JPH047561B2 - - Google Patents

Info

Publication number
JPH047561B2
JPH047561B2 JP58225208A JP22520883A JPH047561B2 JP H047561 B2 JPH047561 B2 JP H047561B2 JP 58225208 A JP58225208 A JP 58225208A JP 22520883 A JP22520883 A JP 22520883A JP H047561 B2 JPH047561 B2 JP H047561B2
Authority
JP
Japan
Prior art keywords
thin film
resistance
temperature
temperature coefficient
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58225208A
Other languages
Japanese (ja)
Other versions
JPS60116104A (en
Inventor
Hideyuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI KOKI KK
Original Assignee
TAISEI KOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI KOKI KK filed Critical TAISEI KOKI KK
Priority to JP58225208A priority Critical patent/JPS60116104A/en
Publication of JPS60116104A publication Critical patent/JPS60116104A/en
Publication of JPH047561B2 publication Critical patent/JPH047561B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、タンタル(Ta)、クロム(Cr)およ
びシリコン(Si)の3成分よりなる合金薄膜を用
いた金属薄膜抵抗体に関する。 近年薄膜抵抗体の進歩は目ざましいものがあり
安定度の高い抵抗体として窒化タンタル薄膜抵抗
体が開発され、また、高い固有抵抗をもつ抵抗体
としてCr−SiOサーメツトが実用化されている。
また、窒化タンタル薄膜抵抗体は良好な抵抗温度
係数と優れた安定性をもつている。窒化タンタル
薄膜を生成するには通常活性スパツタリング法が
用いられ、真空槽内に微量の活性ガスの導入とそ
の制御に厳密な管理を必要とする。またCr−SiO
サーメツト抵抗体は安定度が低く、再現性が悪い
などの製造技術上の問題も多い。 ところで、さきに発明されたシリコンと、タン
タル、ニオブ、チタン、ジルコン、モリブデン、
タングステン等の中の1つとの2成分系薄膜抵抗
体は一応上記の欠陥を補い、現状では最もすぐれ
た薄膜抵抗体として高く評価できるものである。
すなわち、熱処理温度を調整することにより広い
固有抵抗範囲に亘り低い抵抗温度係数をもつこと
ができるものである。 しかしながら抵抗体の安定度は熱処理温度に関
係し、高い安定度を求めようとすれば熱処理温度
も高くなり、その時の低い抵抗温度係数に対応す
る組成または固有抵抗は自ら決定されて選択の自
由はなくなる。すなわち、2成分系合金薄膜抵抗
体においては最も安定な熱処理を行ない、小さい
抵抗温度係数を求めると固有抵抗と組成は自から
定まつてしまい、そのため薄膜集積回路の設計お
よび個別抵抗器の製造上大きな制約を受けるとい
う難点がある。 また、タンタルとクロムの二元系金属薄膜につ
いていえば、第1図に示すように、タンタル組成
比15〜20%付近で抵抗温度係数が正から負へ急激
に変化することにより、抵抗温度係数が0ppm/
℃に近い金属薄膜抵抗体を再現性よく製造するこ
とが難しいという難点がある。 本発明は上記従来の難点に鑑みなされたもの
で、タンタル・クロム・シリコンの3成分よりな
る合金薄膜を用いて構成し、適宜熱処理を施すこ
とによつて、抵抗温度係数が0ppm/℃の抵抗体
を容易に製造でき、且つ耐湿負荷寿命特性および
高温負荷寿命特性の優れた安定性の高い金属薄膜
抵抗体を提供することを目的とする。 このような目的を達成するために本発明によれ
ば、タンタル40原子%以下、クロム95原子%以下
およびシリコン80原子%以下の3成分よりなる合
金薄膜を用い、この合金薄膜を好ましくは400℃
以上で熱処理した金属薄膜抵抗体を構成する。 以下、本発明の好ましい実施例を図面により説
明する。 第2図はタンタル、クロム、シリコンの三元系
からなる合金薄膜の未処理における組成比と抵抗
温度係数を示したものである。第2図中aは抵抗
温度係数が+100ppm/℃の曲線、bは0ppm/℃
の曲線、cは−100ppm/℃の曲線を示している。
即ち、第1図と比較するに、±100ppm/℃の範囲
が大きくなり、とりわけ0ppm/℃の取り得る組
成比の幅が広くなつていることを示しており、こ
れは第1図に比べて抵抗温度係数0ppm/℃の合
金薄膜を再現性をよく製造できることを意味して
いる。 第3図は、さらに600℃の温度で熱処理したと
きの組成比と抵抗温度係数を示したもので、a′は
+100ppm/℃の曲線、b′は0ppm/℃の曲線、
c′は−100ppm/℃の曲線を示している。第3図
と第2図を比較すると抵抗温度係数±100ppm/
℃の範囲はあまり変化はないが、第3図において
0ppm/℃の取り得る組成比の幅が広くなつてい
るのが顕著であり、より容易に抵抗温度係数
0ppm/℃の合金薄膜を製造できることを意味し
ている。 これらの実施例は第1表に示される。第1表か
らもわかるように熱処理温度により抵抗温度係数
が可変できるものである。
The present invention relates to a metal thin film resistor using an alloy thin film made of three components: tantalum (Ta), chromium (Cr), and silicon (Si). In recent years, there has been remarkable progress in thin film resistors, and tantalum nitride thin film resistors have been developed as highly stable resistors, and Cr-SiO cermets have been put into practical use as resistors with high specific resistance.
Additionally, tantalum nitride thin film resistors have a good temperature coefficient of resistance and excellent stability. The active sputtering method is usually used to produce tantalum nitride thin films, which requires the introduction of a small amount of active gas into a vacuum chamber and strict control of its control. Also, Cr−SiO
Cermet resistors have many manufacturing technology problems, such as low stability and poor reproducibility. By the way, silicon, which was invented earlier, tantalum, niobium, titanium, zircon, molybdenum,
A two-component thin film resistor containing one of tungsten or the like compensates for the above-mentioned deficiencies and can be highly evaluated as the most excellent thin film resistor at present.
That is, by adjusting the heat treatment temperature, it is possible to have a low temperature coefficient of resistance over a wide range of resistivity. However, the stability of a resistor is related to the heat treatment temperature, and if you want high stability, the heat treatment temperature will also be high, and the composition or specific resistance that corresponds to the low temperature coefficient of resistance at that time is determined by yourself, and there is no freedom of choice. It disappears. In other words, if a two-component alloy thin film resistor is subjected to the most stable heat treatment and a small temperature coefficient of resistance is obtained, the specific resistance and composition will be determined by themselves. The problem is that it is subject to significant restrictions. Regarding the binary metal thin film of tantalum and chromium, as shown in Figure 1, the temperature coefficient of resistance changes rapidly from positive to negative around the tantalum composition ratio of 15 to 20%. is 0ppm/
A drawback is that it is difficult to manufacture metal thin film resistors at temperatures close to ℃ with good reproducibility. The present invention has been developed in view of the above-mentioned conventional difficulties.The present invention is constructed using an alloy thin film consisting of tantalum, chromium, and silicon, and is heat-treated appropriately to achieve a resistance temperature coefficient of 0 ppm/°C. The object of the present invention is to provide a highly stable metal thin film resistor that can be easily manufactured and has excellent moisture resistance load life characteristics and high temperature load life characteristics. In order to achieve such an object, according to the present invention, an alloy thin film consisting of three components of 40 at % or less tantalum, 95 at % or less chromium, and 80 at % or less silicon is used, and this alloy thin film is heated preferably at 400°C.
The heat-treated metal thin film resistor is constructed as described above. Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows the composition ratio and temperature coefficient of resistance of an untreated alloy thin film consisting of a ternary system of tantalum, chromium, and silicon. In Figure 2, a shows a curve with a resistance temperature coefficient of +100ppm/°C, and b shows a curve with a resistance temperature coefficient of +100ppm/°C.
The curve c shows the curve at -100 ppm/°C.
In other words, compared to Figure 1, the range of ±100ppm/℃ has become larger, and in particular, the range of possible composition ratios at 0ppm/℃ has become wider. This means that alloy thin films with a temperature coefficient of resistance of 0 ppm/°C can be manufactured with good reproducibility. Figure 3 shows the composition ratio and temperature coefficient of resistance when further heat treated at a temperature of 600℃, where a' is the +100ppm/℃ curve, b' is the 0ppm/℃ curve,
c′ shows the curve at −100 ppm/°C. Comparing Figure 3 and Figure 2, the temperature coefficient of resistance is ±100ppm/
Although the range of °C does not change much, in Figure 3
It is noticeable that the range of composition ratios that can be taken at 0ppm/℃ has become wider, making it easier to determine the temperature coefficient of resistance.
This means that it is possible to produce alloy thin films with a temperature of 0 ppm/°C. Examples of these are shown in Table 1. As can be seen from Table 1, the temperature coefficient of resistance can be varied depending on the heat treatment temperature.

【表】【table】

【表】 ここでこの発明の試料の作製方法について説明
する。DCスパツタリング条件はあらかじめベル
ジヤ内を3×10-7Torr.に排気した後、高純度ア
ルゴンガスを18〜20×10-3Torr.導入し、陰極電
圧−5.7〜−6.5KV、電流密度0.08mA/cm2で2極
スパツタリングにより行なつた。成膜速度は50〜
150〓/minである。膜組成は、タンタル、クロ
ム、シリコンの金属を用い、その面積比を変える
ことにより決定した。また、熱処理は大気中で所
定の温度にて3分間加熱した。一方、真空中でも
所定の温度にして数分間加熱するかあるいはスパ
ツタリング中に抵抗基体を加熱することによつて
ほぼ同様な効果を得ることができた。 次に上記合金薄膜の抵抗器としての安定性を示
すため第4図および第5図に耐湿負荷寿命試験お
よび高温負荷寿命試験の結果を示す。この時の試
料は、円柱状フオルステライトの基体ヘタンタル
16.7原子%、クロム53原子%、シリコン30.3原子
%の合金薄膜を着膜して、これをスパイラルカツ
トして抵抗値3kΩの抵抗体としたものである。 第4図は耐湿負荷寿命試験結果のグラフであ
り、周囲温度40±2℃、相対湿度90〜95%の雰囲
気中で、定格電圧を1.5時間負荷、0.5時間無負荷
のサイクルにおいて1000時間繰り返したときの抵
抗値変化率を示したものである。グラフ中、dは
未処理における特性、e、f、gはそれぞれ400
℃、500℃、600℃の温度で熱処理をした場合の特
性である。グラフからも明らかなように、未処理
の場合でさえも0.7%以下と低く、熱処理温度が
増す毎に、特に600℃の熱処理においては0.03%
以下という優れた結果を得ることができる。 第5図は高温負荷寿命試験結果のグラフであ
る。周囲温度70±2℃の雰囲気中で、定格電圧
1.5時間負荷、0.5時間無負荷のサイクルにおいて
1000時間繰り返したときの抵抗値変化率を示した
ものであり、グラフ中d′は未処理における特性、
e′、f′、g′はそれぞれ400℃、500℃、600℃の温度
で熱処理をした場合の特性である。グラフからも
明らかなように、未処理のものでも0.7%以下、
熱処理したものは総て0.03%以下という優れた結
果を得ることができる。 このように、耐湿負荷寿命特性および高温負荷
寿命特性において、未処理の場合でも安定性が優
れ、特に高温で熱処理を行うほど安定性が増して
極めて優れたものとすることができる。 以上の実施例からも明らかなように本発明によ
れば、タンタル、クロム、シリコンの3成分より
なる合金薄膜を用いて構成し適宜熱処理を施すこ
とによつて、抵抗温度係数が0ppm/℃の抵抗体
を再現性よく容易に製造でき、且つ耐湿負荷寿命
特性および高温負荷寿命特性に優れ安定性を高く
することができる。
[Table] Here, the method for preparing the sample of the present invention will be explained. The DC sputtering conditions were as follows: After evacuating the inside of the bell gear to 3 x 10 -7 Torr, high-purity argon gas was introduced at 18 to 20 x 10 -3 Torr, cathode voltage was -5.7 to -6.5 KV, and current density was 0.08 mA. / cm2 by bipolar sputtering. Film formation speed is 50~
150〓/min. The film composition was determined by using tantalum, chromium, and silicon metals and changing their area ratios. Further, the heat treatment was carried out in the air at a predetermined temperature for 3 minutes. On the other hand, almost the same effect could be obtained by heating the resistive substrate at a predetermined temperature for several minutes even in a vacuum, or by heating the resistive substrate during sputtering. Next, in order to show the stability of the above alloy thin film as a resistor, FIGS. 4 and 5 show the results of a humidity load life test and a high temperature load life test. The sample at this time was hetantal, a base of cylindrical forsterite.
A thin alloy film containing 16.7 at.% chromium, 53 at.% chromium, and 30.3 at.% silicon was deposited and spirally cut to form a resistor with a resistance value of 3 kΩ. Figure 4 is a graph of the results of a humidity-resistant load life test, in which the rated voltage was applied for 1000 hours in a cycle of 1.5 hours of load and 0.5 hours of no load in an atmosphere with an ambient temperature of 40±2℃ and a relative humidity of 90 to 95%. It shows the rate of change in resistance value when In the graph, d is the untreated characteristic, e, f, and g are each 400
These are the characteristics when heat treated at temperatures of ℃, 500℃, and 600℃. As is clear from the graph, even in the untreated case it is as low as 0.7% or less, and as the heat treatment temperature increases, especially in heat treatment at 600℃, it decreases by 0.03%.
The following excellent results can be obtained. FIG. 5 is a graph of the high temperature load life test results. Rated voltage in an atmosphere with an ambient temperature of 70±2℃
In a 1.5 hour load, 0.5 hour no load cycle
It shows the rate of change in resistance value when repeated for 1000 hours, and d′ in the graph is the untreated characteristic;
e′, f′, and g′ are the characteristics when heat treated at temperatures of 400°C, 500°C, and 600°C, respectively. As is clear from the graph, even untreated products are less than 0.7%.
Excellent results can be obtained with all heat-treated products having a content of 0.03% or less. As described above, in terms of humidity resistance load life characteristics and high temperature load life characteristics, stability is excellent even when untreated, and in particular, the stability increases as heat treatment is performed at a higher temperature, making it extremely excellent. As is clear from the above embodiments, according to the present invention, the temperature coefficient of resistance is 0 ppm/°C by using a thin alloy film consisting of tantalum, chromium, and silicon, and applying appropriate heat treatment. The resistor can be easily manufactured with good reproducibility, and has excellent humidity resistance load life characteristics and high temperature load life characteristics, and can have high stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二元系金属薄膜における組成比と抵抗
温度係数を示したグラフ、第2図はタンタル、ク
ロム、シリコンの3成分よりなる金属薄膜抵抗体
の組成比における未処理時の抵抗温度係数を示し
た三元合金図、第3図は第2図における600℃の
熱処理時の三元合金図、第4図は本発明の金属薄
膜抵抗体の耐湿負荷寿命試験結果を示したグラ
フ、第5図は本発明の金属薄膜抵抗体の高温負荷
寿命試験結果を示したグラフである。
Figure 1 is a graph showing the composition ratio and temperature coefficient of resistance of a binary metal thin film, and Figure 2 is a graph showing the temperature coefficient of resistance of a metal thin film resistor made of three components, tantalum, chromium, and silicon, at its composition ratio when untreated. FIG. 3 is a ternary alloy diagram showing the heat treatment at 600°C in FIG. 2. FIG. FIG. 5 is a graph showing the results of a high temperature load life test of the metal thin film resistor of the present invention.

Claims (1)

【特許請求の範囲】 1 タンタル40原子%以下、クロム95原子%以下
およびシリコン80原子%以下の3成分よりなる合
金薄膜を用いて構成したことを特徴とする金属薄
膜抵抗体。 2 前記合金薄膜を400℃以上の温度で熱処理し
たものを用いて構成したことを特徴とする特許請
求の範囲第1項記載の金属薄膜抵抗体。
[Scope of Claims] 1. A metal thin film resistor, characterized in that it is constructed using an alloy thin film consisting of three components: tantalum at 40 atomic % or less, chromium at 95 atomic % or less, and silicon at 80 atomic % or less. 2. The metal thin film resistor according to claim 1, characterized in that the alloy thin film is heat-treated at a temperature of 400° C. or higher.
JP58225208A 1983-11-28 1983-11-28 Metal thin film resistor Granted JPS60116104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225208A JPS60116104A (en) 1983-11-28 1983-11-28 Metal thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225208A JPS60116104A (en) 1983-11-28 1983-11-28 Metal thin film resistor

Publications (2)

Publication Number Publication Date
JPS60116104A JPS60116104A (en) 1985-06-22
JPH047561B2 true JPH047561B2 (en) 1992-02-12

Family

ID=16825672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225208A Granted JPS60116104A (en) 1983-11-28 1983-11-28 Metal thin film resistor

Country Status (1)

Country Link
JP (1) JPS60116104A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141201A (en) * 2000-11-02 2002-05-17 Koa Corp Thin-film resistor and its manufacturing method

Also Published As

Publication number Publication date
JPS60116104A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
US4746896A (en) Layered film resistor with high resistance and high stability
US4298505A (en) Resistor composition and method of manufacture thereof
EP0101632B1 (en) Resistor
JPH06158272A (en) Resistance film and production thereof
US4323875A (en) Method of making temperature sensitive device and device made thereby
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
JPH047561B2 (en)
US3585073A (en) Electric film resistors
US4774491A (en) Metal film resistors
JPH045241B2 (en)
JPH0331780B2 (en)
JPH0412601B2 (en)
JP4071458B2 (en) Manufacturing method of resistors
JPS634322B2 (en)
JPS6024561B2 (en) resistive film thin
JPH071722B2 (en) Thin film resistor
JPH0620803A (en) Thin film resistor and manufacture thereof
JPS6024562B2 (en) resistive thin film
JPS6018124B2 (en) resistive thin film
JPS6024563B2 (en) resistive thin film
JPS6018123B2 (en) resistive thin film
JPS6236622B2 (en)
JPS6016724B2 (en) resistive thin film
JPS6018122B2 (en) resistive thin film
JPS6395601A (en) Resistance thin film