JPH0478011B2 - - Google Patents

Info

Publication number
JPH0478011B2
JPH0478011B2 JP55112273A JP11227380A JPH0478011B2 JP H0478011 B2 JPH0478011 B2 JP H0478011B2 JP 55112273 A JP55112273 A JP 55112273A JP 11227380 A JP11227380 A JP 11227380A JP H0478011 B2 JPH0478011 B2 JP H0478011B2
Authority
JP
Japan
Prior art keywords
regions
type
forming
island
crossover connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55112273A
Other languages
Japanese (ja)
Other versions
JPS5632770A (en
Inventor
Goodon Furanshisu Deinguooru Andoryu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Publication of JPS5632770A publication Critical patent/JPS5632770A/en
Publication of JPH0478011B2 publication Critical patent/JPH0478011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は集積回路装置に関し、特にシリコ
ン・オン・サフアイア(以後SOSと呼ぶ)技法で
製造される高密度相補対称型金属酸化物半導体
(以後CMOSと呼ぶ)装置の結線形成法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to integrated circuit devices, and more particularly to the interconnection of high-density complementary symmetric metal oxide semiconductor (hereinafter referred to as CMOS) devices manufactured using silicon-on-sapphire (hereinafter referred to as SOS) technology. Regarding the formation method.

集積回路内の装置の充填密度を上げるには、2
つまたはそれ以上の装置間の相互結線に要する空
間を小さくする必要がある。従来は中間のゲート
線路で分離された2つの拡散領域を互いに接続す
るには場合をとる金属ジヤンパを使用したり、ゲ
ート線路を迂回するドープされたエピタキシヤル
層を用いて相当な場所をとる必要があつた。
To increase the packing density of devices in integrated circuits, 2
There is a need to reduce the space required for interconnection between one or more devices. Connecting two diffusion regions, traditionally separated by an intermediate gate line, requires the use of bulky metal jumpers or the use of doped epitaxial layers that bypass the gate line, taking up considerable space. It was hot.

自己整合式シリコンゲートCMOS技法では、
導電線路を架け渡した2つの拡散領域の間に
MOS動作が生ずることがあり、その拡散領域の
導電型およびその上の導電線路の型により、その
拡散領域がMOS動作で接続されたりされなかつ
たりすることがある。一般に高密度領域ではドー
プされた多結晶シリコンゲート線路が用いられ
る。
In self-aligned silicon gate CMOS technology,
between two diffusion regions with a conductive line spanning them.
MOS operation may occur, and depending on the conductivity type of the diffusion region and the type of conductive line thereon, the diffusion region may or may not be connected in MOS operation. Doped polysilicon gate lines are generally used in high density regions.

ドープされた多結晶シリコン線路により分離さ
れた2つの拡散領域を低抵抗のオーム電路で高信
頼度に接続するため、その多結晶シリコン線路を
被着する前に余分の拡散をすることがあるが、こ
のような電路はMOS動作と関係がない。この余
分の拡散領域は多結晶シリコン線路の下にあつ
て、相互に接続される拡散領域と同じ導電型を持
つ。CMOS集積回路にはP+型とN+型の拡散
が用いられるから、N+拡散用とP+拡散用とに
それぞれ1回ずつ計2回のマスク操作を追加する
必要がある。
In order to reliably connect two diffusion regions separated by a doped polycrystalline silicon line with a low resistance ohmic circuit, an extra diffusion may be performed before depositing the polycrystalline silicon line. , such a circuit has nothing to do with MOS operation. This extra diffusion region underlies the polycrystalline silicon line and has the same conductivity type as the interconnected diffusion regions. Since P+ type and N+ type diffusions are used in CMOS integrated circuits, it is necessary to add a total of two mask operations, one for N+ diffusion and one for P+ diffusion.

この発明はP+型またはN+型の拡散領域相互
間の接続に用いられ、1回しかマスク操作を追加
する必要のない独特の「汎用渡り結線」を形成す
る方法を提供するものである。以下添付図面を参
照しつつ詳細に説明する。
The present invention provides a unique method of forming a "universal interconnect" that is used to connect between P+ or N+ diffusion regions and requires only one additional mask operation. A detailed description will be given below with reference to the accompanying drawings.

第1図は従来法で形成した集積回路構体10の
一部を示す。この集積回路構体10は絶縁基板1
2とその上に形成された半導体の島状部14,1
6とを含んでいる。一般に絶縁基板12はサフア
イアより成り、半導体の島状部14,16は公知
のSOS技法のシリコンから成つている。図示のよ
うに島状部14はP型領域22で分離された1対
のP+型拡散領域18,20を含み、その島状部
14は2酸化シリコン層24で蔽われ、その2酸
化シリコン層24上にP+型にドープされた多結
晶シリコン線路26が乗つている。P型領域22
の目的はP+型領域18,20間に導電路を与え
ることである。
FIG. 1 shows a portion of an integrated circuit structure 10 formed by conventional methods. This integrated circuit structure 10 includes an insulating substrate 1
2 and the semiconductor island portion 14, 1 formed thereon.
6. Generally, the insulating substrate 12 is made of sapphire and the semiconductor islands 14, 16 are made of silicon in the well-known SOS technique. As shown, the island 14 includes a pair of P+ type diffusion regions 18, 20 separated by a P type region 22, and the island 14 is covered with a silicon dioxide layer 24, and the silicon dioxide layer 24 is covered with a silicon dioxide layer 24. A P+ type doped polycrystalline silicon line 26 is mounted on the line 24. P-type region 22
The purpose of is to provide a conductive path between P+ type regions 18,20.

同様にシリコンの島状部16は間にN型領域が
挾まつた1対のN+型領域を含み、その島状部1
6は2酸化シリコン層34に蔽われ、その2酸化
シリコン層34の上にはN+型多結晶シリコン線
路36が乗つている。N型領域32の目的はN+
型領域28,30間に高信頼度の導電路を与える
ことである。
Similarly, the silicon island 16 includes a pair of N+ type regions with an N type region sandwiched between them.
6 is covered with a silicon dioxide layer 34, and an N+ type polycrystalline silicon line 36 is placed on the silicon dioxide layer 34. The purpose of the N-type region 32 is N+
The purpose is to provide a reliable conductive path between mold regions 28 and 30.

通常この集積回路10はP+型領域18,20
をP+型にドープすると同時に多結晶シリコン線
路26をイオン注入でP+型にドープする自己整
合法で製造する。同時にN+型多結晶シリコン線
路36も領域28,30をN+型にドープする同
じイオン注入処理でドープされる。従つてP型領
域22とN型領域32とのドーピングはそれぞれ
別のホトマスクを要する各別の処理で行う必要が
あつた。
Typically, this integrated circuit 10 has P+ type regions 18, 20.
The polycrystalline silicon line 26 is manufactured by a self-alignment method in which the polycrystalline silicon line 26 is doped to P+ type by ion implantation. At the same time, N+ polysilicon line 36 is also doped with the same ion implantation process that dopes regions 28 and 30 N+. Therefore, it was necessary to dope the P-type region 22 and the N-type region 32 in separate processes requiring separate photomasks.

半導体製造工程の歩留は処理工程が増えるほど
低下するという点から、ホトマスク工程をなくす
ることが極めて望ましい。従つてこの発明はその
要旨である「汎用渡り結線」の製造において少な
くともホトマスク工程を1つなくする点で望まし
いものである。
It is extremely desirable to eliminate the photomask process, since the yield of a semiconductor manufacturing process decreases as the number of process steps increases. Therefore, the present invention is desirable in that it eliminates at least one photomask process in the production of the "universal crossover connection" which is the gist of the invention.

第2図はこの発明の方法を用いて製造した半導
体集積回路100の1部を示す。この集積回路構
体100は絶縁基板38と、その上に形成された
単結晶半導体島状領域40,42とを含む。この
発明の推奨実施例においては絶縁基板38はサフ
アイア、半導体島状領域40,42はシリコンか
ら成つている。半導体島状領域40は1対のP+
型領域44,46とその間の汎用渡り結線48と
を含み、2酸化シリコン層50で蔽われている。
汎用渡り結線48上の2酸化シリコン層50の上
にはP+型に不純物がドープされた多結晶シリコ
ン線路52が設けられている。同様に、半導体島
状領域42は1対のN+型領域54,56とその
間の汎用渡り結線58とを含み、2酸化シリコン
層60で蔽われ、汎用渡り結線58上の2酸化シ
リコン層60の上にはN+型に不純物がドープさ
れた多結晶シリコン線路62が設けられている。
FIG. 2 shows a portion of a semiconductor integrated circuit 100 manufactured using the method of the present invention. Integrated circuit structure 100 includes an insulating substrate 38 and single crystal semiconductor islands 40 and 42 formed thereon. In the preferred embodiment of the invention, insulating substrate 38 is comprised of sapphire and semiconductor islands 40 and 42 are comprised of silicon. The semiconductor island region 40 has a pair of P+
It includes mold regions 44, 46 and a general purpose crossover 48 therebetween and is covered by a silicon dioxide layer 50.
A P+ type impurity-doped polycrystalline silicon line 52 is provided on the silicon dioxide layer 50 on the general-purpose crossover connection 48. Similarly, the semiconductor island region 42 includes a pair of N+ type regions 54 and 56 and a general-purpose crossover connection 58 therebetween, and is covered with a silicon dioxide layer 60 , and the silicon dioxide layer 60 on the general-purpose transition connection 58 is covered with a silicon dioxide layer 60 . An N+ type impurity-doped polycrystalline silicon line 62 is provided above.

汎用渡り結線48,58はそれぞれP型領域6
6とその上のN型領域64とから成り、従つてP
+型領域44,46間に汎用渡り結線48のP型
下層部66を介する導電路が形成される。同様に
N+型領域54,56間にも汎用渡り結線58の
N型上層部64を介する導電路が形成される。従
つて汎用渡り結線48,58は2つのN+型領域
または2つのP+型領域の接続に用いられるとい
う点で「汎用」である。
The general-purpose crossover connections 48 and 58 are each connected to the P-type area 6.
6 and an N-type region 64 thereon, thus P
A conductive path is formed between the + type regions 44 and 46 via the P type lower layer portion 66 of the general-purpose crossover connection 48. Similarly, a conductive path is formed between the N+ type regions 54 and 56 via the N type upper layer portion 64 of the general-purpose crossover connection 58. Therefore, the general purpose crossover connections 48, 58 are "universal" in that they can be used to connect two N+ type regions or two P+ type regions.

この発明の推奨実施例の汎用渡り結線48,5
8の形成法では、共通のマスクの開口部を通して
拡散の遅いN型不純物(ドープ剤)と拡散の速い
P型不純物(ドープ剤)とをほぼ等量イオン注入
した後、これらの不純物(ドープ剤)を拡散させ
両者の拡散速度の差によつて基板38の表面に平
行なN型層64とP型層66とを分離させる。
General-purpose crossover connection 48, 5 of the recommended embodiment of this invention
In the formation method No. 8, approximately equal amounts of a slow-diffusing N-type impurity (dopant) and a fast-diffusing P-type impurity (dopant) are ion-implanted through the opening of a common mask, and then these impurities (dopants) are ) is diffused to separate the N-type layer 64 and the P-type layer 66 parallel to the surface of the substrate 38 due to the difference in diffusion speed between the two.

代表例としてN型ドープ剤に砒素、P型ドープ
剤に硼素を用い、両ドープ剤を酸化物層50,6
0を介して濃度約2×1014原子/cm2までイオン注
入する。このドーピングの結果MOS動作に実質
的に無関係なほど面抵抗の充分低いオーム導体が
できる。導体をオーム性にして実質的にMOS動
作に無関係にするための最大面抵抗は不純物濃度
約1018原子/cm3に対応する約1000Ω/平方と考え
られる。エピタキシヤルシリコンの島状領域4
0,42の厚さは一般に6000Å程度である。集積
回路100の製造工程のイオン注入後の残り工程
は、1050℃における50分拡散と等価な処理工程で
あり、この拡散の結果P型領域66の上にN型領
域64が生じて汎用渡り結線48,58が形成さ
れる。
As a typical example, arsenic is used as an N-type dopant, boron is used as a P-type dopant, and both dopants are added to the oxide layers 50 and 6.
The ions are implanted through 0 to a concentration of approximately 2×10 14 atoms/cm 2 . This doping results in an ohmic conductor with a sufficiently low sheet resistance that it is virtually irrelevant to MOS operation. The maximum sheet resistance for making the conductor ohmic and essentially independent of MOS operation is believed to be about 1000 Ω/square, corresponding to an impurity concentration of about 10 18 atoms/cm 3 . Epitaxial silicon island region 4
The thickness of 0.42 is generally about 6000 Å. The remaining steps after ion implantation in the manufacturing process of the integrated circuit 100 are equivalent to 50-minute diffusion at 1050° C. As a result of this diffusion, an N-type region 64 is formed on the P-type region 66, and a general-purpose crossover connection is formed. 48, 58 are formed.

汎用渡り結線48,58のP型およびN型の電
路の導電度は第1図の領域22,32のようなP
型およびN型の別々の拡散処理により得られるも
のより低いが、この汎用渡り結線は導電路として
はなお充分なものである。
The conductivity of the P-type and N-type electrical paths of the general-purpose crossover connections 48 and 58 is P as in the regions 22 and 32 in FIG.
Although lower than that obtained by separate diffusion treatments for type and N type, this general purpose crossover is still sufficient as a conductive path.

この発明の上記実施例では硼素および砒素の等
量注入によつて実施したが、この両者の相対注入
量は両導電路の導電度効率が約40%となるように
適当に変えることができる。ここでは等量注入を
用いて汎用渡り結線58のN型砒素注入電路64
の効率を第1図の領域32のような単一N型領域
のそれの約55%にした。同様に渡り結線48のP
型硼素注入電路66の効率は第1図の単一P型領
域22のそれの約33%であつた。
Although the above-described embodiments of the invention were carried out by implanting equal amounts of boron and arsenic, the relative amounts of boron and arsenic can be varied appropriately so that the conductivity efficiency of both conductive paths is approximately 40%. Here, the N-type arsenic implanted circuit 64 of the general-purpose crossover connection 58 is
The efficiency was approximately 55% of that of a single N-type region, such as region 32 in FIG. Similarly, P of crossover connection 48
The efficiency of the boron-type implanted path 66 was about 33% of that of the single P-type region 22 of FIG.

第3図および第4図は硼素および砒素を注入エ
ネルギ約150KeVで各不純物の全量2×1014
子/cm2までイオン注入した後1050℃で50分拡散さ
せた結果を示す。第3図には装置製造中の汎用渡
り結線70の物理的外観が示されている。渡り結
線70は厚さ約1000Åの2酸化シリコン層72を
介する硼素および砒素の(第3図に矢印で示す)
イオン注入により形成され、このイオン注入には
開口を有する成形ホトレジスト層74のマスクが
用いられる。開口は、P+型領域44と46との
間およびN+型領域54と56の間の各間隙の丁
度上方に相当する位置に設けられる。工程のこの
時点ではドレンやソースはまだ形成されていな
い。
3 and 4 show the results of ion implantation of boron and arsenic at an implantation energy of about 150 KeV to a total amount of 2×10 14 atoms/cm 2 of each impurity, followed by diffusion at 1050° C. for 50 minutes. FIG. 3 shows the physical appearance of a general purpose crossover connection 70 during device manufacture. The crossover connection 70 connects boron and arsenic (indicated by arrows in FIG. 3) through a silicon dioxide layer 72 with a thickness of approximately 1000 Å.
It is formed by ion implantation using a mask of shaped photoresist layer 74 having openings. The openings are located just above the gaps between P+ regions 44 and 46 and between N+ regions 54 and 56. At this point in the process, no drain or source has yet formed.

注入したイオンの拡散後渡り結線70は比較的
浅いN型層76と、(第2図に示すように)ドレ
ンおよびソースが形成されていない場合N−−型
層82中をサフアイア基板80に達する下層のP
型層78とを持つ。拡散の結果P型の硼素イオン
はN型の砒素イオンより深く広い領域に拡散する
が、実際には渡り結線70が接続を果すその両側
領域がN+型またはP+型にドープされ、拡散後
の構造は第2図に示すようになつてN型領域76
がP型領域78によつて隣接領域から絶縁される
ことにはならない。
After diffusion of the implanted ions, the interconnect 70 reaches the sapphire substrate 80 through a relatively shallow N-type layer 76 and, if no drain and source are formed (as shown in FIG. 2), an N-type layer 82. lower layer P
It has a mold layer 78. As a result of diffusion, P-type boron ions diffuse into a deeper and wider area than N-type arsenic ions, but in reality, the regions on both sides where the crossover connection 70 connects are doped with N+ type or P+ type, and the structure after diffusion is The N-type region 76 is formed as shown in FIG.
is not isolated from adjacent regions by P-type region 78.

第4図は第3図の汎用渡り結線70の形成時の
イオンの拡散の結果を図表で示す。詳言すれば砒
素イオンの濃度はエピタキシヤルシリコン層表面
近傍において硼素より実質的に高いが、約2000Å
の深さでは硼素濃度が砒素濃度を超え、サフアイ
ア基板面に至るまで砒素濃度より高く保たれる。
FIG. 4 graphically illustrates the results of ion diffusion during the formation of the general purpose crossover connection 70 of FIG. Specifically, the concentration of arsenic ions is substantially higher than that of boron near the surface of the epitaxial silicon layer, but at a concentration of about 2000 Å.
At the depth of , the boron concentration exceeds the arsenic concentration and remains higher than the arsenic concentration up to the sapphire substrate surface.

実験の結果によれば幅約10μの渡り結線の抵抗
値が計算値とよく一致した。詳言すればN型電路
の面抵抗測定値600Ω/平方に対し計算値は
780Ω/平方、P型電路の面抵抗測定値約200Ω/
平方に対し計算値は220Ω/平方であつた。
According to the experimental results, the resistance value of the crossover connection with a width of about 10μ matched well with the calculated value. To be more specific, the calculated value is 600Ω/square for the measured sheet resistance of the N-type circuit
780Ω/square, P-type circuit resistance measurement value approximately 200Ω/
The calculated value for a square was 220Ω/square.

上述の汎用渡り結線の実用性は絶縁基板上に半
導体の本体が乗つている場合に最大であることに
注意すべきである。従つてこの汎用渡り結線は全
体がシリコンの場合すなわち接続すべき拡散領域
の一方が電源電位にある場合にも用いることがで
きるが、SOS型CMOS技法が最適の用途である。
It should be noted that the practicality of the general purpose crossover connections described above is greatest when the semiconductor body is mounted on an insulating substrate. This general-purpose crossover connection can therefore also be used in an all-silicon case, ie, when one of the diffusion regions to be connected is at power supply potential, but SOS type CMOS technology is the most suitable application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の形成法による汎用渡り結線
を含まない従来法の集積回路構体の一部の断面
図、第2図はこの発明の方法で形成した汎用渡り
結線を含むSOS型CMOS構体の一部の断面図、
第3図はこの発明の方法を説明するための集積回
路構体の一部の断面図、第4図はこの発明に用い
る型の硼素および砒素の濃度勾配の計算値を示す
図である。 40,42……単結晶半導体層、44−46,
54−56……1対の領域、48,58……1対
の領域間の部分(汎用渡り結線)、64……第2
の層、66……第1の層、50,60……絶縁
層。
FIG. 1 is a cross-sectional view of a part of a conventional integrated circuit structure which does not include a general-purpose crossover connection formed by the method of the present invention, and FIG. 2 shows an SOS type CMOS structure including a general-purpose crossover connection formed by the method of the present invention. Some cross-sectional views,
FIG. 3 is a cross-sectional view of a portion of an integrated circuit structure for explaining the method of the present invention, and FIG. 4 is a diagram showing calculated concentration gradients of boron and arsenic for the type used in the present invention. 40, 42... single crystal semiconductor layer, 44-46,
54-56...Pair of areas, 48, 58...Part between the pair of areas (general-purpose crossover connection), 64...Second
layer, 66... first layer, 50, 60... insulating layer.

Claims (1)

【特許請求の範囲】 1 絶縁材料製の基板と、この基板上に形成され
た単結晶半導体材料層から成る少なくとも2個の
島状領域とを有し、 上記各島状領域は同一導電型をもつ1対の互に
分離された個別領域を有し、しかも一方の島状領
域中の両個別領域は一つの導電型を、他方の島状
領域中の両個別領域はそれと反対の導電型をもつ
ようにされた集積回路の上記両個別領域間に渡り
結線を形成する方法であつて; 上記半導体材料層の表面を覆つてマスク層を形
成する工程と、 上記マスク層の、上記互いに分離された両個別
領域間の間隙の上に相当する部分に開口を形成す
る工程と、 一方が一つの導電型を有し、他方がそれと反対
の導電型を有するものである相異なる2つの不純
物を上記マスク層に形成した開口を介して上記半
導体層中に注入し、上記少なくとも2個の島状領
域中の両個別領域間のすべてに導電型を異にする
上下層から成る導電層を同時に形成する工程と、
を有することを特徴とする集積回路の渡り結線形
成法。 2 上記2つの不純物の一方は拡散の遅い不純物
であり、他方は拡散の速い不純物である、特許請
求の範囲1項に記載の渡り結線形成法。 3 上記2つの不純物が、イオン注入によつて注
入される、特許請求の範囲1項または2項に記載
の渡り結線形成法。 4 上記拡散の速い不純物が硼素であり、拡散の
遅い不純物が砒素である、特許請求の範囲2項に
記載の渡り結線形成法。
[Scope of Claims] 1. A substrate made of an insulating material and at least two island-like regions made of a single-crystal semiconductor material layer formed on the substrate, each of the island-like regions having the same conductivity type. a pair of mutually separated individual regions, and both individual regions in one island-like region have one conductivity type, and both individual regions in the other island-like region have the opposite conductivity type. A method for forming a connection between said discrete regions of an integrated circuit having: forming a mask layer over a surface of said semiconductor material layer; forming an opening in a portion corresponding to the gap between the two individual regions; and adding two different impurities, one of which has one conductivity type and the other of which has the opposite conductivity type. Injecting into the semiconductor layer through an opening formed in the mask layer, and simultaneously forming a conductive layer consisting of upper and lower layers of different conductivity types between both individual regions in the at least two island-like regions. process and
A method for forming a crossover connection for an integrated circuit, the method comprising: 2. The crossover connection forming method according to claim 1, wherein one of the two impurities is a slow-diffusing impurity and the other is a fast-diffusing impurity. 3. The crossover connection forming method according to claim 1 or 2, wherein the two impurities are implanted by ion implantation. 4. The method for forming a crossover connection according to claim 2, wherein the fast-diffusing impurity is boron and the slow-diffusing impurity is arsenic.
JP11227380A 1979-08-20 1980-08-14 Integrated circuit device Granted JPS5632770A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6814879A 1979-08-20 1979-08-20

Publications (2)

Publication Number Publication Date
JPS5632770A JPS5632770A (en) 1981-04-02
JPH0478011B2 true JPH0478011B2 (en) 1992-12-10

Family

ID=22080712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11227380A Granted JPS5632770A (en) 1979-08-20 1980-08-14 Integrated circuit device

Country Status (5)

Country Link
JP (1) JPS5632770A (en)
DE (1) DE3030753A1 (en)
FR (1) FR2463977A1 (en)
GB (1) GB2056771B (en)
IT (1) IT1131790B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138950A1 (en) * 1981-09-30 1983-04-14 Siemens AG, 1000 Berlin und 8000 München Integrated semi-conductor memory
JPS61127174A (en) * 1984-11-26 1986-06-14 Toshiba Corp Manufacture of semiconductor device
DE19604776A1 (en) * 1996-02-09 1997-08-14 Siemens Ag Detachable connecting bridge (fuse) and connectable line interruption (anti-fuse), as well as methods for producing and activating a fuse and an anti-fuse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139388A (en) * 1976-05-17 1977-11-21 Matsushita Electric Ind Co Ltd Mos type semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443176A (en) * 1966-03-31 1969-05-06 Ibm Low resistivity semiconductor underpass connector and fabrication method therefor
US3958266A (en) * 1974-04-19 1976-05-18 Rca Corporation Deep depletion insulated gate field effect transistors
CA1040321A (en) * 1974-07-23 1978-10-10 Alfred C. Ipri Polycrystalline silicon resistive device for integrated circuits and method for making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139388A (en) * 1976-05-17 1977-11-21 Matsushita Electric Ind Co Ltd Mos type semiconductor device

Also Published As

Publication number Publication date
GB2056771B (en) 1983-10-19
DE3030753A1 (en) 1981-03-12
IT1131790B (en) 1986-06-25
FR2463977B1 (en) 1983-02-04
JPS5632770A (en) 1981-04-02
FR2463977A1 (en) 1981-02-27
GB2056771A (en) 1981-03-18
IT8023809A0 (en) 1980-07-30

Similar Documents

Publication Publication Date Title
JP3031855B2 (en) Method for manufacturing semiconductor device
US5387552A (en) Method of fabrication of PNP structure in a common substrate containing NPN or MOS structures
KR930008018B1 (en) Bicmos device and manufacturing method of the same
US4769337A (en) Method of forming selective polysilicon wiring layer to source, drain and emitter regions by implantation through polysilicon layer
JP3354145B2 (en) Bipolar transistor and its manufacturing method
US5079177A (en) Process for fabricating high performance bicmos circuits
JPH0351108B2 (en)
US5443994A (en) Method of fabricating a semiconductor device having a borosilicate glass spacer
KR0151011B1 (en) A bipolar transistor and method of manufacturing the same
JPH0645537A (en) Manufacture of integrated circuit
US5139966A (en) Low resistance silicided substrate contact
JPH0478011B2 (en)
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
US4575746A (en) Crossunders for high density SOS integrated circuits
JPH0837239A (en) Semiconductor device and manufacture thereof
JPH10189765A (en) Fabrication of semiconductor device
JPH07176639A (en) Semiconductor integrated circuit device and fabrication thereof
JP2550691B2 (en) Method for manufacturing semiconductor device
JPS6140057A (en) Semiconductor device and manufacture therefor
JP2808620B2 (en) Method for manufacturing semiconductor device
KR950012742B1 (en) Method for simultaneously fabricating bipolar and complementar and complementary field transistors
JPH0527975B2 (en)
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JP3099333B2 (en) Method for manufacturing semiconductor device
JPH0697658B2 (en) Method for manufacturing semiconductor device