JPH045241B2 - - Google Patents

Info

Publication number
JPH045241B2
JPH045241B2 JP58136367A JP13636783A JPH045241B2 JP H045241 B2 JPH045241 B2 JP H045241B2 JP 58136367 A JP58136367 A JP 58136367A JP 13636783 A JP13636783 A JP 13636783A JP H045241 B2 JPH045241 B2 JP H045241B2
Authority
JP
Japan
Prior art keywords
resistance
thin film
tantalum
chromium
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58136367A
Other languages
Japanese (ja)
Other versions
JPS6027103A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58136367A priority Critical patent/JPS6027103A/en
Publication of JPS6027103A publication Critical patent/JPS6027103A/en
Publication of JPH045241B2 publication Critical patent/JPH045241B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はニツケル(Ni)、クロム(Cr)、タン
タル(Ta)およびシリコン(Si)の4成分より
なる合金薄膜を用いた金属薄膜抵抗体に関する。 近年薄膜抵抗体の進歩は目ざましいものがあり
安定度の高い抵抗体として窒化タンタル薄膜抵抗
体が開発され、また、高い固有抵抗をもつ抵抗体
としてCr−SiOサーメツトが実用化されている。
すなわち窒化タンタル薄膜抵抗体は良好な抵抗温
度係数とすぐれた安定性をもつている。窒化タン
タル薄膜を生成するには通常活性スパツタリング
法が用いられ、真空槽内に微量の活性ガスの導入
とその制御に厳密な管理を必要とする。またCr
−SiOサーメツト抵抗体は安定度が低く、再現性
が悪いなどの製造技術上の問題も多い。 ところで、さきに発明されたシリコンと、タン
タル、ニオブ、チタン、ジルコン、モリブデン、
タングステン等の中の1つとの2成分系薄膜抵抗
体は一応上記の欠陥を補い、現状では最もすぐれ
た薄膜抵抗体として高く評価できるものである。
すなわち、熱処理温度を調整することにより広い
固有抵抗範囲に亘り低い抵抗温度係数をもつこと
ができるものである。 しかしながら抵抗体の安定度は熱処理温度に関
係し、高い安定度を求めようとすれば熱処理温度
も高くなり、その時の低い抵抗温度係数に対応す
る組成または固有抵抗は自ら決定されて選択の自
由はなくなる。すなわち、2成分系合金薄膜抵抗
体においては最も安定な熱処理を行ない、小さい
抵抗温度係数を求めると固有抵抗と組成は自から
定まつてしまい、そのため薄膜集積回路の設計お
よび個別抵抗器の製造上大きな制約を受ける欠点
があつた。 本発明は上記従来の欠点に鑑みなされたもの
で、ニツケル・クロム・タンタル・シリコンより
なる合金薄膜を用いて構成した抵抗体であつて、
適宜熱処理を施すことによつて、抵抗温度係数の
ばらつきが小さく、安定性、特に耐湿負荷寿命特
性に優れた金属薄膜抵抗体を提供することを目的
とする。 上記目的を達成するために本発明者はタンタ
ル・シリコン系合金およびニツケル・クロム系合
金について鋭意研究の結果、ニツケル・クロム・
タンタル・シリコン四元系合金が、適当な組成比
を選択することによつて抵抗温度係数を0±
100ppm/℃の範囲とすることができ、しかも高
い経時安定性が得られることを見出し、本発明に
至つたものである。 第1図にニツケル・クロムを一成分とみなした
場合のターゲツト組成(面積比)と抵抗温度係数
との関係を示す三元図を示す。この図において抵
抗温度係数が0±100ppm/℃の範囲は、ニツケ
ル・クロムを45〜90%(このうちニツケルが80
%、クロム20%)、タンタル35%以下、シリコン
36%以下であり、これを原子%に換算すると、ニ
ツケル58〜81原子%、クロム12〜18原子%、タン
タル21原子%以下、シリコンは19原子%以下とな
る。なお、抵抗値の安定性を確保し、測定時の抵
抗値のふらつきをなくすためにはタンタルが2原
子%以上含有されていることが望ましい。 このような範囲とすることにより、抵抗温度係
数TCRを0±100ppm/℃の範囲とすることがで
き、高い経時安定性を得ることができる。更に好
ましい組成範囲はニツケル62〜74原子%、クロム
13〜16原子%、タンタル9〜15原子%、シリコン
1〜10原子%である。このような組成範囲では抵
抗温度係数TCRを0±100ppm/℃の範囲とする
ことができる。 以下、本発明の一実施例を表および図面により
説明する。 ニツケル58〜81原子%、クロム12〜18原子%、
タンタル2〜21原子%およびシリコン19原子%以
下の組成範囲での合金薄膜による金属薄膜抵抗体
は、抵抗温度係数TCRが±100ppm/℃である。
さらに、抵抗温度係数TCRを小さくし、かつ高
安定性を得るためには熱処理を施すことによつて
実現される。 第1表に諸組成の熱処理温度における抵抗温度
係数TCR(ppm/℃)および表面抵抗値R(Ω/
□)を示す。これは、陰極スパツタリング法にて
1時間着膜した試料を第1表中の温度にて大気中
において3分間熱処理を施したものである。
The present invention relates to a metal thin film resistor using an alloy thin film made of four components: nickel (Ni), chromium (Cr), tantalum (Ta), and silicon (Si). In recent years, there has been remarkable progress in thin film resistors, and tantalum nitride thin film resistors have been developed as highly stable resistors, and Cr-SiO cermets have been put into practical use as resistors with high specific resistance.
That is, tantalum nitride thin film resistors have a good resistance temperature coefficient and excellent stability. Active sputtering is usually used to produce tantalum nitride thin films, which requires the introduction of a small amount of active gas into a vacuum chamber and strict control of its control. Also Cr
-SiO cermet resistors have low stability and many manufacturing technology problems, such as poor reproducibility. By the way, silicon, which was invented earlier, tantalum, niobium, titanium, zircon, molybdenum,
A two-component thin film resistor containing one of tungsten or the like compensates for the above-mentioned deficiencies and can be highly evaluated as the most excellent thin film resistor at present.
That is, by adjusting the heat treatment temperature, it is possible to have a low temperature coefficient of resistance over a wide range of resistivity. However, the stability of a resistor is related to the heat treatment temperature, and if you want high stability, the heat treatment temperature will also be high, and the composition or specific resistance that corresponds to the low temperature coefficient of resistance at that time is determined by yourself, and there is no freedom of choice. It disappears. In other words, if a two-component alloy thin film resistor is subjected to the most stable heat treatment and a small temperature coefficient of resistance is obtained, the specific resistance and composition will be determined by themselves. There were drawbacks that imposed major restrictions. The present invention has been made in view of the above-mentioned conventional drawbacks, and is a resistor constructed using an alloy thin film made of nickel, chromium, tantalum, and silicon.
It is an object of the present invention to provide a metal thin film resistor with small variations in temperature coefficient of resistance and excellent stability, particularly moisture resistance and load life characteristics, by performing appropriate heat treatment. In order to achieve the above object, the present inventor conducted extensive research on tantalum-silicon alloys and nickel-chromium alloys, and found that nickel-chromium
The tantalum-silicon quaternary alloy can have a temperature coefficient of resistance of 0± by selecting an appropriate composition ratio.
The present inventors have discovered that it is possible to achieve a temperature range of 100 ppm/°C and also to obtain high stability over time, leading to the present invention. FIG. 1 shows a ternary diagram showing the relationship between target composition (area ratio) and temperature coefficient of resistance when nickel-chromium is considered as one component. In this figure, the range where the temperature coefficient of resistance is 0 ± 100 ppm/°C is 45 to 90% of nickel/chromium (of which 80% is nickel/chromium).
%, chromium 20%), tantalum 35% or less, silicon
36% or less, and when converted to atomic%, nickel is 58 to 81 atomic%, chromium is 12 to 18 atomic%, tantalum is 21 atomic% or less, and silicon is 19 atomic% or less. Note that in order to ensure the stability of the resistance value and eliminate fluctuations in the resistance value during measurement, it is desirable that tantalum be contained in an amount of 2 at % or more. By setting it in such a range, the temperature coefficient of resistance TCR can be set in the range of 0±100 ppm/° C., and high stability over time can be obtained. A more preferable composition range is 62 to 74 atomic percent nickel and chromium.
The content is 13 to 16 atom%, tantalum 9 to 15 atom%, and silicon 1 to 10 atom%. In such a composition range, the temperature coefficient of resistance TCR can be set in the range of 0±100 ppm/°C. An embodiment of the present invention will be described below with reference to tables and drawings. Nickel 58-81 at%, chromium 12-18 at%,
A metal thin film resistor made of an alloy thin film in a composition range of 2 to 21 atomic % tantalum and 19 atomic % silicon or less has a temperature coefficient of resistance TCR of ±100 ppm/°C.
Furthermore, the temperature coefficient of resistance TCR can be reduced and high stability can be achieved by heat treatment. Table 1 shows the temperature coefficient of resistance TCR (ppm/℃) and surface resistance value R (Ω/℃) at the heat treatment temperature of various compositions.
□) is shown. In this example, a sample was deposited for one hour by cathodic sputtering and then heat-treated in the atmosphere at the temperature shown in Table 1 for three minutes.

【表】 第1表から明らかなように、その表面抵抗値は
約22〜30(Ω/□)であり、抵抗温度係数は−3.0
〜10.0(ppm/℃)の範囲内であつて、ばらつき
が小さく低抵抗温度係数の抵抗体とすることがで
きる。 ここでこの発明の試料の作製方法について説明
する。スパツタリング条件はあらかじめベルジヤ
内を3×10-7Torr.に排気した後、高純度アルゴ
ンガスを18〜20×10-3Torr.導入し、陰極電圧−
5.7〜−6.5kV、電流密度0.05〜0.5mA/cm2で2極
スパツタリングにより行なつた。成膜速度は50〜
150Å/minである。膜組成は、ニツケル、クロ
ム、タンタル、シリコンの金属を用い、その面積
比を変えることにより決定した。また、熱処理は
大気中で所定の温度にて3分間加熱した。また、
真空中でも所定の温度にして数分間加熱するかあ
るいはスパツタリング中に抵抗基体を加熱するこ
とによつてほぼ同様な効果を得ることができた。 次に、上記金属薄膜の抵抗器としての安定性を
示すため第2図および第3図に高温放置試験およ
び耐湿負荷寿命試験の結果を示す。なお、これら
のグラフにおいて、曲線AはNiCr系金属薄膜抵
抗体を、曲線BはTaSi系金属薄膜抵抗体を、曲
線Cは本発明のNiCrTaSi系金属薄膜抵抗体を示
す。この時の各成分の組成比は共に、ニツケル74
原子%、クロム16原子%、タンタル9原子%、シ
リコン1原子%を大気中3分間500℃で熱処理し
たもので、その抵抗値は3KΩである。 第2図は高温放置試験結果のグラフであり、
3KΩの固定抵抗器とした試料を大気中175℃雰囲
気にて無負荷状態で1000時間放置したときの抵抗
値変化率を示したものである。グラフからも明ら
かなように、その変化率は約0.25%以下であり、
NiCr系と比べて安定性が優れTaSi系と同等の寿
命特性を示した。 第3図は耐湿負荷寿命試験結果のグラフであ
り、周囲温度40℃、相対湿度90〜95%の雰囲気中
で、定格電圧を1.5時間負荷、0.5時間無負荷のサ
イクルで1000時間繰り返したときの抵抗変化率を
示したものである。グラフ中、その変化率は約
0.06%以下であり非常に優れており、NiCr系や
TaSi系と比べても寿命特性が改善されているこ
とが示された。 以上のように、本発明の金属薄膜抵抗体は低抵
抗温度係数をもち、安定性に優れ、特に耐湿負荷
寿命特性に優れているものである。 以上、上記実施例からも明らかなように本発明
によれば、ニツケル・クロム・タンタル・シリコ
ンよりなる合金薄膜を用いて構成した抵抗体であ
つて適宜熱処理を施すことによつて、低抵抗温度
係数でばらつきが小さく、安定性が優れ、特に耐
湿負荷寿命特性に優れた金属薄膜抵抗体を得るこ
とができる。
[Table] As is clear from Table 1, its surface resistance value is approximately 22 to 30 (Ω/□), and its temperature coefficient of resistance is -3.0.
~10.0 (ppm/°C), and a resistor with small variations and a low temperature coefficient of resistance can be obtained. Here, a method for preparing a sample according to the present invention will be explained. The sputtering conditions were as follows: After the inside of the bell gear was evacuated to 3×10 -7 Torr., high-purity argon gas was introduced at 18 to 20×10 -3 Torr., and the cathode voltage -
It was carried out by bipolar sputtering at 5.7 to -6.5 kV and a current density of 0.05 to 0.5 mA/ cm2 . Film formation speed is 50~
It is 150 Å/min. The film composition was determined by using nickel, chromium, tantalum, and silicon metals and changing their area ratios. Further, the heat treatment was carried out in the air at a predetermined temperature for 3 minutes. Also,
Almost the same effect could be obtained by heating the resistive substrate to a predetermined temperature for several minutes even in a vacuum, or by heating the resistive substrate during sputtering. Next, in order to show the stability of the metal thin film as a resistor, FIGS. 2 and 3 show the results of a high temperature storage test and a humidity resistance load life test. In these graphs, curve A shows the NiCr metal thin film resistor, curve B shows the TaSi metal thin film resistor, and curve C shows the NiCrTaSi metal thin film resistor of the present invention. The composition ratio of each component at this time is Nickel 74
16 atom% of chromium, 9 atom% of tantalum, and 1 atom% of silicon are heat-treated at 500°C for 3 minutes in the air, and its resistance value is 3KΩ. Figure 2 is a graph of the high temperature storage test results.
This shows the rate of change in resistance when a sample with a 3KΩ fixed resistor was left unloaded for 1000 hours in the atmosphere at 175°C. As is clear from the graph, the rate of change is approximately 0.25% or less,
It has superior stability compared to the NiCr-based material and has a lifespan comparable to that of the TaSi-based material. Figure 3 is a graph of the results of a humidity-resistant load life test, in which the rated voltage was applied for 1000 hours in a cycle of 1.5 hours of load and 0.5 hours of no load in an atmosphere with an ambient temperature of 40℃ and a relative humidity of 90 to 95%. This shows the rate of change in resistance. In the graph, the rate of change is approximately
It is 0.06% or less, which is very good, and it is very good compared to NiCr type and
It was shown that the life characteristics were improved compared to the TaSi type. As described above, the metal thin film resistor of the present invention has a low temperature coefficient of resistance, excellent stability, and particularly excellent moisture resistance and load life characteristics. As is clear from the above embodiments, according to the present invention, the resistor is constructed using an alloy thin film made of nickel, chromium, tantalum, and silicon, and by appropriately heat-treating it, the resistance temperature can be reduced. It is possible to obtain a metal thin film resistor with small variations in coefficients, excellent stability, and particularly excellent moisture resistance and load life characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明抵抗体合金のターゲツト組成
(面積比)と抵抗温度係数との関係を示す三元図、
第2図は本発明の金属薄膜抵抗体の高温放置試験
結果を示したグラフ、第3図は本発明の金属薄膜
抵抗体の耐湿負荷寿命試験結果を示したグラフで
ある。
FIG. 1 is a ternary diagram showing the relationship between the target composition (area ratio) and the temperature coefficient of resistance of the resistor alloy of the present invention.
FIG. 2 is a graph showing the results of a high temperature storage test of the metal thin film resistor of the present invention, and FIG. 3 is a graph showing the results of a humidity resistance load life test of the metal thin film resistor of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケル58〜81原子%、クロム12〜18原子
%、タンタル2〜21原子%およびシリコン19原子
%以下の4成分よりなる合金薄膜を用いて構成し
たことを特徴とする金属薄膜抵抗体。
1. A metal thin film resistor, characterized in that it is constructed using an alloy thin film consisting of four components: 58 to 81 at. % nickel, 12 to 18 at. % chromium, 2 to 21 at. % tantalum, and 19 at. % or less silicon.
JP58136367A 1983-07-25 1983-07-25 Thin film metal resistor Granted JPS6027103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136367A JPS6027103A (en) 1983-07-25 1983-07-25 Thin film metal resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136367A JPS6027103A (en) 1983-07-25 1983-07-25 Thin film metal resistor

Publications (2)

Publication Number Publication Date
JPS6027103A JPS6027103A (en) 1985-02-12
JPH045241B2 true JPH045241B2 (en) 1992-01-30

Family

ID=15173505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136367A Granted JPS6027103A (en) 1983-07-25 1983-07-25 Thin film metal resistor

Country Status (1)

Country Link
JP (1) JPS6027103A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622522B2 (en) * 2005-01-07 2011-02-02 住友金属鉱山株式会社 Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119601A (en) * 1982-01-08 1983-07-16 株式会社東芝 Resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119601A (en) * 1982-01-08 1983-07-16 株式会社東芝 Resistor

Also Published As

Publication number Publication date
JPS6027103A (en) 1985-02-12

Similar Documents

Publication Publication Date Title
KR830001873B1 (en) Resistor composition
JPH06158272A (en) Resistance film and production thereof
JPS5955001A (en) Resistor
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JPH045241B2 (en)
US3585073A (en) Electric film resistors
JPH047561B2 (en)
JPH0331780B2 (en)
JPS62291101A (en) Metal film resistor and manufacture of the same
JPH0412601B2 (en)
JPH0620803A (en) Thin film resistor and manufacture thereof
JPH071722B2 (en) Thin film resistor
RU2818204C1 (en) Method of making thin-film precision resistor
JPS6236622B2 (en)
JPS634322B2 (en)
JP4071458B2 (en) Manufacturing method of resistors
JP4752075B2 (en) Resistor and its manufacturing method
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JPS6024561B2 (en) resistive film thin
JPH0287501A (en) Electric resistance material
JPS6024563B2 (en) resistive thin film
JPS6024562B2 (en) resistive thin film
US7609144B2 (en) High resistivity thin film composition and fabrication method
JPS6024564B2 (en) resistive thin film