JPH0455267B2 - - Google Patents

Info

Publication number
JPH0455267B2
JPH0455267B2 JP61174009A JP17400986A JPH0455267B2 JP H0455267 B2 JPH0455267 B2 JP H0455267B2 JP 61174009 A JP61174009 A JP 61174009A JP 17400986 A JP17400986 A JP 17400986A JP H0455267 B2 JPH0455267 B2 JP H0455267B2
Authority
JP
Japan
Prior art keywords
accelerometer
substrate
sensing body
acceleration sensing
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61174009A
Other languages
English (en)
Other versions
JPS6227666A (ja
Inventor
Ii Suchuaato Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Guidance and Electronics Co Inc
Original Assignee
Litton Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litton Systems Inc filed Critical Litton Systems Inc
Publication of JPS6227666A publication Critical patent/JPS6227666A/ja
Publication of JPH0455267B2 publication Critical patent/JPH0455267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/131Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electrostatic counterbalancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/54Flexible member is joint component

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路を備え、クローズ
ド・ループ式の一体型の加速度計に関するもので
ある。
特に、本発明は、サーボ回路や信号処理回路が
形成されている普通の半導体基盤内に設けられ、
かつ集積回路を備える加速度計に関する。
〔従来の技術〕
センサと信号処理回路を1つのシリコンチツプ
に組み込むことは、約10年前に、圧力トランスジ
ユーサについて始められた。現在も、この技術を
加速度計を含む多くの分野で応用しようと、いろ
いろな大学や研究機関で、熱心な努力が傾けられ
ている。
これまで、オープン・ループ式の加速度計はい
くつか作られテストされている。これらのオープ
ン・ループ式加速度計の代表的なものは、一端が
半導体に取り付けられ、もう一方の自由端に、慣
性体が取り付けられた片持ばり式の構造体を持つ
ものである。この構造体の固定端側には圧力セン
サが取り付けられており、このセンサの電気抵抗
が、構造体の加速度に応答する運動によつて変化
することを利用して、加速度を測定するものであ
る。
〔本発明が解決するべき問題点〕
こうしたオープン・ループ式の加速度計は、安
定性の欠如、大きなヒステリシス、そして熱に対
する極端な過敏性という問題を内包している。
〔問題点を解決するための手段〕
本発明は、オープン・ループ式の加速度計の研
究で培われた技術を、慣性誘導や飛行制御システ
ムへの応用に必要な、より精度の高いクローズ
ド・ループ式加速度計の技術へと拡張するもので
ある。
本発明は、集積回路が作られるのと全く同様
に、シリコン・ウエハーに一括して作られるクロ
ーズド・ループ式加速度計に関するものである。
本発明による加速度計には、必要な部分に導電
部を形成するため、ドーピングすることの出来る
シリコンのような半導体から作られた慣性体が内
蔵されている。
1枚の結晶シリコン板を、異方性エツチングし
て作られたヒンジによつて、この慣性体は、半導
体基盤に結合されている。これらのヒンジは、慣
性体を片持ばり式によるものと同様に、この基盤
に結合している。
このような慣性体の片持ばり式の支持は、複数
の互いに交差する屈曲ブレード構成されるヒンジ
によるのが望ましい。このブレードは、半導体基
盤の両面にそれぞれ1つのV型溝をエツチング
し、薄い折れ曲がつたブレードを残すことで作ら
れる。このブレードが、慣性体と基盤の結合の役
割を果す。
第2の互いに交差する屈曲ブレードは、最初の
ブレードの溝から、その幅の約半分ずらして、同
様の溝を切ることで作られる。
その結果、最初のブレードと2番目のブレード
とは、正反対の傾斜を持つことになる。最初のブ
レードと2番目のブレードがずれていること、並
びに互いに傾斜が正反対であることにより、これ
らのブレードは、横から見ると、それぞれの中心
点で互いに交差し、シリコン基盤の水平面に平行
な軸回りの回転に対しては、高い柔軟性を持ち、
それ以外の方向への回転や移動に対しては、高い
剛性を持つ。
フオトリソグラフイツクとか、デイフアレンシ
ヤル・エツチングといつたよく知られた半導体製
造技術によつて作られるクローズド・ループ式加
速度計は、多くの利点を有している。
例えば、許容誤差をきびしくコントロール出来
ること、そして、この加速度計の一部もしくは全
部を、相当に微小な基盤内に他の回路と一緒に組
み込むことが出来ること、などが挙げられる。
さらに、後者の場合には、マイクロコンピユー
タによる制御も可能となり、ユーザの用途に合わ
せた特殊な加速度計を作ること、並びに加速度の
キヤリブレーシヨンなどが可能となる。
〔実施例〕
以下、図面に基づき、本発明の実施例について
説明する。
第1図には、ハウジング12の中に取り付けら
れた加速度計10の、斜視図が示されている。
ハウジング12は、4つの側壁14を備えてい
る。そのうちの相対する1対の側壁14から、装
着用タブ16が張り出している。残りの相対する
1対の側壁14には、電気接続用端子18が差し
込まれ、加速度計10と電気的に接続されてい
る。
ハウジング12の中には、独立したハイブリツ
ド回路から成る増幅器20と補償回路22が組み
込まれている。
第2図は、本発明による加速度計が、シリコン
から作ることが出来る半導体基盤24と、それを
上下からはさむ耐熱ガラス、もしくは他の絶縁性
の材料から作られた1対の絶縁体26,28を内
蔵していることを分かり易く表している。
ここに示された加速度計は、公知の異方性エツ
チング法で作ることが可能である。この加速度計
の製造は、公知の集積回路製造法の簡単な応用で
さらに単純化される。すなわち、このような技術
を使うことで、センサドライブ、そして加速度計
初期化増幅器(ARA)30などのデータ処理回
路を、半導体基盤24の表面に形成出来るからで
ある。
加速度計10は、半導体基盤24の水平面に対
して直角方向に働く加速度を検知する慣性体32
を内蔵している。この慣性体32には、上部絶縁
基盤28の下面にある導電面36とセツトになつ
て、慣性体の変位を静電容量の変化という形で検
出するための第1の導電面34が取り付けられて
いる。
第2図から分かるように、慣性体32は、単純
なウエツブ様のヒンジ38で片側だけを支持され
ている。このヒンジ38は、半導体基盤24の両
面を異方性エツチングして作られるとよい。
慣性体32を基盤24からくり抜くのにも、ま
た同様の技術が用いられる。ヒンジ38を互い違
いにして作ることについては、後で、第3図から
第5図に基づき、より詳細に説明する。
基盤24の表面は、増幅器30と導電体34の
間を電気的に接続するために、ドーピングもしく
は金属化されているとよい。
慣性体32のもう一方の面にも、第2の導電面
34があつて、第4図からも分かるように、下部
絶縁基盤26の上面の導電面40と隣接してい
る。
絶縁基盤28の導電面36と絶縁基盤26の導
電面40との間にはさまれた導電面34には、
ARA30がある電位を与え、バイアス・フイー
ルドを形成している。
このバイアス・フイールドが、導電面34を持
つ慣性体32を、「ゼロ」即ち「中立」の位置に
押し戻す役割を果している。
加速度形10に取り付けられた物体に加速度が
作用すると、慣性体32が動き、導電面36,4
0及び導電面34で部分的に形成している静電容
量ブリツジのバランスが崩れ、電気出力信号が発
生してARA30に送られる。
上に述べたシステムが加速度計としての働き
を、クローズド・ループのフイードバツク制御
し、慣性体の運動範囲を非常に限られた空間内に
制限している。
第3図と第4図は、第2の型のヒンジ39を示
している。
好適実施例においては、このヒンジ39は、交
差する屈曲ブレード42から作られているとよ
い。
屈曲ブレード42は、単一の結晶シリコンを異
方性エツチングすることにより形成されている。
このシリコンは、(1,0,0)シリコン・ウエ
ハーに配向され、基盤24の上下両面にV型溝を
刻むためのエツチングに備えてマスクされる。
第4図は、第3図の4−4線に沿つたヒンジの
断面を示している。
この図から、上面の溝44が、下面の溝44の
左側に位置していることが分かると思う。
異方性エツチングでシリコンを融かして除去す
ると、半導体基盤24の水平面に対してある角度
を持つて傾斜した薄いブレード42が、上方から
の溝と下方からの溝44の間に残る。
第2の屈曲ブレード42′は、その中心が第1
のブレードの中心と一直線上に並ぶように、また
第1のブレードと大体70度位の角度をなすよう
に、基盤24の両面から同様の1対のV型溝を作
ることで形成される。こうして、いわゆる互いに
交差する屈曲ブレードが形成される。
第3図に示すように、屈曲ブレード42,4
2′は、2対の互いに交差する屈曲ブレード39
を備えている。これらのブレードのエツチングの
際、基盤24はマスクされていて、慣性体32の
周面46も同時にエツチングされる。
慣性体32と屈曲ブレード42,42′は、例
えばホウ素などでドーピングされ、導電面が形成
される。このドーピングは、基盤24の表面を第
3図に示された接続パツド48まで全面にわたつ
て行なわれる。ドーピングされた部分は、ドーピ
ングされていない部分に比べて、極めて遅い速度
でしかエツチングされない。従つて、ドーピング
される部分の深さを調整することにより、互いに
交差する屈曲するブレードの厚さを調整すること
が出来る。
これらの導電面は、基盤28,26にそれぞれ
導電面36,40を形成するのに使用される技術
と同様の金属化法によつても形成することが可能
である。この技術によつて、基盤26では、導電
面40と接続パツド50の間の、そして基盤28
では、導電面36と接続パツド52の間で、それ
ぞれ電気的に接続される。
好適実施例においては、慣性体32を形成する
半導体基盤から、余分なシリコン材を除去し、慣
性体の質量を軽くすることが望ましい。シリコン
材を除去する1つの方法は、基盤24の両面に、
菓子の焼き型の様な凹凸を持つた凹み54をエツ
チングすることである。中央の孔56も、慣性体
32にエツチングされたもので、慣性体表面34
の静電容量をバランスさせ、かつ慣性体の重心を
その物質的中心に保持している。
慣性体32の面積の対質量比を出来るだけ大き
くするためには、慣性体の質量をなるべく小さく
しなければならないことは、容易に理解されるこ
とと思う。
互いに交差する屈曲ブレードのヒンジ39によ
つて基盤24に結合されている慣性体32を、第
5図に示す。
適当にエツチングされたV型溝44により、2
対の交差ブレード42,42′が形成されている。
各交差ブレード42,42′の中心は、基盤24
の水平面に平行で、かつ基盤の重心を含む平面内
にある1本の線上に位置している。
第5図に示されたヒンジの配置は、第3図に示
されているものとは異なつている。すなわち、第
5図に示されているものは、中央のヒンジの間隔
が、第3図のものよりも広くなつている。
当然のことながら、この明細書で説明している
範囲から逸脱しない範囲内で、これ以外のバリエ
ーシヨンも可能である。
シリコンの成形加工は、微細で複雑な形のシリ
コン製品を作ることを専門にしている工場によつ
て行なうことが出来る。例えば、米国カルフオル
ニア州フレモントのトランセンサリー・デバイス
イーズ・インコーポレーテツド(Transensory
Devices,Inc.)とか、米国カルフオルニア州サ
ンタクララのジエレクトリツク・セミコンダクタ
ー(Dielectric Semiconductor)などが挙げられ
る。
第6図には、本発明による加速度計10の使用
される代表的な回路が示されている。
この回路は、加速度計初期化増幅器ARA30
を中心として構成されている。ARA30の出力
は、出力端子61ならびにフイードバツク・ルー
プを介して、接続パツド48に接続されている。
接続パツド48は、上部の電極36と下部の電極
40の間に配置された導電面34に接続されてい
る。電極36,40は、それぞれコンデンサ6
4,66を介して増幅器30の入力端と接続され
ている。
接続パツド52は接続点68と接続し、その
後、電極36へと接続されている。同様に、下部
基盤26の接続パツド50は、接続点70を介し
て、電極40に接続されている。接続点68,7
0は、1対のコンデンサ72,74に接続されて
いる。
これらのコンデンサ72,74の共通の電極に
は、慣性体の変位を静電容量の変化へと結びつけ
るための静伝容量ブリツジを形成するべく、例え
ば50キロヘルツの交流電源76が接続されてい
る。接続パツド50,52は、それぞれ−
15VDC及び+15VDCに保持されている。
作動状態では、慣性体32の上方への偏位は、
電極36の交流電圧を引き下げ、電極40の交流
電圧を引き上げる。
この交流電圧の変化は増幅器30に入力され、
さらに、増幅器30のフイードバツク信号を端子
48に送り出し、慣性体32の元の位置に復帰さ
せ、加速度計をバランスした「0」の状態に復帰
させる。同時に、増幅器30からの出力信号は、
この加速度計を含むシステムが求める加速度信号
として端子61に出力される。
以上、好適な実施例として、ウエツブ様のヒン
ジ38と互いに交差する屈曲ブレード39を持つ
ものについて説明したが、本発明を、これらとは
異なる形で実現することも可能である。従つて、
本発明は、特許請求の範囲にのみ、限定されるも
のである。
【図面の簡単な説明】
第1図は、ハウジング内に組み込まれた本発明
による加速度計の斜視図、第2図は、シリコン・
ウエハーと耐熱ガラスウエハーから成る1個の加
速度計チツプの分解斜視図、第3図は、本発明に
よる慣性体及び互いに交差する屈曲ブレード支持
部を示す平面図、第4図は、第3図の−線に
よる断面図、第5図は、本発明による互いに交差
する屈曲ブレード、及び慣性体の片端支持式結合
の要領を、第3図示のものとは若干構造の異なる
ものとした例を示す斜視図、第6図は、本発明に
よる加速度計のブロツク図である。 10……加速度計、12……ハウジング、14
……側壁、16……タブ、18……端子、20…
…増幅器、22……補償回路、24……半導体基
盤、26,28……絶縁体、30……増幅器、3
2……慣性体、34,36,42……導電面、3
8,39……ヒンジ、42……屈曲ブレード、4
4……溝、46……周面、48,50,52……
接続パツド、54……凹み、56……孔、61…
…出力端子、64,66,72,74……コンデ
ンサ、68,70……接続点、76……交流電
源。

Claims (1)

  1. 【特許請求の範囲】 1 加速度検知体の外周となる開口部を持つ半導
    体製の第1の平面基板を備え、前記加速度検知体
    が、前記半導体基盤に、複数の互いに交差する屈
    曲ブレードにより接続され、かつ前記第1の平面
    基盤の両面に装着され、さらに、前記加速度検知
    体に隣接する導電面を、それぞれ有する第2及び
    第3の平面基盤と、前記加速度検知体と前記第2
    及び第3の基盤上の前記導電面との間に電位を与
    える装置と、前記電位を前記加速度検知体に接続
    するために、前記第1の平面基盤の前記半導体の
    中に形成された装置とを備える加速度計。 2 半導体の中に形成された装置が、加速度計か
    らの出力信号に応答する装置を内蔵している特許
    請求の範囲第1項に記載の加速度計。 3 屈曲ブレードが、片端支持式により、一方向
    に柔軟性を持ち、かつ他の全ての方向に剛性を持
    つている特許請求の範囲第1項に記載の加速度
    計。 4 屈曲ブレードが、いくつかの対をなし、各ブ
    レードが、半導体基盤の両面のV型溝によつて形
    成され、この基盤と、ある角度を持ち、上記の対
    になつたブレードが、互いに正反対の傾斜をなし
    ている特許請求の範囲第1項に記載の加速度計。 5 加速度検知体が、表面積の対質量比を高める
    ために、凹凸形状をなしている特許請求の範囲第
    1項に記載の加速度計。 6 加速度検知体が、ドーピングすることにより
    導電性となるように、半導体基盤内に形成され、
    また第2及び第3の平面基盤が、半導体の対向面
    に取り付けた1対の絶縁板よりなるとともに、前
    記加速度検知体に隣接する導電性パツドを有する
    特許請求の範囲第1項に記載の加速度計。 7 屈曲ブレードが、半導体基盤を形成している
    単一結晶体を異方性エツチングして作られている
    特許請求の範囲第1項に記載の加速度計。
JP61174009A 1985-07-25 1986-07-25 加速度計 Granted JPS6227666A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/758,692 US4679434A (en) 1985-07-25 1985-07-25 Integrated force balanced accelerometer
US758692 2001-01-11

Publications (2)

Publication Number Publication Date
JPS6227666A JPS6227666A (ja) 1987-02-05
JPH0455267B2 true JPH0455267B2 (ja) 1992-09-02

Family

ID=25052723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174009A Granted JPS6227666A (ja) 1985-07-25 1986-07-25 加速度計

Country Status (11)

Country Link
US (1) US4679434A (ja)
JP (1) JPS6227666A (ja)
CA (1) CA1273222A (ja)
CH (1) CH671290A5 (ja)
DE (1) DE3621585A1 (ja)
FR (1) FR2585474B1 (ja)
GB (1) GB2178856B (ja)
IL (1) IL79175A (ja)
IT (1) IT1195083B (ja)
NO (1) NO862550L (ja)
SE (1) SE462997B (ja)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744249A (en) * 1985-07-25 1988-05-17 Litton Systems, Inc. Vibrating accelerometer-multisensor
DE3625411A1 (de) * 1986-07-26 1988-02-04 Messerschmitt Boelkow Blohm Kapazitiver beschleunigungssensor
US4779463A (en) * 1987-01-13 1988-10-25 Systron Donner Corporation Servo accelerometer
DE3703793A1 (de) * 1987-02-07 1988-08-18 Messerschmitt Boelkow Blohm Detektorelement
US4841773A (en) * 1987-05-01 1989-06-27 Litton Systems, Inc. Miniature inertial measurement unit
US4788864A (en) * 1987-05-26 1988-12-06 Litton Systems, Inc. Bleed path for electric charge
US4851080A (en) * 1987-06-29 1989-07-25 Massachusetts Institute Of Technology Resonant accelerometer
FR2617607B1 (fr) * 1987-06-30 1989-12-01 Applic Gles Electrici Meca Accelerometre pendulaire a reequilibrage et procede de fabrication d'un tel accelerometre
GB8718004D0 (en) * 1987-07-29 1987-12-16 Marconi Co Ltd Accelerometer
FI81915C (fi) * 1987-11-09 1990-12-10 Vaisala Oy Kapacitiv accelerationsgivare och foerfarande foer framstaellning daerav.
US5216490A (en) * 1988-01-13 1993-06-01 Charles Stark Draper Laboratory, Inc. Bridge electrodes for microelectromechanical devices
US5195371A (en) * 1988-01-13 1993-03-23 The Charles Stark Draper Laboratory, Inc. Semiconductor chip transducer
US5016072A (en) * 1988-01-13 1991-05-14 The Charles Stark Draper Laboratory, Inc. Semiconductor chip gyroscopic transducer
JPH01197661A (ja) * 1988-02-02 1989-08-09 Tdk Corp 加速度センサ
JPH0672899B2 (ja) * 1988-04-01 1994-09-14 株式会社日立製作所 加速度センサ
US4882933A (en) * 1988-06-03 1989-11-28 Novasensor Accelerometer with integral bidirectional shock protection and controllable viscous damping
US4945765A (en) * 1988-08-31 1990-08-07 Kearfott Guidance & Navigation Corp. Silicon micromachined accelerometer
US5060504A (en) * 1988-09-23 1991-10-29 Automotive Systems Laboratory, Inc. Self-calibrating accelerometer
US5007289A (en) * 1988-09-30 1991-04-16 Litton Systems, Inc. Three axis inertial measurement unit with counterbalanced, low inertia mechanical oscillator
JPH0623782B2 (ja) * 1988-11-15 1994-03-30 株式会社日立製作所 静電容量式加速度センサ及び半導体圧力センサ
US4930043A (en) * 1989-02-28 1990-05-29 United Technologies Closed-loop capacitive accelerometer with spring constraint
US4930042A (en) * 1989-02-28 1990-05-29 United Technologies Capacitive accelerometer with separable damping and sensitivity
US4987779A (en) 1989-02-28 1991-01-29 United Technologies Corporation Pulse-driven accelerometer arrangement
US5008774A (en) * 1989-02-28 1991-04-16 United Technologies Corporation Capacitive accelerometer with mid-plane proof mass
US4928203A (en) * 1989-02-28 1990-05-22 United Technologies Capacitive accelerometer with hinges on top and bottom surface
CA2010437A1 (en) * 1989-02-28 1990-08-31 Winthrop H. Mcclure Iii Electrostatic force nulling accelerometer
US5045152A (en) * 1989-03-06 1991-09-03 Ford Motor Company Force transducer etched from silicon
US4945773A (en) * 1989-03-06 1990-08-07 Ford Motor Company Force transducer etched from silicon
US5044201A (en) * 1989-06-05 1991-09-03 Motorola, Inc. Double-integrating silicon acceleration sensing device
US5253510A (en) * 1989-06-22 1993-10-19 I C Sensors Self-testable micro-accelerometer
US4955108A (en) * 1989-07-14 1990-09-11 Litton Systems, Inc. Protected hinge assembly for mechanical accelerometer
JP2512171B2 (ja) * 1989-10-18 1996-07-03 株式会社日立製作所 加速度検出器
US5228341A (en) * 1989-10-18 1993-07-20 Hitachi, Ltd. Capacitive acceleration detector having reduced mass portion
JPH03134552A (ja) * 1989-10-20 1991-06-07 Hitachi Ltd 自己較正機能付検出装置
US5473945A (en) * 1990-02-14 1995-12-12 The Charles Stark Draper Laboratory, Inc. Micromechanical angular accelerometer with auxiliary linear accelerometer
DE69104349T2 (de) * 1990-02-14 1995-05-24 Endevco Corp Oberflächenmontierbarer piezokeramischer beschleunigungsmesser sowie verfahren zu seiner herstellung.
US5126812A (en) * 1990-02-14 1992-06-30 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical accelerometer
EP0459723B1 (en) * 1990-05-30 1996-01-17 Hitachi, Ltd. Semiconductor acceleration sensor and vehicle control system using the same
US5085079A (en) * 1990-06-11 1992-02-04 Sundstrand Data Control, Inc. Accelerometer with mounting/coupling structure for an electronics assembly
US5620931A (en) * 1990-08-17 1997-04-15 Analog Devices, Inc. Methods for fabricating monolithic device containing circuitry and suspended microstructure
US5314572A (en) * 1990-08-17 1994-05-24 Analog Devices, Inc. Method for fabricating microstructures
US5326726A (en) * 1990-08-17 1994-07-05 Analog Devices, Inc. Method for fabricating monolithic chip containing integrated circuitry and suspended microstructure
EP0543901B1 (en) * 1990-08-17 1995-10-04 Analog Devices, Inc. Monolithic accelerometer
US5417111A (en) * 1990-08-17 1995-05-23 Analog Devices, Inc. Monolithic chip containing integrated circuitry and suspended microstructure
GB2247717B (en) * 1990-09-06 1995-03-08 Raymond Guthrie Hinge element
US5605598A (en) * 1990-10-17 1997-02-25 The Charles Stark Draper Laboratory Inc. Monolithic micromechanical vibrating beam accelerometer with trimmable resonant frequency
US5408119A (en) * 1990-10-17 1995-04-18 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical vibrating string accelerometer with trimmable resonant frequency
US5142921A (en) * 1990-10-29 1992-09-01 Litton Systems, Inc. Force balance instrument with electrostatic charge control
US5428996A (en) * 1990-12-24 1995-07-04 Litton Systems, Inc. Hinge assembly for integrated accelerometer
US5205171A (en) * 1991-01-11 1993-04-27 Northrop Corporation Miniature silicon accelerometer and method
US5241861A (en) * 1991-02-08 1993-09-07 Sundstrand Corporation Micromachined rate and acceleration sensor
US5129983A (en) * 1991-02-25 1992-07-14 The Charles Stark Draper Laboratory, Inc. Method of fabrication of large area micromechanical devices
JP3040816B2 (ja) * 1991-03-30 2000-05-15 和廣 岡田 電極間距離の変化を利用して物理量を検出する装置における動作試験方法、およびこの方法を実施する機能を備えた物理量の検出装置
US5203208A (en) * 1991-04-29 1993-04-20 The Charles Stark Draper Laboratory Symmetrical micromechanical gyroscope
JP2728807B2 (ja) * 1991-07-24 1998-03-18 株式会社日立製作所 静電容量式加速度センサ
US5331852A (en) * 1991-09-11 1994-07-26 The Charles Stark Draper Laboratory, Inc. Electromagnetic rebalanced micromechanical transducer
US5635639A (en) * 1991-09-11 1997-06-03 The Charles Stark Draper Laboratory, Inc. Micromechanical tuning fork angular rate sensor
US5275048A (en) * 1992-01-21 1994-01-04 Sundstrand Corporation Acceleration overload protection mechanism for sensor devices
DE9202533U1 (ja) * 1992-02-27 1992-04-23 Mannesmann Kienzle Gmbh, 7730 Villingen-Schwenningen, De
US5408877A (en) * 1992-03-16 1995-04-25 The Charles Stark Draper Laboratory, Inc. Micromechanical gyroscopic transducer with improved drive and sense capabilities
US5767405A (en) * 1992-04-07 1998-06-16 The Charles Stark Draper Laboratory, Inc. Comb-drive micromechanical tuning fork gyroscope with piezoelectric readout
US5349855A (en) * 1992-04-07 1994-09-27 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro
JP3367113B2 (ja) 1992-04-27 2003-01-14 株式会社デンソー 加速度センサ
US5461916A (en) 1992-08-21 1995-10-31 Nippondenso Co., Ltd. Mechanical force sensing semiconductor device
JP3151956B2 (ja) * 1992-09-04 2001-04-03 株式会社村田製作所 加速度センサ
FR2697628B1 (fr) * 1992-10-29 1995-02-03 Sextant Avionique Capteur d'une grandeur physique orientée.
US5650568A (en) * 1993-02-10 1997-07-22 The Charles Stark Draper Laboratory, Inc. Gimballed vibrating wheel gyroscope having strain relief features
JP3119542B2 (ja) * 1993-05-25 2000-12-25 日本電気株式会社 半導体加速度センサおよび製造方法
US5503285A (en) * 1993-07-26 1996-04-02 Litton Systems, Inc. Method for forming an electrostatically force balanced silicon accelerometer
FI93579C (fi) * 1993-08-20 1995-04-25 Vaisala Oy Sähköstaattisen voiman avulla takaisinkytketty kapasitiivinen anturi ja menetelmä sen aktiivisen elementin muodon ohjaamiseksi
US5563630A (en) * 1993-10-28 1996-10-08 Mind Path Technologies, Inc. Computer mouse
EP0660119B1 (en) * 1993-12-27 2003-04-02 Hitachi, Ltd. Acceleration sensor
DE69521889T2 (de) * 1994-03-28 2002-04-11 I O Sensors Inc Messaufnehmerkonstruktion mit l-förmigen federbeinen
US5484073A (en) * 1994-03-28 1996-01-16 I/O Sensors, Inc. Method for fabricating suspension members for micromachined sensors
US5777226A (en) * 1994-03-28 1998-07-07 I/O Sensors, Inc. Sensor structure with L-shaped spring legs
US5646348A (en) * 1994-08-29 1997-07-08 The Charles Stark Draper Laboratory, Inc. Micromechanical sensor with a guard band electrode and fabrication technique therefor
US5581035A (en) * 1994-08-29 1996-12-03 The Charles Stark Draper Laboratory, Inc. Micromechanical sensor with a guard band electrode
US5473946A (en) * 1994-09-09 1995-12-12 Litton Systems, Inc. Accelerometer using pulse-on-demand control
US5725729A (en) * 1994-09-26 1998-03-10 The Charles Stark Draper Laboratory, Inc. Process for micromechanical fabrication
JP3936736B2 (ja) * 1994-11-23 2007-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 固定電極及び可動電極を有するマイクロ部品が形成されている半導体装置
US5911738A (en) * 1997-07-31 1999-06-15 Medtronic, Inc. High output sensor and accelerometer implantable medical device
US5674258A (en) * 1995-03-08 1997-10-07 Medtronic, Inc. Packaged integrated accelerometer
JP2728237B2 (ja) * 1995-03-27 1998-03-18 株式会社日立製作所 静電容量式加速度センサ
US5817942A (en) * 1996-02-28 1998-10-06 The Charles Stark Draper Laboratory, Inc. Capacitive in-plane accelerometer
US5978972A (en) * 1996-06-14 1999-11-09 Johns Hopkins University Helmet system including at least three accelerometers and mass memory and method for recording in real-time orthogonal acceleration data of a head
US5892153A (en) * 1996-11-21 1999-04-06 The Charles Stark Draper Laboratory, Inc. Guard bands which control out-of-plane sensitivities in tuning fork gyroscopes and other sensors
US5783973A (en) * 1997-02-24 1998-07-21 The Charles Stark Draper Laboratory, Inc. Temperature insensitive silicon oscillator and precision voltage reference formed therefrom
US5911156A (en) * 1997-02-24 1999-06-08 The Charles Stark Draper Laboratory, Inc. Split electrode to minimize charge transients, motor amplitude mismatch errors, and sensitivity to vertical translation in tuning fork gyros and other devices
US5952574A (en) * 1997-04-29 1999-09-14 The Charles Stark Draper Laboratory, Inc. Trenches to reduce charging effects and to control out-of-plane sensitivities in tuning fork gyroscopes and other sensors
US5983718A (en) 1997-07-14 1999-11-16 Litton Systems, Inc. Signal processing system for inertial sensor
US6161440A (en) 1997-08-14 2000-12-19 Alliedsignal Inc. Low metalization creep sensor
US5905201A (en) * 1997-10-28 1999-05-18 Alliedsignal Inc. Micromachined rate and acceleration sensor and method
JP4238437B2 (ja) 1999-01-25 2009-03-18 株式会社デンソー 半導体力学量センサとその製造方法
US6216537B1 (en) 1999-03-31 2001-04-17 Medtronic, Inc. Accelerometer for implantable medical device
US6386032B1 (en) 1999-08-26 2002-05-14 Analog Devices Imi, Inc. Micro-machined accelerometer with improved transfer characteristics
US6868726B2 (en) * 2000-01-20 2005-03-22 Analog Devices Imi, Inc. Position sensing with improved linearity
US6595056B2 (en) 2001-02-07 2003-07-22 Litton Systems, Inc Micromachined silicon gyro using tuned accelerometer
US6474160B1 (en) 2001-05-24 2002-11-05 Northrop Grumman Corporation Counterbalanced silicon tuned multiple accelerometer-gyro
US6619121B1 (en) 2001-07-25 2003-09-16 Northrop Grumman Corporation Phase insensitive quadrature nulling method and apparatus for coriolis angular rate sensors
US20040035206A1 (en) * 2002-03-26 2004-02-26 Ward Paul A. Microelectromechanical sensors having reduced signal bias errors and methods of manufacturing the same
EP2284545B1 (en) * 2004-01-07 2018-08-08 Northrop Grumman Corporation Coplanar proofmasses employable to sense acceleration along three axes
US7334474B2 (en) * 2005-01-07 2008-02-26 Litton Systems, Inc. Force balanced instrument system and method for mitigating errors
CA2569159C (en) * 2006-11-28 2015-01-13 Nanometrics Inc. Inertial sensor
US7614300B2 (en) * 2007-05-30 2009-11-10 Northrop Grumman Corporation System and method for mitigating errors in electrostatic force balanced instrument
US8187902B2 (en) 2008-07-09 2012-05-29 The Charles Stark Draper Laboratory, Inc. High performance sensors and methods for forming the same
US9341646B2 (en) 2012-12-19 2016-05-17 Northrop Grumman Guidance And Electronics Company, Inc. Bias reduction in force rebalanced accelerometers
DE102015212669B4 (de) * 2015-07-07 2018-05-03 Infineon Technologies Ag Kapazitive mikroelektromechanische Vorrichtung und Verfahren zum Ausbilden einer kapazitiven mikroelektromechanischen Vorrichtung
US10330696B2 (en) * 2016-03-24 2019-06-25 Northrop Grumman Systems Corporation Accelerometer sensor system
US10180445B2 (en) 2016-06-08 2019-01-15 Honeywell International Inc. Reducing bias in an accelerometer via current adjustment

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793028A (en) * 1954-09-10 1957-05-21 Hughes Aircraft Co Cross-spring flexure pivot
US2947067A (en) * 1957-12-09 1960-08-02 Sandberg Serrell Corp Method of manufacture of flexure member
US3226981A (en) * 1962-10-29 1966-01-04 North American Aviation Inc Condition responsive signal generator for producing a variable frequency signal
US3713088A (en) * 1970-08-13 1973-01-23 Inst Of Technology Remotely operated seismometer
US3897997A (en) * 1974-02-01 1975-08-05 Charles G Kalt Electrostatic display device with variable reflectivity
US3978715A (en) * 1974-07-15 1976-09-07 Ird Mechanalysis, Inc. Low frequency, high sensitivity electromechanical transducer
US4009607A (en) * 1975-12-24 1977-03-01 The Bendix Corporation Force measuring system including combined electrostatic sensing and torquing means
CA1094229A (en) * 1976-11-08 1981-01-20 Henry Guckel Electrostatically deformable thin silicon membranes
US4102202A (en) * 1976-11-26 1978-07-25 The Singer Company Electrostatic accelerometer
US4188829A (en) * 1978-10-25 1980-02-19 Bourns, Inc. Flexure pivot accelerometer
FR2454103A1 (fr) * 1979-04-11 1980-11-07 Sagem Perfectionnements aux accelerometres pendulaires asservis
FR2503387B1 (fr) * 1981-04-03 1986-05-23 Reosc Dispositif de liaison entre une piece optique et un support situe a distance de cette piece
CH642461A5 (fr) * 1981-07-02 1984-04-13 Centre Electron Horloger Accelerometre.
GB2102579B (en) * 1981-07-14 1984-11-21 Sundstrand Data Control Force transducer flexure reed bearing electrical connectors
US4435737A (en) * 1981-12-16 1984-03-06 Rockwell International Corporation Low cost capacitive accelerometer
US4498342A (en) * 1983-04-18 1985-02-12 Honeywell Inc. Integrated silicon accelerometer with stress-free rebalancing
GB2146697B (en) * 1983-09-17 1986-11-05 Stc Plc Flexible hinge device
US4598585A (en) * 1984-03-19 1986-07-08 The Charles Stark Draper Laboratory, Inc. Planar inertial sensor

Also Published As

Publication number Publication date
GB2178856A (en) 1987-02-18
IL79175A (en) 1990-09-17
SE8603209D0 (sv) 1986-07-24
IT1195083B (it) 1988-10-12
FR2585474A1 (fr) 1987-01-30
CH671290A5 (ja) 1989-08-15
IL79175A0 (en) 1986-09-30
JPS6227666A (ja) 1987-02-05
IT8648238A0 (it) 1986-07-07
FR2585474B1 (fr) 1989-06-30
GB2178856B (en) 1989-08-09
US4679434A (en) 1987-07-14
NO862550L (no) 1987-01-26
NO862550D0 (no) 1986-06-25
CA1273222A (en) 1990-08-28
DE3621585A1 (de) 1987-02-05
SE462997B (sv) 1990-09-24
GB8617299D0 (en) 1986-08-20
SE8603209L (sv) 1987-01-26

Similar Documents

Publication Publication Date Title
JPH0455267B2 (ja)
US4930042A (en) Capacitive accelerometer with separable damping and sensitivity
US6829937B2 (en) Monolithic silicon acceleration sensor
US4928203A (en) Capacitive accelerometer with hinges on top and bottom surface
US4930043A (en) Closed-loop capacitive accelerometer with spring constraint
US5495761A (en) Integrated accelerometer with a sensitive axis parallel to the substrate
US5008774A (en) Capacitive accelerometer with mid-plane proof mass
US4744249A (en) Vibrating accelerometer-multisensor
US4744248A (en) Vibrating accelerometer-multisensor
US6928872B2 (en) Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
CN101057148B (zh) 加速度传感器装置
EP0074176B1 (en) Variable capacitance pressure transducer
CA2006672A1 (en) Capacitive pressure sensor with encircling third plate
WO2003036305A3 (en) Accelerometer
WO1997049998A1 (en) Accelerometer without proof mass
US6862795B2 (en) Method of manufacturing of a monolithic silicon acceleration sensor
US5526687A (en) Semiconductor acceleration sensor and testing method thereof
WO2009090841A1 (ja) 静電容量型加速度センサ
JP2001044450A (ja) 半導体力学量センサ
JP3043477B2 (ja) 静電容量の変化を利用したセンサ
JP3332283B2 (ja) 多軸加速度センサ
JPH10122809A (ja) 球面アクチュエータ
US5361635A (en) Multiple servo loop accelerometer with tunnel current sensors
JP2006215478A (ja) 静電駆動素子
CN116754089A (zh) 一种微机械加工的无自热效应温度传感器