JPS6140057A - Semiconductor device and manufacture therefor - Google Patents

Semiconductor device and manufacture therefor

Info

Publication number
JPS6140057A
JPS6140057A JP16051884A JP16051884A JPS6140057A JP S6140057 A JPS6140057 A JP S6140057A JP 16051884 A JP16051884 A JP 16051884A JP 16051884 A JP16051884 A JP 16051884A JP S6140057 A JPS6140057 A JP S6140057A
Authority
JP
Japan
Prior art keywords
conductivity type
film
diffusion layer
concentration diffusion
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16051884A
Other languages
Japanese (ja)
Inventor
Shigeru Komatsu
茂 小松
Takao Ito
隆夫 伊藤
Yasuhiro Katsumata
勝又 康弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16051884A priority Critical patent/JPS6140057A/en
Priority to EP19850109543 priority patent/EP0170250B1/en
Priority to DE8585109543T priority patent/DE3580206D1/en
Publication of JPS6140057A publication Critical patent/JPS6140057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve performance of a semiconductor device at a high rate or a high frequency, by reducing a base resistance using a laminated structure of a non-single-crystal Si film and a metal silicide film as a base taking out electrode. CONSTITUTION:After an N<+> type buried region 2 is formed in a P type Si substrate 1, an N type epitaxial layer 3 and a field oxidation film 4 are formed. Next, a polycrystal Si film which has been patterned and doped with B is deposited, and moreover an MoSi2 film is deposited thereon. Next, over the entire face, an oxidation film 8 is deposited. Next, using a photo resist pattern 9 formed as a mask, the films 8-6 are etched away to form a base taking out electrode 10. Thereafter, B which is being doped in the films 7, 6 is diffused with heat-treatment to form a P<+> type external base region 12. Moreover, by implanting B, a P type active base region 13 is formed. After an oxidation film 14 is deposited over the entire face, the oxidation film 14' on the side walls of the electrode 10 is left with anisotropic etching. Next, an N<+> type emitter region 16 is formed in the region 13.

Description

【発明の詳細な説明】 〔発明の技術分野〕 、          ・本発明
は半導体装置及びその製造方法に関し、特にバイポーラ
型の高速論理動作又は高周波領域におけるアナログ動作
回路用のトランジスタ及びその製造方法に係る。゛ 〔発明の技術的背景とその問題点〕 高速又は高周波領域で回路動作させる・9イポーラ型の
トランジスタは、イオン注入による浅い接合の形成、埋
込み嘩化膜、溝切シ構造等によシ基板−コレクタ間の寄
生容量を低減し、また微細パターニングと自己整合技術
の開発によ)ペース−コレクタ間゛、ペーメーエミ、り
間ノ寄生容量及びぺ−不抵抗を低減することで性能向上
を達成してきた。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a manufacturing method thereof, and particularly to a transistor for a bipolar type high-speed logic operation or an analog operation circuit in a high frequency region, and a manufacturing method thereof.゛ [Technical background of the invention and its problems] A 9-ipolar type transistor operates in a high-speed or high-frequency region, using a substrate with shallow junction formation by ion implantation, an embedded oxide film, a grooved structure, etc. - We have achieved improved performance by reducing the parasitic capacitance between the collectors, and through the development of fine patterning and self-alignment technology). Ta.

例えば、特公昭57−41826号公報には、多結晶シ
リコンの取出しペース電極を採用するこトニよシペース
ーコレクタ間の容量を低減する技術が開示されている。
For example, Japanese Patent Publication No. 57-41826 discloses a technique for reducing the space-collector capacitance by employing a lead-out space electrode made of polycrystalline silicon.

また、特開昭57−53979号公報には、多結晶シリ
コンを取出しペース電極及び外部ペース形成用の拡散源
として用い、エミ、り及び活性ペース形成用の開口部を
形成した後、熱拡散によシ外部ペース領域を形成し、更
に前記開口部に面する多結晶シリコンの側壁に熱酸化に
よりサブミクロンの酸化膜を形成して活性ペース領域と
エミッタ領域とをセルファラインで形成することにより
、ペース抵抗を低減する技術が開示されている。この特
開昭57−53979号公報と同様な技術は、特公昭5
6−4457号公報、特開昭57−186360号公報
、特開昭57−186359号公報、特開昭57−18
8872号査報にも開示されている。更に、特公昭55
−266’30号公報、特公昭55−27469号公報
、特公昭57−32511夛公報には、多結晶シリコン
のペース取出し電極の形成に際し、酸化膜等の段差を利
用した自己整合技術を導入し、ペース−コレクタ容量を
低減する技術が開宗されている。。
In addition, in Japanese Patent Application Laid-open No. 57-53979, polycrystalline silicon is used as a diffusion source for forming a pace electrode and an external paste, and after forming an opening for forming an emitter and an active paste, thermal diffusion is performed. By forming an external space region, and further forming a submicron oxide film by thermal oxidation on the side wall of the polycrystalline silicon facing the opening, an active space region and an emitter region are formed in a self-lined manner. Techniques for reducing pace resistance are disclosed. A technique similar to this Japanese Patent Application Publication No. 57-53979 was published in Japanese Patent Publication No. 57-53979.
6-4457, JP 57-186360, JP 57-186359, JP 57-18
It is also disclosed in Report No. 8872. In addition, the special public
In Japanese Patent Publication No. 266'30, Japanese Patent Publication No. 55-27469, and Japanese Patent Publication No. 57-32511, a self-alignment technique using steps such as oxide films was introduced in forming a polycrystalline silicon paste electrode. , techniques for reducing pace-collector capacity have been developed. .

これらの従来技術においては、寄生容量の低減、基板中
のペース領域の低抵抗化はほぼ満足いくまで達成されて
いると考えられる。しかし、多結晶シリコンからなるペ
ース取出し電極の層抵抗値は単結晶シリコンに同量の不
純物を添加した場合と比較して約3〜5倍高い値となる
′。
In these conventional techniques, it is considered that the reduction of parasitic capacitance and the reduction of resistance of the space region in the substrate have been almost satisfactorily achieved. However, the layer resistance value of a paste extraction electrode made of polycrystalline silicon is about 3 to 5 times higher than that of a case where the same amount of impurities is added to single crystal silicon.

このため、従来の多結晶シリコンからなるペース取出し
電極は50〜500Ω/口程度の値をとる。
For this reason, a conventional pace extraction electrode made of polycrystalline silicon has a value of about 50 to 500 Ω/mouth.

一方、例えばECL回路たついてデ・々イス定数と感度
係数との関係に関する報告(外材、山崎:超高速ECL
ロジックHD100Kシリーズの開発と量産化、日立評
論、64:P、59〜62.t9sz)によれば、高速
動作が必要とされるものにはペース抵抗rbb’が大き
なウェイトを占める。したがって、ペース取出し電極の
層抵抗値を下げることが、トランジスタの性能を向上さ
せる大きな要因の一つとなる。       −このよ
うにペース取出し電極の抵抗値を下げる技術として、い
わゆるPSAあるいはA −PSA7’ロセス(Po1
ySi Self−Aligned Process)
 (L’Nakaghiba at al、 、 ’A
n Advanced PEA ’Teahniilo
g)rfor high −sp@ed Bipola
r LSl、 ’ 、 IEgE、 Vol。
On the other hand, for example, a report on the relationship between the ECL circuit Tatsuki Deis constant and the sensitivity coefficient (Taizai, Yamazaki: Ultra-high-speed ECL
Development and mass production of the Logic HD100K series, Hitachi Review, 64:P, 59-62. According to t9sz), pace resistance rbb' occupies a large weight in those that require high-speed operation. Therefore, lowering the layer resistance value of the paste extraction electrode is one of the major factors in improving the performance of the transistor. -As a technique for lowering the resistance value of the pace extraction electrode, the so-called PSA or A-PSA7' process (Po1
ySi Self-Aligned Process)
(L'Nakaghiba at al, 'A
n Advanced PEA 'Teahniilo
g) rfor high-sp@ed Bipola
rLSl,', IEgE, Vol.

ED−27,pp、1390〜1394.1980 )
が知られている。この技術ではペース取出し電極を白2
Ω/口まで低減してムる。しかし、この技、術−はエミ
ッタ形成後に高温熱処理が加わらない工程で可能であシ
、ペース領域を取出す多結晶シリ・ン膜のうち一部の領
域のみしか適用され、、ず、しかもペース取出し電極と
エミ、り領域とがサブミクロンの絶縁膜で分離される構
造となっていないため、充分にrbb’を下げるまでに
至;て仏ない。
ED-27, pp, 1390-1394.1980)
It has been known. In this technology, the pace extraction electrode is white 2
It is reduced to Ω/mouth. However, this technique is possible in a process that does not involve high-temperature heat treatment after emitter formation, and is applied only to a portion of the polycrystalline silicon film from which the paste region is extracted. Since the electrode and the emitter region are not separated by a submicron insulating film, it is difficult to sufficiently lower rbb'.

〔発明の目的〕[Purpose of the invention]

シ1、ペース抵抗を低減することにより高速又は高周波
領域での性能が良好なバイポーラ型の半導体装置及びそ
の製造方法を提供(ようとするものである。
(1) To provide a bipolar semiconductor device that has good performance in high-speed or high-frequency ranges by reducing pace resistance, and a method for manufacturing the same.

〔発明の概要〕  、 本願第1の発明の半導体装置は、第1導電型の半導体基
体(例えばPiシリコン基板上のN型エピタキシャル層
)表面に形成された低濃度拡散層及びこの低濃度拡散層
に接して形成された第2導電型の高濃度拡散層と、該第
2導電型の高濃度拡散層上に順次積層して形成された非
単結晶シリコン膜及び金属シリサイド膜からなる取出し
電極と、該取出し電極の側憶に形成された絶縁膜と、前
記第2導電型の低濃度拡散層内に形成された第1導電型
の高濃度拡散層とを具備したことを特徴とするものであ
る。
[Summary of the Invention] A semiconductor device according to the first invention of the present application includes a low concentration diffusion layer formed on the surface of a first conductivity type semiconductor substrate (for example, an N-type epitaxial layer on a Pi silicon substrate) and this low concentration diffusion layer. a second conductivity type high concentration diffusion layer formed in contact with the second conductivity type high concentration diffusion layer; and an extraction electrode consisting of a non-single crystal silicon film and a metal silicide film formed by sequentially stacking on the second conductivity type high concentration diffusion layer; , comprising an insulating film formed on the side of the extraction electrode, and a high concentration diffusion layer of the first conductivity type formed in the low concentration diffusion layer of the second conductivity type. be.

このよう彦半導体装置によれば、ペース取出し電極とし
て非単結晶シリコン膜と金属シリサイド膜との積層構造
のものを用いているので、その層抵抗を大幅に低減する
ことができ、ペース抵抗の低減を達成することができる
。このため高速又は高周波領域での性能を向上すること
ができる。
According to the Hiko semiconductor device, since a laminated structure of a non-single-crystal silicon film and a metal silicide film is used as the paste extraction electrode, the layer resistance can be significantly reduced, and the paste resistance can be reduced. can be achieved. Therefore, performance in high speed or high frequency ranges can be improved.

また、本願第2の発明の半導体装置の製造方法は、第1
導電型の半導体基体の一部上に非単結晶シリコン膜・リ
ーン及び金属シリ゛サイド膜ノ々ターンを順次積層して
形成する工程と、これらの74ターンに選択的に第2導
電型の不純物をドーグする工程と、これらのパターンの
一部を選択的に工、チングして取出し電極を形成し、半
導体基体の一部を露出させる工程と、熱処理によシ取出
し電極から不純物を拡散させて第2導電型の高濃度拡散
層を形成する工程と、露出した基体に第2導電型の不純
物をドーグして第2導電型の低濃度拡散層を、形成する
工程と、全面に絶縁膜を堆積した後、異方性工、チング
によシエッチングし、前記取出し電極の側壁に絶縁膜を
残存させる工程と、前記第2導電型の低濃度拡散層内に
第1導電減の高濃度拡散層を形成する工程とを具備した
ことを特徴とするものである。
Further, the method for manufacturing a semiconductor device according to the second invention of the present application includes the method for manufacturing a semiconductor device according to the first invention.
A step of sequentially stacking a non-single crystal silicon film, a thin metal silicide film, and a metal silicide film on a part of a semiconductor substrate of a conductive type, and selectively doping impurities of a second conductive type into these 74 turns. A process of selectively etching a part of these patterns to form an extraction electrode and exposing a part of the semiconductor substrate, and a process of diffusing impurities from the extraction electrode by heat treatment. A step of forming a second conductivity type high concentration diffusion layer, a step of forming a second conductivity type low concentration diffusion layer by doping the exposed substrate with a second conductivity type impurity, and a step of forming an insulating film on the entire surface. After the deposition, etching is performed by anisotropic etching and etching to leave an insulating film on the side wall of the extraction electrode, and high concentration diffusion of a first conductivity type is performed in the low concentration diffusion layer of the second conductivity type. The method is characterized by comprising a step of forming a layer.

このような方法によれば、非単結晶シリコンと金属シリ
サイドとの積層構造のペース取出し電極を拡散源として
も用い、しかも異方性工。
According to this method, a paste extraction electrode having a laminated structure of non-single crystal silicon and metal silicide is used also as a diffusion source, and moreover, an anisotropic process is performed.

チングにより取出し電極の側壁にサブミクロンの絶縁膜
を形成しているので、第2導電型の高濃度拡散層(外部
ペース領域)、第2導電型の低−炭鉱散層(活性ペース
領域)及び第1導電型の高濃度拡散層(エミッタ領域)
をセルファラインで形成し、非常に微細化することがで
きる。したがって、ペース取出し電極の層抵抗の低減及
び活性ペース領域の抵抗値の低減によ)ペース抵抗を大
4幅に低減した本願第1の発明のバイポーラ型の半導体
装置を簡便に製造することができる。
Since a submicron insulating film is formed on the side wall of the extraction electrode by etching, a high-concentration diffusion layer of the second conductivity type (external pace region), a low-coal diffusion layer of the second conductivity type (active pace region) and High concentration diffusion layer of first conductivity type (emitter region)
can be formed using Selfa Line and can be made extremely fine. Therefore, it is possible to easily manufacture the bipolar semiconductor device of the first invention of the present application in which the pace resistance is significantly reduced by four times (by reducing the layer resistance of the pace extraction electrode and the resistance value of the active pace region). .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図〜第8図に示す製造方法
を併記して説明する。
Hereinafter, embodiments of the present invention will be described together with manufacturing methods shown in FIGS. 1 to 8.

まず、P型シリコン基板1の一部に選択的にN+W、!
!!込み領域2を形成した後、全面にN型エピタキシャ
ル層3を成長させる。次に、選択酸化法によ如膜厚60
00〜1ooooXのフィールド酸化膜4を形成する。
First, N+W is selectively applied to a part of the P-type silicon substrate 1!
! ! After forming the embedded region 2, an N-type epitaxial layer 3 is grown over the entire surface. Next, a selective oxidation method was used to obtain a film with a thickness of 60 mm.
A field oxide film 4 of 00 to 1ooooX is formed.

。つづいて、フィールド酸化膜4に囲まれたエピタキシ
ャル層3の一部にN型不純物をドーグしてN+派コレク
タコンタクト領域5を形成する。つづいて、LPCVD
法によシ全面に膜厚的5001の不純物無添加多結晶シ
リコン膜6を堆積し、更にツノ4ツタ法によシ全面に膜
厚的3000XのMo S 12膜7を堆積する(第1
図図示)。次いで、MO812膜7及び多結晶シリコン
膜6をケミカルドライエツチング(CDI )又は反応
性イオンエツチング(RIE )によシ順次ノ4ターニ
ングする。つづいて、これらのノJ?ターンに選択的に
加速エネルギー40〜50 key、  ドーズ量10
15〜10”cm−2の条件でがロンをイオン注入する
。つづいて、全面に膜厚3000〜4ooo1ocvo
酸化膜8を堆積する(第2図図示)。
. Subsequently, a part of the epitaxial layer 3 surrounded by the field oxide film 4 is doped with N type impurities to form an N+ type collector contact region 5. Next, LPCVD
An impurity-free polycrystalline silicon film 6 with a thickness of 5,000× is deposited on the entire surface by the method, and a MoS 12 film 7 with a thickness of 3,000× is further deposited on the entire surface by the horn-and-four-vine method (the first
(Illustrated) Next, the MO812 film 7 and the polycrystalline silicon film 6 are sequentially turned by chemical dry etching (CDI) or reactive ion etching (RIE). Next, these NoJ? Selective acceleration energy for turns 40-50 keys, dose 10
Ron is ion-implanted under the condition of 15-10"cm-2. Then, a film thickness of 3000-400cm is deposited on the entire surface.
An oxide film 8 is deposited (as shown in FIG. 2).

次いで、活性ペース形成領域以外を覆うホトレジストパ
ターン9を形成した後、これをマスクとしてSF6を用
いたRIEによ、6 cvo酸化膜8をエツチングし、
つづいてBCt〆t2を用いたRIEによl) Mo8
12膜で及び多結晶シリコン膜6をエツチングしてペー
ス取出し電極lOを形成する。更にこれらの膜厚のバラ
ツキを考慮してエピタキシャル層3を0.1〜0,2μ
mエッチングする(第3図図示)、、次いで、ホトレジ
ストツクターン9を除去した後、RIBによシ生じたエ
ピタキシャル層3の表面に生じたダメージをアルカリウ
ニ、トエ、チングによシ除去する。つづいて、熱酸化を
行ないエピタキシャル層30表面に(膜厚500Xの)
熱酸化膜11を形成する。つづいて、1000〜110
0℃で熱処理を行なItsXMoSi□gv及び多結晶
シリコン膜6にドーグされたゾロンを拡散させ、P+型
外部ペース領域12を形成する。更に、加速エネルギ4
0 keV 、  ドーズ量約1014/112の条件
でゾロンをイオン注入することによりP′″型活性ペー
ス領域13を形成する(第4図図示)。
Next, after forming a photoresist pattern 9 covering areas other than the active paste forming region, the 6 cvo oxide film 8 is etched by RIE using SF6 using this as a mask.
Next, perform RIE using BCt〆t2) Mo8
12 film and the polycrystalline silicon film 6 are etched to form a paste extraction electrode IO. Furthermore, considering these variations in film thickness, the thickness of the epitaxial layer 3 is 0.1 to 0.2μ.
Then, after removing the photoresist cutter 9, the damage caused to the surface of the epitaxial layer 3 caused by RIB is removed by alkaline etching, etching, and etching (as shown in FIG. 3). Next, thermal oxidation is performed on the surface of the epitaxial layer 30 (with a thickness of 500X).
A thermal oxide film 11 is formed. Next, 1000-110
Heat treatment is performed at 0° C. to diffuse doped zolon into ItsXMoSi□gv and polycrystalline silicon film 6 to form P+ type external space region 12. Furthermore, acceleration energy 4
A P'' type active space region 13 is formed by ion-implanting zolon under the conditions of 0 keV and a dose of about 1014/112 (as shown in FIG. 4).

次いで、全面に膜厚3000〜5ooolのCVD酸化
膜14を堆積する。つづいての00〜1000℃で熱処
理を行ガい、CVD酸化膜14のアニールと活性づ−ス
領域13のアニールとを行なう(第5図図示)。つづい
て、SF6を用いたRIBによシCVD酸化膜14及び
熱酸化膜11を工、チングし、CVD酸化膜8及びMo
812 * ”と多結晶シリコン膜6とからなる取出し
電極10の側壁にCVD酸化膜14′を残存させる。つ
づいて、RIEにより活性ペース領域13表面に生じた
ダメージをアルカリウニ、トエッチングによシ除去する
(第6図図示)。
Next, a CVD oxide film 14 having a thickness of 3,000 to 500 mm is deposited on the entire surface. Subsequent heat treatment is performed at 00-1000 DEG C. to anneal the CVD oxide film 14 and the active region 13 (as shown in FIG. 5). Subsequently, the CVD oxide film 14 and thermal oxide film 11 are processed and etched by RIB using SF6, and the CVD oxide film 8 and Mo
A CVD oxide film 14' is left on the side wall of the lead-out electrode 10 made of 812 Remove (as shown in Figure 6).

次いで、全面に多結晶シリコン膜を堆積した後、加速エ
ネルギー40〜50keV、  ドーズ量1015〜l
 Q” /1wr2 の条件でリンもしくはヒ素又はリ
ンとヒ素の両者をイオン注入する。つづいて、多結晶シ
リコン膜を/臂ターニングして多結晶シリコン膜パター
ン15を形成する。つづいて、800〜900℃で数十
分間熱処理して多結晶シリコン膜/JPターン15から
不純物を拡散させ、N+型エミ、り領域16を形成する
(第7図図示)。つづいて、CvD酸化膜80所定位置
を選択的にエラチン?してコンタクトホールを開孔する
。つづいて、全面に配線金、属を堆積した後、・臂ター
ニングしてエミッタ電極17、ペース電極18及びコレ
クタ電極19を形成しζNPNバイポーラトランジスタ
を製造する(第”8図図示)。つづいて、全面にパッシ
ベーション膜を堆積した後、表面安定化等の最終工程を
行なう。
Next, after depositing a polycrystalline silicon film on the entire surface, an acceleration energy of 40 to 50 keV and a dose of 1015 to 1 are applied.
Phosphorus, arsenic, or both phosphorus and arsenic are ion-implanted under the condition of Q"/1wr2. Next, the polycrystalline silicon film is turned to form a polycrystalline silicon film pattern 15. ℃ for several tens of minutes to diffuse impurities from the polycrystalline silicon film/JP turn 15 to form an N+ type emitter region 16 (as shown in FIG. 7).Subsequently, CvD oxide film 80 is deposited at a predetermined position. A contact hole is selectively formed by etching. Next, wiring gold and metal are deposited on the entire surface, and then turning is performed to form an emitter electrode 17, a pace electrode 18, and a collector electrode 19 to form a ζNPN bipolar transistor. (Illustrated in Figure 8). Subsequently, after depositing a passivation film on the entire surface, final steps such as surface stabilization are performed.

しかして、第8図図示のNPNパイポーラトランゾスタ
においては、ペース取出し電極10を多結晶シリコン膜
6と高温熱処理に耐えうるMo812膜7との積層構造
としているので層抵抗を低減する仁とができる。例えば
、約3000又のMoSi□膜を用いた場合、3〜4V
口の値となシ、多結晶シリコン膜を取出し電極とし庭場
合の#1150〜1/200とすることができる。
In the NPN bipolar transistor shown in FIG. 8, the paste extraction electrode 10 has a laminated structure of the polycrystalline silicon film 6 and the Mo812 film 7 that can withstand high-temperature heat treatment. I can do it. For example, when using a MoSi□ film with about 3000 lines, 3 to 4V
The value of the electrode can be #1150 to 1/200 of that of the case where a polycrystalline silicon film is used as an electrode.

また、第4図の工程で取出し電極10を拡蔽源として用
いて外部ペース領域12を形成し、取出し電極10(及
びその上のCVD酸化膜8)゛をマスクとするイオン注
入により活性ペース領域13を形成し、更に第5図及び
第6図のニーてRIB法を用いて取出し電極10の側壁
にザブミクロンのCVD酸化膜14′を形成した後、第
7図の工程で多結晶シリコン膜ノリ―ン15からAJ+
&&Ll+P−L−S  jl1Mム譬−一一驚湯璽−
1゜デので、これらの領域をセルファラインで非常に微
細に形成することができる。このため基板中のペース領
域(活性ペース領域の寄与分)を低減することができる
Further, in the process shown in FIG. 4, an external space region 12 is formed using the extraction electrode 10 as a spreading source, and an active space region is formed by ion implantation using the extraction electrode 10 (and the CVD oxide film 8 thereon) as a mask. 13 is formed, and then a Zabumicron CVD oxide film 14' is formed on the side wall of the extraction electrode 10 using the knee RIB method shown in FIGS. -N15 to AJ+
&&Ll+P-L-S jl1Mmu parable-11 surprise water seal-
Since the diameter is 1°, these regions can be formed very finely with self-alignment. Therefore, the pace area (contribution of the active pace area) in the substrate can be reduced.

したがって、高速動作が必要とされるデバイスにおいて
最大の感度/母うメータと々るぺ―ス抵抗rbb’を従
来め約1/10以下とすることができ、約20チの性能
向上が期待できる。
Therefore, in devices that require high-speed operation, the maximum sensitivity/resistance rbb' can be reduced to about 1/10 or less than conventional values, and a performance improvement of about 20 cm can be expected. .

なお、Mo81z膜とシリコン基板とを直接接触させる
場合には、シリコン基板側の表面濃度が約1020程度
の高濃度でないとショツトキー性の接触を形成してしま
うが、本発明の構造では多結晶シリコン膜が2膜71層
となるので、良好なオーミック接触を取ることができる
。またζMo5t  膜の下層に多結晶シリコン膜が存
在しているので、MoSi  膜中に基板の浅い接合中
のシリコンが吸い上げられることによシ生じる突き抜け
を防止することができる。
Note that when the Mo81z film and the silicon substrate are brought into direct contact, a Schottky contact will be formed unless the surface concentration on the silicon substrate side is as high as about 1020. However, in the structure of the present invention, the polycrystalline silicon Since there are two films and 71 layers, good ohmic contact can be achieved. Furthermore, since the polycrystalline silicon film exists under the ζMo5t film, it is possible to prevent punch-through caused by silicon in the shallow junction of the substrate being sucked up into the MoSi film.

なお、上記実施例ではペース取出し電極を構成する金属
シリサイド膜としてMo5tう膜を用いたが、これに限
らずTi1l□膜、WS12膜等不純物添加多結晶シリ
コンに比べ充分に低い層抵抗を示し、多結晶シリコンと
同様に拡散源となシうる性質を有し、しかも900〜1
000℃以上の高温熱処理により変化しないか、変質度
の低いシリサイドを用いれば上記実施例と同様の効果を
得ることができる。
In the above embodiment, a Mo5t film was used as the metal silicide film constituting the pace extraction electrode, but the present invention is not limited to this, and other films such as Ti1l□ film and WS12 film, which exhibit sufficiently lower layer resistance than impurity-doped polycrystalline silicon, Like polycrystalline silicon, it has the property of being able to serve as a diffusion source.
The same effect as in the above embodiment can be obtained by using silicide that does not change or has a low degree of alteration by high-temperature heat treatment at 000° C. or higher.

′ また、上記実施例では多結晶シリコン膜・り一ンを
拡散源としてエミ、り領域を形成したが、イオン注入に
よシエミ、り領域を形成してもよい。ただし、イオン注
入を用いた場合、電極形成前の処理及び・ぐツシペーシ
ョン膜の形成が困難となる場合があるので、多結晶シリ
コンを拡散源として用いることが望ましい。
' Also, in the above embodiment, the emitter and recess regions are formed using a polycrystalline silicon film as a diffusion source, but the emitter and recess regions may be formed by ion implantation. However, if ion implantation is used, it may be difficult to perform processing before electrode formation and to form a diffusion film, so it is desirable to use polycrystalline silicon as a diffusion source.

更に、上記実施例では多結晶シリコン膜にイオン注入法
によシN型不純゛物をドーグしたが、LPCVD法によ
シあらかじ迭不純物がドーグされた多結晶シリコン膜を
形成してもよい。なおN型不純物がヒ素だけの場合には
リンに比べて拡散係数が小さいので不純物としてリン又
はリンとヒ素とを含む場合よシも高温の900〜100
0℃で拡散処理を行なうことが望ましい。
Further, in the above embodiment, the polycrystalline silicon film was doped with N-type impurities by ion implantation, but a polycrystalline silicon film doped with the same impurity may also be formed by LPCVD. . Note that when the N-type impurity is arsenic only, the diffusion coefficient is smaller than that of phosphorus, so when the impurity contains phosphorus or phosphorus and arsenic, it also has a high temperature of 900 to 100.
It is desirable to carry out the diffusion treatment at 0°C.

〔廃明の効果〕[Effects of the Abolition of Ming]

以上詳述した如く本発明によれば、高速又は高周波領域
での性能が良好なバイポーラ型の半:□it□ヤ。よう
、、、オ□□ケ□ 造し得る方法を提供できるものである。
As detailed above, according to the present invention, there is provided a bipolar half-circle that has good performance in high-speed or high-frequency regions. It is possible to provide a method that allows for the production of...

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明の実施例におけるNPNパイポ
ーラトランゾスタを得るための製造工程を示す断面図で
ある。 1・・・pgシリコン基板、2・・・N+W埋込み領域
、3・・・Nuエピタキシャル層、4・・・フィールド
酸化膜、5・・・N+型コレクタコンタクト領域、6・
・・多結晶シリコン膜、7・・・MOSi2膜、8・・
・CVD酸化膜の・・・ホトレゾミストパターン、10
・・・ペース取出し電極、11′・・・熱酸化膜、12
・・・外部ペース領域、13・・・活性ペース領域、1
4,1a’・・・CVD酸化膜、15・・・多結晶シリ
コン膜ノ4ターン、16・・・N+型エミッタ領域、1
7・・・エミ、り電極、18・・・ペース電極、19・
・・コレクタ電極。 出願人代理人  弁理士 鈴 江 武 彦弔1図 4′ 耶 一 窮
FIGS. 1 to 8 are cross-sectional views showing manufacturing steps for obtaining an NPN bipolar transistor according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... pg silicon substrate, 2... N+W buried region, 3... Nu epitaxial layer, 4... field oxide film, 5... N+ type collector contact region, 6...
...Polycrystalline silicon film, 7...MOSi2 film, 8...
・CVD oxide film photoresist pattern, 10
...Pace extraction electrode, 11'...Thermal oxide film, 12
... External pace area, 13... Active pace area, 1
4, 1a'...CVD oxide film, 15...4 turns of polycrystalline silicon film, 16...N+ type emitter region, 1
7...Emi electrode, 18...Pace electrode, 19.
...Collector electrode. Applicant's agent Patent attorney Suzue Takehiko Condolences 1 Figure 4'

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基体表面に形成された第2導
電型の低濃度拡散層及びこの低濃度拡散層に接して形成
された第2導電型の高濃度拡散層と、該第2導電型の高
濃度拡散層上に順次積層して形成された非単結晶シリコ
ン膜及び金属シリサイド膜からなる取出し電極と、該取
出し電極の側壁に形成された絶縁膜と、前記第2導電型
の低濃度拡散層内に形成された第1導電型の高濃度拡散
層とを具備したことを特徴とする半導体装置。
(1) a low concentration diffusion layer of a second conductivity type formed on the surface of a semiconductor substrate of a first conductivity type; a high concentration diffusion layer of a second conductivity type formed in contact with the low concentration diffusion layer; an extraction electrode made of a non-single-crystal silicon film and a metal silicide film sequentially laminated on a high concentration diffusion layer of a conductivity type; an insulating film formed on a side wall of the extraction electrode; and an insulating film formed on a side wall of the extraction electrode; 1. A semiconductor device comprising: a first conductivity type high concentration diffusion layer formed within a low concentration diffusion layer.
(2)取出し電極を構成する金属シリサイドがMoSi
_2、TiSi_2又はWSi_2のうちいずれかであ
ることを特徴とする特許請求の範囲第1項記載の半導体
装置。
(2) The metal silicide constituting the extraction electrode is MoSi
2. The semiconductor device according to claim 1, wherein the semiconductor device is one of TiSi_2, TiSi_2, and WSi_2.
(3)第1導電型の半導体基体の一部上に第2導電型の
不純物がドープされた非単結晶シリコン膜パターン及び
これに積層された金属シリサイド膜パターンを形成する
工程と、これらのパターンの一部を選択的にエッチング
して取出し電極を形成し、半導体基体の一部を露出させ
る工程と、熱処理により取出し電極から不純物を拡散さ
せて第2導電型の高濃度拡散層を形成する工程と、露出
した基体に第2導電型の不純物をドープして第2導電型
の低濃度拡散層を形成する工程と、全面に絶縁膜を堆積
した後、異方性エッチングによりエッチングし、前記取
出し電極の側壁に絶縁膜を残存させる工程と、前記第2
導電型の低濃度拡散層内に第1導電型の高濃度拡散層を
形成する工程とを具備したことを特徴とする半導体装置
の製造方法。
(3) A step of forming a non-single crystal silicon film pattern doped with a second conductivity type impurity and a metal silicide film pattern laminated thereon on a part of the first conductivity type semiconductor substrate, and these patterns. A step of selectively etching a part of the lead-out electrode to expose a part of the semiconductor substrate, and a step of diffusing impurities from the lead-out electrode by heat treatment to form a second conductivity type high concentration diffusion layer. a step of doping the exposed substrate with a second conductivity type impurity to form a second conductivity type low concentration diffusion layer; and a step of depositing an insulating film on the entire surface, etching it by anisotropic etching, and removing the a step of leaving an insulating film on the side wall of the electrode;
1. A method of manufacturing a semiconductor device, comprising: forming a first conductivity type high concentration diffusion layer within a conductivity type low concentration diffusion layer.
(4)非単結晶シリコン膜及び金属シリサイド膜を順次
積層した後、これらをパターニングし、この後に第2導
電型の不純物をイオン注入することにより前記非単結晶
シリコン膜パターンと金属シリサイド膜パターンを積層
させることを特徴とする特許請求の範囲第3項記載の半
導体装置の製造方法。
(4) After sequentially stacking a non-single-crystal silicon film and a metal silicide film, pattern them, and then ion-implant impurities of the second conductivity type to form the non-single-crystal silicon film pattern and metal silicide film pattern. 4. The method of manufacturing a semiconductor device according to claim 3, wherein the semiconductor device is laminated.
JP16051884A 1984-07-31 1984-07-31 Semiconductor device and manufacture therefor Pending JPS6140057A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16051884A JPS6140057A (en) 1984-07-31 1984-07-31 Semiconductor device and manufacture therefor
EP19850109543 EP0170250B1 (en) 1984-07-31 1985-07-30 Bipolar transistor and method for producing the bipolar transistor
DE8585109543T DE3580206D1 (en) 1984-07-31 1985-07-30 BIPOLAR TRANSISTOR AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16051884A JPS6140057A (en) 1984-07-31 1984-07-31 Semiconductor device and manufacture therefor

Publications (1)

Publication Number Publication Date
JPS6140057A true JPS6140057A (en) 1986-02-26

Family

ID=15716688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16051884A Pending JPS6140057A (en) 1984-07-31 1984-07-31 Semiconductor device and manufacture therefor

Country Status (1)

Country Link
JP (1) JPS6140057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224968A (en) * 1986-03-27 1987-10-02 Matsushita Electronics Corp Manufacture of semiconductor device
JPS62296560A (en) * 1986-06-06 1987-12-23 エイ・ティ・アンド・ティ・コーポレーション Bipolar transistor
JPS6436071A (en) * 1987-07-31 1989-02-07 Sony Corp Bipolar transistor and manufacture thereof
JPH02161764A (en) * 1988-12-14 1990-06-21 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843573A (en) * 1981-09-08 1983-03-14 Matsushita Electric Ind Co Ltd Bi-polar transistor
JPS58216463A (en) * 1982-06-07 1983-12-16 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Bipolar transistor
JPS5961179A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of bipolar semiconductor device
JPS5969966A (en) * 1982-10-15 1984-04-20 Hitachi Ltd Semiconductor integrated circuit and manufacture thereof
JPS6132574A (en) * 1984-07-25 1986-02-15 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843573A (en) * 1981-09-08 1983-03-14 Matsushita Electric Ind Co Ltd Bi-polar transistor
JPS58216463A (en) * 1982-06-07 1983-12-16 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Bipolar transistor
JPS5961179A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of bipolar semiconductor device
JPS5969966A (en) * 1982-10-15 1984-04-20 Hitachi Ltd Semiconductor integrated circuit and manufacture thereof
JPS6132574A (en) * 1984-07-25 1986-02-15 Fujitsu Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224968A (en) * 1986-03-27 1987-10-02 Matsushita Electronics Corp Manufacture of semiconductor device
JPS62296560A (en) * 1986-06-06 1987-12-23 エイ・ティ・アンド・ティ・コーポレーション Bipolar transistor
JPS6436071A (en) * 1987-07-31 1989-02-07 Sony Corp Bipolar transistor and manufacture thereof
JPH02161764A (en) * 1988-12-14 1990-06-21 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
EP0170250A2 (en) Bipolar transistor and method for producing the bipolar transistor
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPS6140057A (en) Semiconductor device and manufacture therefor
JP3104067B2 (en) Semiconductor device manufacturing method
US4675983A (en) Method of making a semiconductor including forming graft/extrinsic and intrinsic base regions
JP3207883B2 (en) Manufacturing method of bipolar semiconductor device
JP2819724B2 (en) Semiconductor device
JP2715494B2 (en) Method for manufacturing semiconductor device
JPH0722431A (en) Manufacture of bipolar transistor
JPS6220711B2 (en)
JPS6330787B2 (en)
JPH0239091B2 (en)
JPS58206158A (en) Manufacture of semiconductor device
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
KR950001147B1 (en) Manufacturing method of polysilicon bipolar device with self aligned silicide electrodes
JPS58216461A (en) Manufacture of semiconductor device
JPH0128508B2 (en)
JPH04590B2 (en)
JPH08335584A (en) Manufacture of bipolar transistor
JPS6295871A (en) Manufacture of semiconductor device
JPH0810696B2 (en) Method for manufacturing semiconductor device
JPH0485936A (en) Manufacture of semiconductor device
JPH01204470A (en) Manufacture of semiconductor device
JP2001015522A (en) Manufacture of semiconductor device
JPS61114575A (en) Manufacture of semiconductor device