191B2 (ja) 1992-12-25

Family

ID=16770393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61221668A Granted JPS6377180A (ja) 1985-12-20 1986-09-19 半導体レ−ザ波長安定化装置

Country Status (1)

Country Link
JP (1) JPS6377180A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284486A (ja) * 1989-04-25 1990-11-21 Yokogawa Electric Corp 半導体レーザ波長安定化装置
FR2674079B1 (fr) * 1991-03-15 1994-11-18 France Telecom Perfectionnement aux telecommunications optiques coherentes.
JP4547513B2 (ja) * 2004-09-01 2010-09-22 独立行政法人情報通信研究機構 多重飽和分光によるレーザー周波数安定化装置
JP7376917B2 (ja) * 2020-01-27 2023-11-09 国立研究開発法人産業技術総合研究所 光周波数掃引レーザ光源

Also Published As

Publication number Publication date
JPS6377180A (ja) 1988-04-07

Similar Documents

Publication Publication Date Title
JPH071808B2 (ja) 角速度センサ
EP0411131B1 (en) Wavelength stabilized source of light
Philipp et al. Costas loop experiments for a 10.6 µm communications receiver
CN110658635A (zh) 基于光外差锁相的激光偏振光束控制与合成系统
JPH0482191B2 (ja)
JPH0453114B2 (ja)
JPH0459796B2 (ja)
JPH051990B2 (ja)
JPS62213186A (ja) 半導体レ−ザ波長安定化装置
JPH0523513B2 (ja)
JP2997557B2 (ja) 狭い線幅の発振周波数スペクトルをもつ周波数安定化光源
JPH05275788A (ja) 周波数安定化半導体レーザ装置
JPH0453014Y2 (ja)
JPS6152634A (ja) 半導体レ−ザ光変復調方式
JP2612919B2 (ja) レーザ発振周波数安定化装置
JPH0296388A (ja) 波長安定化光源
JP2830189B2 (ja) 可変周波数光源
JP2555660B2 (ja) 周波数標準器
JP3018615B2 (ja) 周波数安定化レ―ザ光源
JPH0453015Y2 (ja)
JPH03250680A (ja) 周波数安定化レーザ光源
JPH0566431A (ja) 高精度近赤外基準光周波数発生法
JPH0462477B2 (ja)
JPH0669580A (ja) 光パルスレーザの分周同期信号発生装置
JPH02125482A (ja) レーザ周波数安定化装置

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term