JPH06158272A - Resistance film and production thereof - Google Patents

Resistance film and production thereof

Info

Publication number
JPH06158272A
JPH06158272A JP30723892A JP30723892A JPH06158272A JP H06158272 A JPH06158272 A JP H06158272A JP 30723892 A JP30723892 A JP 30723892A JP 30723892 A JP30723892 A JP 30723892A JP H06158272 A JPH06158272 A JP H06158272A
Authority
JP
Japan
Prior art keywords
silicon
resistance
nitrogen
transition metal
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30723892A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurauchi
倉内  利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP30723892A priority Critical patent/JPH06158272A/en
Publication of JPH06158272A publication Critical patent/JPH06158272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a resistance film having a high resistivity and a high temp. coefficient by using a vaporization source consisting of a transition metal and Si to form an Si-transition metal-C(N) thin film contg. a specified-grade Si on a substrate in the atmosphere contg. N or C. CONSTITUTION:A vaporization source consisting of one kind of transition metal between Ti and Zr and Si is vaporized in an atmosphere contg. C or N to form a resistance film contg. 5-60wt.% Si and the balance transition metal such as Ti and Zr, C or N on the surface of a substrate. Otherwise, an alloy consisting of Ti or Zr and Si as the target is used to form a resistance film contg. 5-60wt.% Si and the balance transition metal such as Ti and Zr, C or N by sputtering in the plasma contg. C or N, or a ternary or quaternary alloy as the target contg. one or two kinds of transition metals between Ti and Zr, C or N can be used in an inert gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抵抗膜および抵抗膜の製
造方法に関し、更に詳しくは薄膜抵抗器、サーマルヘッ
ドの発熱抵抗体に用いられる抵抗膜および抵抗膜の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance film and a method of manufacturing the resistance film, and more particularly to a resistance film used for a thin film resistor and a heating resistor of a thermal head, and a method of manufacturing the resistance film.

【0002】[0002]

【従来の技術】従来から薄膜抵抗器の抵抗材料としては
Ni−Cr、Ta、Ta−N等が知られており、また、
サーマルヘッドの発熱抵抗体としてはTa−Si−O、
Cr−Si−O等が知られている。
2. Description of the Related Art Conventionally, Ni-Cr, Ta, Ta-N, etc. have been known as resistance materials for thin film resistors.
As the heating resistor of the thermal head, Ta-Si-O,
Cr-Si-O and the like are known.

【0003】[0003]

【発明が解決しようとする課題】近年、電子部品の小型
化、高集積化の要求から比抵抗がより大きく、抵抗温度
係数(TCR)が小さい抵抗材料が要望されている。
In recent years, a resistance material having a larger specific resistance and a smaller resistance temperature coefficient (TCR) has been demanded due to the demand for miniaturization and high integration of electronic components.

【0004】しかしながら、薄膜抵抗器の抵抗材料とし
て用いられているNi−Crの比抵抗は100μΩcm
(0.1mΩcm)と小さいため、高抵抗を得るためには
膜厚を薄くしたり、パターンを微細にしなければならな
い。しかし、膜厚が200Å以下では抵抗値が不安定に
なりやすく、また、微細なパターンの製作は困難となる
ばかりではなく、高周波特性を悪化させるという問題が
ある。また、薄膜抵抗器の抵抗材料として用いられてい
るTa−NはNi−Crの約2〜3倍の比抵抗を有し、
耐湿性などではNi−Crよりも更に優れているが、T
aはTiやZrに比して非常に高価な材料であるため
に、コストが高いという問題がある。
However, the specific resistance of Ni-Cr used as the resistance material of the thin film resistor is 100 μΩcm.
Since it is as small as (0.1 mΩcm), in order to obtain high resistance, it is necessary to reduce the film thickness or make the pattern fine. However, when the film thickness is 200 Å or less, the resistance value tends to be unstable, and it is difficult to manufacture a fine pattern, and there is a problem that the high frequency characteristics are deteriorated. In addition, Ta-N used as a resistance material of a thin film resistor has a specific resistance about 2 to 3 times that of Ni-Cr,
Moisture resistance is better than Ni-Cr, but T
Since a is a material that is extremely expensive as compared with Ti and Zr, there is a problem of high cost.

【0005】また、サーマルヘッドの発熱抵抗材料とし
て用いられているTa−Si−O、或いはCr−Si−
Oは膜中の酸素濃度の僅かな変化でも抵抗値が大きく変
化するという問題がある。
Further, Ta-Si-O or Cr-Si- which is used as a heat resistance material for a thermal head.
O has a problem that the resistance value greatly changes even if the oxygen concentration in the film changes slightly.

【0006】本発明はかかる従来の問題点を解消し、N
i−Crの3倍以上の比抵抗と、実用的な抵抗温度係数
と、優れた熱安定性を有し、Taよりも安価な材料を用
いた低コストの抵抗膜と、その製造方法を提供すること
を目的とする。
The present invention solves the above-mentioned conventional problems, and
Provided is a low-cost resistance film using a material having a specific resistance three times or more that of i-Cr, a practical temperature coefficient of resistance, excellent thermal stability, and a cost lower than Ta, and a manufacturing method thereof. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明の抵抗膜は下記に
示す方法で製造された合金膜である。
The resistance film of the present invention is an alloy film manufactured by the following method.

【0008】(1) 反応性蒸着法、活性化反応性蒸着
法、イオンプレーティング法、CVD法のいずれかの方
法により、窒素成分を含むガス雰囲気中、或いは炭素成
分を含むガス雰囲気中、或いは窒素と炭素の混合成分を
含むガス雰囲気中で、遷移金属(Ti,Zrのうち選択
された1つ)と、ケイ素(Si)を夫々独立した蒸発源
から夫々任意の蒸発速度で蒸発させて、基板上にTi,
Zrから選択された少なくとも1つの遷移金属と、窒
素、炭素から選択された少なくとも1つの元素と、ケイ
素から成り、ケイ素の組成が5〜60wt%である合金
膜を形成した抵抗膜である。
(1) By a reactive vapor deposition method, an activated reactive vapor deposition method, an ion plating method, or a CVD method, in a gas atmosphere containing a nitrogen component or a gas atmosphere containing a carbon component, or In a gas atmosphere containing a mixed component of nitrogen and carbon, a transition metal (a selected one of Ti and Zr) and silicon (Si) are evaporated from independent evaporation sources at arbitrary evaporation rates, Ti on the substrate,
It is a resistance film formed of an alloy film comprising at least one transition metal selected from Zr, at least one element selected from nitrogen and carbon, and silicon, and having a silicon composition of 5 to 60 wt%.

【0009】(2) 上記(1)の遷移金属、即ちTi,Zr
から選択された少なくとも1つの遷移金属と、ケイ素を
任意の組成で混合して作成されたターゲットを用い、ス
パッタ法により窒素成分を含むプラズマ中、或いは炭素
成分を含むプラズマ中、或いは窒素と炭素の混合成分を
含むプラズマ中で、該ターゲットにスパッタリングして
基板上に上記(1)の合金膜、即ちTi,Zrから選択さ
れた少なくとも1つの遷移金属と、窒素、炭素から選択
された少なくとも1つの元素と、ケイ素から成り、ケイ
素の組成が5〜60wt%の合金膜を形成した抵抗膜で
ある。
(2) The transition metal of (1) above, namely Ti, Zr
Using a target prepared by mixing at least one transition metal selected from the above and silicon in an arbitrary composition, in a plasma containing a nitrogen component by a sputtering method, in a plasma containing a carbon component, or in a plasma containing nitrogen and carbon. The alloy film of (1) above, ie, at least one transition metal selected from Ti and Zr, and at least one selected from nitrogen and carbon is sputtered on the target in a plasma containing a mixed component. It is a resistance film formed of an alloy film composed of elements and silicon and having a silicon composition of 5 to 60 wt%.

【0010】(3) 遷移金属−ケイ素−窒素または/お
よび炭素を任意の組成で混合して作成された三元合金、
または四元合金から成るターゲットを用い、不活性ガス
プラズマ中でスパッタ法により該ターゲットにスパッタ
リングして基板上に上記(1)の合金膜、即ちTi,Zr
から選択された少なくとも1つの遷移金属と、窒素、炭
素から選択された少なくとも1つの元素と、ケイ素から
成り、ケイ素の組成が5〜60wt%の合金膜を形成し
た抵抗膜である。
(3) A ternary alloy prepared by mixing transition metal-silicon-nitrogen or / and carbon in any composition,
Alternatively, a target composed of a quaternary alloy is used, and the target is sputtered in an inert gas plasma by a sputtering method to form an alloy film of the above (1) on the substrate, that is, Ti, Zr.
A resistance film comprising an alloy film comprising at least one transition metal selected from the above, at least one element selected from nitrogen and carbon, and silicon, and having a silicon composition of 5 to 60 wt%.

【0011】[0011]

【作用】本発明の抵抗膜は、その組成域においてNi−
Cr合金膜の3倍以上の大きな比抵抗が得られ、抵抗温
度係数が小さく、耐熱性が大きい抵抗膜となる。
The resistance film of the present invention has a composition of Ni-
A specific resistance that is three times or more that of a Cr alloy film is obtained, a resistance temperature coefficient is small, and heat resistance is large.

【0012】[0012]

【実施例】本発明の具体的実施例を説明する。EXAMPLES Specific examples of the present invention will be described.

【0013】実施例1 本実施例は活性化反応性蒸着法により基板上にSi−T
i−Nから成る三元合金膜を形成する1例である。
Example 1 In this example, Si-T was formed on a substrate by an activated reactive vapor deposition method.
This is an example of forming a ternary alloy film made of i-N.

【0014】先ず、真空処理室(図示せず)内の上方に
配設した基板保持装置(図示せず)にガラス製の基板
(図示せず)を保持し、該真空処理室内の下方に配設し
た1対の蒸発源(図示せず)のうち、一方の蒸発源内に
遷移金属としてチタン(Ti)を、また他方の蒸発源内
にケイ素(Si)を充填した。次に、真空処理室内の真
空度を1×10- 5Torr以下に設定した後、真空処理室
内が4×10- 4Torrとなるように窒素成分として窒素
ガスを導入して窒素ガス雰囲気とした。
First, a glass substrate (not shown) is held by a substrate holding device (not shown) provided above the vacuum processing chamber (not shown), and the glass substrate (not shown) is placed below the vacuum processing chamber. Of the pair of evaporation sources (not shown) provided, one evaporation source was filled with titanium (Ti) as a transition metal, and the other evaporation source was filled with silicon (Si). Then, the degree of vacuum in the vacuum processing chamber 1 × 10 - After setting below 5 Torr, the vacuum processing chamber 4 × 10 - was 4 by introducing nitrogen gas as a nitrogen component nitrogen gas atmosphere so as to Torr .

【0015】続いて、各蒸発源でチタンとケイ素を夫々
加熱し、蒸発させ、その蒸発量を種々変えながら、基板
上に蒸着させてケイ素の組成(濃度wt%)が種々異な
る膜厚0.3〜0.5μmのSi−Ti−Nから成る三
元合金膜を形成した。そして基板上に形成された各Si
−Ti−N合金膜の夫々について電気的特性として比抵
抗値と、抵抗温度係数(TCR)と、温度500℃、窒
素ガス中において60分間焼鈍し、焼鈍前後の抵抗値変
化率を測定し、その結果を図1に夫々曲線として示し
た。
Subsequently, titanium and silicon are respectively heated and evaporated by each evaporation source, and while varying the evaporation amount, vapor deposition is carried out on the substrate to obtain a film thickness of 0. A ternary alloy film made of Si-Ti-N having a thickness of 3 to 0.5 μm was formed. And each Si formed on the substrate
The specific resistance value, the resistance temperature coefficient (TCR), and the temperature of 500 ° C. were annealed in nitrogen gas for 60 minutes, and the rate of change in the resistance value before and after the annealing was measured. The results are shown as curves in FIG.

【0016】図1から明らかなように、ケイ素の添加に
より、従来のNi−Cr合金の比抵抗値(0.1mΩc
m)の3倍以上の比抵抗値が得られ、また、ケイ素量の
濃度に対する比抵抗値の変化も緩やかである。また、ケ
イ素濃度が10〜40wt%において抵抗温度係数が±
100ppm/Kと良好な値の抵抗膜が容易に得られ、
また、ケイ素の添加により耐熱性が改善され、温度50
0℃、窒素中における抵抗値変化率が小さいことが分か
った。 実施例2 本実施例は活性化反応性蒸着法により基板上にSi−T
i−Cから成る三元合金膜を形成する1例である。
As is apparent from FIG. 1, by adding silicon, the specific resistance value (0.1 mΩc) of the conventional Ni-Cr alloy was obtained.
The specific resistance value of 3 times or more of m) is obtained, and the change of the specific resistance value with respect to the concentration of silicon amount is gentle. Further, when the silicon concentration is 10 to 40 wt%, the temperature coefficient of resistance is ±
A resistive film with a good value of 100 ppm / K can be easily obtained,
In addition, the addition of silicon improves the heat resistance, and
It was found that the rate of change in resistance at 0 ° C. in nitrogen was small. Example 2 In this example, Si-T was formed on a substrate by an activated reactive vapor deposition method.
This is an example of forming a ternary alloy film made of iC.

【0017】合金膜の形成時の真空処理室内雰囲気を窒
素ガス雰囲気の代わりに炭素成分としてアセチレンガス
を用い、真空処理室内の圧力を4×10- 4Torrの炭素
ガス雰囲気とした以外は,前記実施例1と同様の方法で
基板上にケイ素の組成(濃度wt%)が種々異なるSi
−Ti−Cから成る三元合金膜を形成した。そして、基
板上に形成された各Si−Ti−C合金膜の夫々につい
て電気的特性として比抵抗値と、抵抗温度係数と、温度
500℃、窒素ガス中において60分間焼鈍し、焼鈍前
後の抵抗値変化率を測定し、その結果を図2に夫々曲線
として示した。
[0017] The acetylene gas using a vacuum processing chamber atmosphere during the formation of the alloy film as a carbon component in place of the nitrogen gas atmosphere, the pressure in the vacuum processing chamber 4 × 10 - except that the 4 Torr carbon gas atmosphere, the Si having different compositions (concentration wt%) of silicon on the substrate was prepared in the same manner as in Example 1.
A ternary alloy film made of —Ti—C was formed. The electrical resistance of each of the Si-Ti-C alloy films formed on the substrate is a specific resistance value, a temperature coefficient of resistance, a temperature of 500 ° C, and the resistance before and after annealing for 60 minutes in nitrogen gas. The rate of change in value was measured, and the results are shown as curves in FIG.

【0018】図2から明らかなように、ケイ素の添加に
より、従来のNi−Cr合金の比抵抗値(0.1mΩc
m)の3倍以上の比抵抗値が得られ、また、ケイ素量の
濃度に対する比抵抗値の変化も緩やかであり、また、ケ
イ素濃度が5〜30wt%において抵抗温度係数が±1
00ppm/Kと良好な値の抵抗膜が容易に得られ、ま
た、ケイ素の添加により耐熱性が改善され、温度500
℃、窒素中における抵抗値変化率が小さいことが分かっ
た。
As is apparent from FIG. 2, by adding silicon, the specific resistance value (0.1 mΩc) of the conventional Ni-Cr alloy was obtained.
m), which is more than 3 times the specific resistance value, and the change in the specific resistance value with respect to the concentration of silicon is gradual, and the temperature coefficient of resistance is ± 1 when the silicon concentration is 5 to 30 wt%.
A resistance film with a good value of 00 ppm / K can be easily obtained, and the addition of silicon improves the heat resistance, resulting in a temperature of 500
It was found that the rate of change in resistance was small at ℃ and in nitrogen.

【0019】実施例3 本実施例は活性化反応性蒸着法により基板上にSi−T
i−C−Nから成る四元合金膜を形成する場合の1例で
ある。
Example 3 In this example, Si-T was formed on a substrate by an activated reactive vapor deposition method.
This is an example of forming a quaternary alloy film composed of i-C-N.

【0020】合金膜の形成時の真空処理室内雰囲気を窒
素ガス雰囲気の代わりに炭素成分としてアセチレンガス
と、窒素成分として窒素ガスを導入して窒素と炭素の混
合ガス雰囲気(分圧1:1)とした以外は、前記実施例
1と同様の方法で基板上にケイ素の組成(濃度wt%)
が種々異なるSi−Ti−C−Nから成る四元合金膜を
形成した。そして、基板上に形成された各Si−Ti−
C−N合金膜の夫々について比抵抗値と、抵抗温度係数
と、温度500℃、窒素ガス中において60分間焼鈍
し、焼鈍前後の抵抗値変化率を測定し、その結果を図3
に夫々曲線として示した。
Instead of a nitrogen gas atmosphere in the vacuum processing chamber atmosphere when forming the alloy film, acetylene gas as a carbon component and nitrogen gas as a nitrogen component are introduced to introduce a mixed gas atmosphere of nitrogen and carbon (partial pressure 1: 1). The composition of silicon (concentration wt%) on the substrate was the same as in Example 1 except that
Formed a quaternary alloy film composed of various Si-Ti-C-N. Then, each Si-Ti- formed on the substrate
For each of the C—N alloy films, the specific resistance value, the resistance temperature coefficient, and the temperature of 500 ° C. were annealed in nitrogen gas for 60 minutes, and the resistance value change rate before and after the annealing was measured.
Are shown as curves respectively.

【0021】図3から明らかなように、ケイ素の添加に
より、従来のNi−Cr合金の比抵抗値(0.1mΩc
m)の3倍以上の比抵抗値が得られ、また、ケイ素量の
濃度に対する比抵抗値の変化も緩やかであり、また、ケ
イ素濃度が5〜35wt%において抵抗温度係数が±1
00ppm/Kと良好な値の抵抗膜が容易に得られ、ま
た、ケイ素の添加により耐熱性が改善され、温度500
℃、窒素ガス中において60分間焼鈍し、焼鈍前後の抵
抗値変化率が小さいことが分かった。
As is apparent from FIG. 3, by adding silicon, the specific resistance value (0.1 mΩc) of the conventional Ni-Cr alloy was obtained.
m), which is more than 3 times the specific resistance value, and the change in the specific resistance value with respect to the concentration of silicon is gradual, and the temperature coefficient of resistance is ± 1 when the silicon concentration is 5 to 35 wt%.
A resistance film with a good value of 00 ppm / K can be easily obtained, and the addition of silicon improves the heat resistance, resulting in a temperature of 500
It was found that the rate of change in resistance before and after annealing was small after annealing at 60 ° C. in nitrogen gas for 60 minutes.

【0022】実施例4 本実施例は活性化反応性蒸着法により基板上にSi−Z
r−Nから成る三元合金膜を形成する1例である。
Example 4 In this example, Si-Z is formed on a substrate by an activated reactive vapor deposition method.
This is an example of forming a ternary alloy film made of r-N.

【0023】遷移金属としてチタンの代わりにジルコニ
ウム(Zr)を用いた以外は、前記実施例1と同様の方
法で基板上にケイ素の組成(濃度wt%)が種々異なる
Si−Zr−Nから成る三元合金膜を形成した。そし
て、基板上に形成された各Si−Zr−N合金膜の夫々
について電気的特性として比抵抗値と、抵抗温度係数
と、温度500℃、窒素ガス中において60分間焼鈍
し、焼鈍前後の抵抗値変化率を測定し、その結果を図4
に夫々曲線として示した。
Except that zirconium (Zr) was used as the transition metal instead of titanium, Si-Zr-N having different silicon compositions (concentration wt%) was formed on the substrate in the same manner as in Example 1 above. A ternary alloy film was formed. Then, for each of the Si-Zr-N alloy films formed on the substrate, the electrical resistance is a specific resistance value, a temperature coefficient of resistance, a temperature of 500 [deg.] C., annealed in nitrogen gas for 60 minutes, and the resistance before and after annealing The rate of change in value was measured and the results are shown in Fig. 4.
Are shown as curves respectively.

【0024】図4から明らかなように、ケイ素の添加に
より、従来のNi−Cr合金の比抵抗値(0.1mΩc
m)の3倍以上の比抵抗値が得られ、また、ケイ素量の
濃度に対する比抵抗値の変化も緩やかであり、また、ケ
イ素濃度が10〜40wt%において抵抗温度係数が±
100ppm/Kと良好な値の抵抗膜が容易に得られ、
また、ケイ素の添加により耐熱性が改善され、温度50
0℃、窒素中における抵抗値変化率が小さいことが分か
った。
As is apparent from FIG. 4, by adding silicon, the specific resistance value (0.1 mΩc) of the conventional Ni-Cr alloy was obtained.
m), which is more than 3 times the specific resistance value, and the change in the specific resistance value with respect to the concentration of silicon is gradual. Further, when the silicon concentration is 10 to 40 wt%, the resistance temperature coefficient is ±.
A resistive film with a good value of 100 ppm / K can be easily obtained,
In addition, the addition of silicon improves the heat resistance, and
It was found that the rate of change in resistance at 0 ° C. in nitrogen was small.

【0025】実施例5 本実施例は活性化反応性蒸着法により基板上にSi−Z
r−C−Nから成る四元合金膜を形成する場合の1例で
ある。
Example 5 In this example, Si-Z is formed on a substrate by the activated reactive vapor deposition method.
This is an example of forming a quaternary alloy film made of r-C-N.

【0026】遷移金属としてチタンの代わりにジルコニ
ウム(Zr)を用い、また合金膜の形成時の真空処理室
内雰囲気を窒素ガス雰囲気の代わりに炭素成分としてア
セチレンガスと、窒素成分として窒素ガスを導入して窒
素と炭素の混合ガス雰囲気(分圧1:1)とした以外
は、前記実施例1と同様の方法で基板上にケイ素の組成
(濃度wt%)が種々異なるSi−Zr−C−Nから成
る四元合金膜を形成した。そして、基板上に形成された
各Si−Zr−C−N合金膜の夫々について電気的特性
として比抵抗値と、抵抗温度係数と、温度500℃、窒
素ガス中において60分間焼鈍し、焼鈍前後の抵抗値変
化率を測定し、その結果を図5に夫々曲線として示し
た。
Zirconium (Zr) was used as the transition metal instead of titanium, and the atmosphere in the vacuum processing chamber at the time of forming the alloy film was replaced by acetylene gas as the carbon component and nitrogen gas as the nitrogen component instead of the nitrogen gas atmosphere. Except that a mixed gas atmosphere of nitrogen and carbon (partial pressure 1: 1) was used, the composition of silicon (concentration wt%) on the substrate was varied in the same manner as in Example 1 to obtain Si-Zr-CN. Was formed of a quaternary alloy film. Then, for each of the Si-Zr-C-N alloy films formed on the substrate, the electrical resistance is a specific resistance value, a resistance temperature coefficient, a temperature of 500 ° C, annealing is performed for 60 minutes in a nitrogen gas, and before and after annealing. The change rate of the resistance value was measured, and the results are shown as curves in FIG.

【0027】図5から明らかなように、ケイ素の添加に
より、従来のNi−Cr合金の比抵抗値(0.1mΩc
m)の3倍以上の比抵抗値が得られ、また、ケイ素量の
濃度に対する比抵抗値の変化も緩やかであり、また、ケ
イ素濃度が5〜50wt%において抵抗温度係数が±1
00ppm/Kと良好な値の抵抗膜が容易に得られ、ま
た、ケイ素の添加により耐熱性が改善され、温度500
℃、窒素中における抵抗値変化率が小さいことが分かっ
た。
As is apparent from FIG. 5, by adding silicon, the specific resistance value (0.1 mΩc) of the conventional Ni-Cr alloy was obtained.
m), which is more than 3 times the specific resistance, and the change in the specific resistance with respect to the concentration of silicon is gradual, and the temperature coefficient of resistance is ± 1 when the silicon concentration is 5 to 50 wt%.
A resistance film with a good value of 00 ppm / K can be easily obtained, and the addition of silicon improves the heat resistance, resulting in a temperature of 500
It was found that the rate of change in resistance was small at ℃ and nitrogen.

【0028】実施例6 遷移金属としてチタンの代わりにジルコニウム(Zr)
を用い、また合金膜の形成時の真空処理室内雰囲気を窒
素ガス雰囲気の代わりに炭素成分としてアセチレンガス
を用い、真空処理室内の圧力を4×10- 4Torrの炭素
ガス雰囲気とした以外は,前記実施例1と同様の方法で
基板上にケイ素の組成(濃度wt%)が種々異なるSi
−Zr−Cから成る三元合金膜を形成した。
Example 6 Zirconium (Zr) instead of titanium as the transition metal
The use and the vacuum processing chamber atmosphere during the formation of the alloy film acetylene gas used as the carbon component in place of the nitrogen gas atmosphere, the pressure in the vacuum processing chamber 4 × 10 - except that the 4 Torr carbon gas atmosphere is Si having different silicon compositions (concentration wt%) was formed on the substrate in the same manner as in Example 1.
A ternary alloy film of -Zr-C was formed.

【0029】そして、基板上に形成された各Si−Zr
−C合金膜の夫々について電気的特性として比抵抗値
と、抵抗温度係数と、温度500℃、窒素ガス中におい
て60分間焼鈍し、焼鈍前後の抵抗値変化率を測定した
ところ、ケイ素濃度が25〜55wt%において抵抗温
度係数はいずれも±500ppm/K以内であり、ま
た、抵抗値変化率はいずれも±10%以内であり、ま
た、比抵抗はいずれも0.9mΩcm以上と極めて高かっ
た。従って、Si−Zr−C合金膜を用いれば極めて高
い比抵抗を容易に得られることが分かった。
Then, each Si-Zr formed on the substrate
The electrical resistance of each of the -C alloy films was a specific resistance value, a resistance temperature coefficient, and an annealing temperature of 500 ° C in nitrogen gas for 60 minutes, and the rate of change in the resistance value before and after the annealing was measured. At .about.55 wt%, the temperature coefficient of resistance was within ± 500 ppm / K, the rate of change in resistance was within ± 10%, and the specific resistance was extremely high at 0.9 mΩcm or more. Therefore, it was found that an extremely high specific resistance can be easily obtained by using the Si-Zr-C alloy film.

【0030】実施例7 基板上にSi−Ti−N合金膜を形成する方法として活
性化反応性蒸着法の代わりに反応性蒸着法を用いた以外
は、前記実施例1と同様の方法でケイ素の組成(濃度w
t%)の異なるSi−Ti−Nから成る三元合金膜を形
成した。
Example 7 Silicon was prepared in the same manner as in Example 1 except that the reactive vapor deposition method was used instead of the activated reactive vapor deposition method as the method for forming the Si-Ti-N alloy film on the substrate. Composition (concentration w
A ternary alloy film composed of Si-Ti-N different in t%) was formed.

【0031】そして、基板上に形成された核Si−Ti
−N合金膜の夫々について電気的特性として比抵抗値
と、抵抗温度係数と、温度500℃、窒素ガス中におい
て60分間焼鈍し、焼鈍前後の抵抗値変化率を測定した
ところ、比抵抗はいずれもNi−Crの3倍以上であ
り、また、抵抗温度係数はいずれも±100ppm/K
以内であり、また、抵抗値変化率はいずれも±10%以
内であった。
Then, the nucleus Si--Ti formed on the substrate
The electrical resistance of each of the -N alloy films was measured as a specific resistance value, a resistance temperature coefficient, and a temperature change of 500 ° C in a nitrogen gas for 60 minutes, and the resistance change rate before and after the annealing was measured. Is more than three times that of Ni-Cr, and the temperature coefficient of resistance is ± 100 ppm / K
And the rate of change in resistance was within ± 10%.

【0032】実施例8 基板上にSi−Ti−N合金膜を形成する方法として活
性化反応性蒸着法の代わりにHCD(中空陰極放電)法
によるイオンプレーティング法を用いた以外は、前記実
施例1と同様の方法でケイ素の組成(濃度wt%)の異
なるSi−Ti−Nから成る三元合金膜を形成した。
Example 8 The above-mentioned embodiment was carried out except that the ion plating method by the HCD (hollow cathode discharge) method was used instead of the activated reactive vapor deposition method as the method for forming the Si-Ti-N alloy film on the substrate. In the same manner as in Example 1, a ternary alloy film made of Si—Ti—N having different silicon composition (concentration wt%) was formed.

【0033】そして、基板上に形成された核Si−Ti
−N合金膜の夫々について電気的特性として比抵抗値
と、抵抗温度係数と、温度500℃、窒素ガス中におい
て60分間焼鈍し、焼鈍前後の抵抗値変化率を測定した
ところ、比抵抗はいずれもNi−Cr合金の比抵抗値の
3倍以上であり、また、抵抗温度係数はいずれも±10
0ppm/K以内であり、また、抵抗値変化率はいずれ
も±10%以内であった。
Then, the nucleus Si--Ti formed on the substrate
The electrical resistance of each of the -N alloy films was measured as a specific resistance value, a resistance temperature coefficient, and a temperature change of 500 ° C in a nitrogen gas for 60 minutes, and the resistance change rate before and after the annealing was measured. Is more than three times the specific resistance value of the Ni-Cr alloy, and the temperature coefficient of resistance is ± 10 for both.
It was within 0 ppm / K, and the rate of change in resistance was within ± 10%.

【0034】実施例9 基板上にSi−Ti−N合金膜を形成する方法として活
性化反応性蒸着法の代わりにシランと四塩化チタンおよ
び窒素を原料ガスとしたCVD法を用いた以外は、前記
実施例1と同様の方法でケイ素の組成(濃度wt%)の
異なるSi−Ti−Nから成る三元合金膜を形成した。
Example 9 As a method for forming a Si-Ti-N alloy film on a substrate, a CVD method using silane, titanium tetrachloride and nitrogen as source gases was used instead of the activated reactive vapor deposition method. A ternary alloy film made of Si—Ti—N having different silicon compositions (concentration wt%) was formed in the same manner as in Example 1.

【0035】そして、基板上に形成された核Si−Ti
−N合金膜の夫々について電気的特性として比抵抗値
と、抵抗温度係数と、温度500℃、窒素ガス中におい
て60分間焼鈍し、焼鈍前後の抵抗値変化率を測定した
ところ、比抵抗はいずれもNi−Crの3倍以上であ
り、また、抵抗温度係数はいずれも±100ppm/K
以内であり、また、抵抗値変化率はいずれも±10%以
内であった。
Then, the nuclei Si--Ti formed on the substrate
The electrical resistance of each of the -N alloy films was measured as a specific resistance value, a resistance temperature coefficient, and a temperature change of 500 ° C in a nitrogen gas for 60 minutes, and the resistance change rate before and after the annealing was measured. Is more than three times that of Ni-Cr, and the temperature coefficient of resistance is ± 100 ppm / K
And the rate of change in resistance was within ± 10%.

【0036】実施例10 本実施例はチタンとケイ素の合金ターゲットを用い、窒
素成分を含むプラズマ中でスパッタ法により基板上にS
i−Ti−Nから成る三元合金膜を形成する1例であ
る。
Example 10 In this example, an alloy target of titanium and silicon was used, and S was sputtered on the substrate by a sputtering method in plasma containing a nitrogen component.
This is an example of forming a ternary alloy film made of i-Ti-N.

【0037】先ず、真空処理室(図示せず)内の上方に
配設した基板保持装置(図示せず)にガラス製の基板
(図示せず)を保持し、該真空処理室内の下方に配設し
たマグネトロンカソード(図示せず)上にチタン(T
i)にケイ素(Si)を20wt%、30wt%、40
wt%ドープしたターゲット材のいずれかを載置した。
次に、真空処理室内を真空度1×10- 5Torr以下に設
定した後、真空処理室内が5×10- 3Torrとなるよう
にアルゴンと窒素成分として窒素ガスを導入すると共
に、RF電力を印加して真空処理室内を窒素成分のプラ
ズマ雰囲気とした。
First, a glass substrate (not shown) is held by a substrate holding device (not shown) provided above the vacuum processing chamber (not shown), and the glass substrate (not shown) is placed below the vacuum processing chamber. On the magnetron cathode (not shown) provided, titanium (T
i) silicon (Si) 20 wt%, 30 wt%, 40
Either of the wt% doped target materials was placed.
Then, the vacuum processing chamber vacuum 1 × 10 - After setting below 5 Torr, the vacuum processing chamber 5 × 10 - while introducing nitrogen gas as argon and nitrogen component having a 3 Torr, the RF power A vacuum was applied to create a plasma atmosphere of a nitrogen component in the vacuum processing chamber.

【0038】続いて、ケイ素含有量の異なるターゲット
材の夫々についてマグネトロンスパッタ法によりスパッ
タリングし、基板上にケイ素の組成が種々異なる膜厚
0.5μmのSi−Ti−Nから成る合金膜を形成し
た。
Subsequently, target materials having different silicon contents were sputtered by magnetron sputtering to form alloy films of Si—Ti—N having different film thicknesses of 0.5 μm on the substrate. .

【0039】そして、基板上に形成された各Si−Ti
−N合金膜の夫々について電気的特性として比抵抗値
と、抵抗温度係数と、温度500℃、窒素ガス中におい
て60分間焼鈍し、焼鈍前後の抵抗値変化率を測定した
ところ、比抵抗値はいずれもNi−Crの3倍以上であ
り、また、抵抗温度係数はいずれも±100ppm/K
以内であり、また、抵抗値変化率はいずれも±10%以
内であった。
Then, each Si--Ti formed on the substrate
The specific resistance value, the resistance temperature coefficient, and the temperature change of the resistance value before and after the annealing were measured for 60 minutes in a nitrogen gas at a temperature of 500 ° C. for each of the −N alloy films as electrical characteristics. Both are more than 3 times as much as Ni-Cr, and the temperature coefficient of resistance is ± 100 ppm / K.
And the rate of change in resistance was within ± 10%.

【0040】実施例11 本実施例はチタンとケイ素と窒素の合金ターゲットを用
い、不活性ガスプラズマ中でスパッタ法により基板上に
Si−Ti−Nから成る三元合金膜を形成する1例であ
る。
Embodiment 11 This embodiment is an example of forming a ternary alloy film of Si--Ti--N on a substrate by sputtering in an inert gas plasma using an alloy target of titanium, silicon and nitrogen. is there.

【0041】先ず、チタン(Ti)にケイ素(Si)と
窒素(N)をドープしたターゲット材として、Ti−2
0wt%Si−18wt%N、Ti−30wt%Si−
15wt%N、Ti−40wt%Si−13wt%Nを
用意した。
First, Ti-2 was used as a target material in which titanium (Ti) was doped with silicon (Si) and nitrogen (N).
0 wt% Si-18 wt% N, Ti-30 wt% Si-
15 wt% N and Ti-40 wt% Si-13 wt% N were prepared.

【0042】次に、真空処理室(図示ぜす)内の上方に
配設した基板保持装置(図示せず)にガラス製の基板
(図示せず)を保持し、該真空処理室内の下方に配設し
たマグネトロンカソード(図示せず)上に前記ターゲッ
ト材のいずれかを載置した。続いて、真空処理室内の真
空度を1×10- 5Torr以下に設定した後、真空処理室
内が5×10- 3Torrとなるようにアルゴンガスを導入
すると共に、RF電力を印加して真空処理室内を不活性
ガスプラズマとし、ケイ素と窒素の組成量が異なるター
ゲット材の夫々についてマグネトロンスパッタ法により
スパッタリングし、基板上にケイ素と窒素量が種々異な
る膜厚0.5μmのSi−Ti−Nから成る三元合金膜
を形成した。
Next, a glass substrate (not shown) is held in a substrate holding device (not shown) arranged above the vacuum processing chamber (shown in the drawing), and the glass substrate (not shown) is held below the vacuum processing chamber. Any of the target materials was placed on the magnetron cathode (not shown) provided. Subsequently, the degree of vacuum in the vacuum processing chamber 1 × 10 - After setting below 5 Torr, the vacuum processing chamber 5 × 10 - as well as an argon gas is introduced so that the 3 Torr, vacuum was applied RF power An inert gas plasma was used in the processing chamber, and target materials having different composition amounts of silicon and nitrogen were sputtered by magnetron sputtering to produce Si-Ti-N films having different thicknesses of 0.5 μm on the substrate. A ternary alloy film was formed.

【0043】そして、基板上に形成された各Si−Ti
−N合金膜の夫々について電気的特性として比抵抗値
と、抵抗温度係数と、温度500℃、窒素ガス中におい
て60分間焼鈍し、焼鈍前後の抵抗値変化率を測定した
ところ、比抵抗値はいずれもNi−Crの3倍以上であ
り、また、抵抗温度係数はいずれも±100ppm/K
以内であり、また、抵抗値変化率はいずれも±10%以
内であった。
Then, each Si--Ti formed on the substrate
The specific resistance value, the resistance temperature coefficient, and the temperature change of the resistance value before and after the annealing were measured for 60 minutes in a nitrogen gas at a temperature of 500 ° C. for each of the −N alloy films as electrical characteristics. Both are more than 3 times as much as Ni-Cr, and the temperature coefficient of resistance is ± 100 ppm / K.
And the rate of change in resistance was within ± 10%.

【0044】本発明の抵抗膜の製造方法は前記実施例の
みに限定されるものではなく、Ti,Zrのうち少なく
とも1つの遷移金属と、窒素、炭素のうち少なくとも1
つの元素と、ケイ素から成り、ケイ素の組成が5〜60
wt%の合金膜を基板上に形成する場合には、反応性蒸
着法、活性化反応性蒸着法、イオンプレーティング法、
CVD法、スパッタ法のいずれかを選択し、これらの方
法の中で、窒素または/および炭素ガスの中で遷移金属
とケイ素を夫々の蒸発源より蒸発量を変化させながら加
熱蒸発させたり、或いは遷移金属とケイ素含有量の異な
るターゲットに窒素または/および炭素ガスプラズマ中
でスパツタリング、或いは遷移金属とケイ素含有量が異
なり、かつ窒素または/および炭素が含有されたターゲ
ットに不活性プラズマ中でスパッタリングを行うことに
より、遷移金属のいずれか1種類と、窒素、炭素、窒素
と炭素の混合元素のいずれか1種類とケイ素が任意の組
成比で組成された抵抗膜を形成することが出来る。
The method of manufacturing the resistance film of the present invention is not limited to the above-mentioned embodiment, and at least one transition metal of Ti and Zr and at least one of nitrogen and carbon can be used.
It consists of two elements and silicon, and the composition of silicon is 5-60.
When forming a wt% alloy film on a substrate, a reactive vapor deposition method, an activated reactive vapor deposition method, an ion plating method,
One of the CVD method and the sputtering method is selected, and in these methods, the transition metal and silicon are heated and vaporized in nitrogen or / and carbon gas while changing the vaporization amount from each vaporization source, or Sputtering of a target having a different transition metal and silicon content in a nitrogen or / and carbon gas plasma, or sputtering of a target having a different transition metal and silicon content and containing a nitrogen or / and carbon in an inert plasma. By doing so, it is possible to form a resistance film in which any one kind of transition metal, nitrogen, carbon, any one kind of mixed element of nitrogen and carbon, and silicon are composed at an arbitrary composition ratio.

【0045】本発明の抵抗膜の用途としては種々ある
が、その代表例を挙げると薄膜抵抗器、サーマルヘッド
の発熱抵抗体である。
There are various uses of the resistance film of the present invention. Typical examples thereof are a thin film resistor and a heating resistor of a thermal head.

【0046】また、本発明方法では抵抗膜の原料として
タンタル(Ta)のような高価な材料を用いないから、
低コストであって、電気的特性の優れた抵抗膜を作成す
ることが出来る。
Further, since the method of the present invention does not use an expensive material such as tantalum (Ta) as a raw material of the resistance film,
It is possible to form a resistive film that is low in cost and has excellent electrical characteristics.

【0047】[0047]

【発明の効果】このように本発明の抵抗膜によるとき
は、従来のNi−Cr合金膜の3倍以上の大きな比抵抗
値と、実用的な抵抗温度係数を有し、また、抵抗値変化
率が小さいので、比抵抗が高く、抵抗温度係数が小さ
く、熱安定性に優れているから、電子部品の小型化、高
集積化を図ることが出来る効果がある。
As described above, according to the resistance film of the present invention, it has a large specific resistance value which is three times or more that of the conventional Ni-Cr alloy film, a practical temperature coefficient of resistance, and a change in resistance value. Since the ratio is small, the specific resistance is high, the temperature coefficient of resistance is small, and the thermal stability is excellent. Therefore, there is an effect that the electronic component can be downsized and highly integrated.

【0048】また、本発明の抵抗膜の製造方法によると
きは、比抵抗が高く、抵抗温度係数が小さく、優れた熱
安定性を有する低コストの抵抗膜を容易に製造すること
が出来る効果がある。
Further, according to the method of manufacturing a resistance film of the present invention, it is possible to easily manufacture a low-cost resistance film having a high specific resistance, a small temperature coefficient of resistance, and excellent thermal stability. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Si−Ti−N膜中のケイ素濃度と電気的特
性との関係を示す特性線図、
FIG. 1 is a characteristic diagram showing a relationship between silicon concentration in a Si—Ti—N film and electrical characteristics,

【図2】 Si−Ti−C膜中のケイ素濃度と電気的特
性との関係を示す特性線図、
FIG. 2 is a characteristic diagram showing a relationship between silicon concentration in a Si—Ti—C film and electrical characteristics,

【図3】 Si−Ti−C−N膜中のケイ素濃度と電気
的特性との関係を示す特性線図、
FIG. 3 is a characteristic diagram showing the relationship between silicon concentration in a Si—Ti—C—N film and electrical characteristics,

【図4】 Si−Zr−N膜中のケイ素濃度と電気的特
性との関係を示す特性線図、
FIG. 4 is a characteristic diagram showing the relationship between silicon concentration in a Si—Zr—N film and electrical characteristics.

【図5】 Si−Zr−C−N膜中のケイ素濃度と電気
的特性の関係を示す特性線図。
FIG. 5 is a characteristic diagram showing the relationship between silicon concentration in a Si—Zr—C—N film and electrical characteristics.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ti,Zrから選択された少なくとも1
つの遷移金属と、窒素、炭素から選択された少なくとも
1つの元素と、ケイ素から成る合金であって、ケイ素の
組成が5〜60wt%であることを特徴とする抵抗膜。
1. At least one selected from Ti and Zr
A resistance film, which is an alloy composed of one transition metal, at least one element selected from nitrogen and carbon, and silicon, and has a silicon composition of 5 to 60 wt%.
【請求項2】 窒素成分を含むガス雰囲気中、或いは炭
素成分を含むガス雰囲気中、或いは窒素と炭素の混合成
分を含むガス雰囲気中で、夫々独立した蒸発源からT
i,Zrから選択された少なくとも1つの遷移金属とケ
イ素を同時に蒸発させ、反応性蒸着法、活性化反応性蒸
着法、イオンプレーティング法、CVD法のいずれかの
方法で基板上にTi,Zrから選択された少なくとも1
つの遷移金属と、窒素、炭素から選択された少なくとも
1つの元素と、ケイ素から成り、ケイ素の組成が5〜6
0wt%である合金膜を形成することを特徴とする抵抗
膜の製造方法。
2. In a gas atmosphere containing a nitrogen component, a gas atmosphere containing a carbon component, or a gas atmosphere containing a mixed component of nitrogen and carbon, T is supplied from an independent evaporation source.
At least one transition metal selected from i and Zr and silicon are simultaneously vaporized, and Ti or Zr is deposited on the substrate by any one of reactive vapor deposition method, activated reactive vapor deposition method, ion plating method and CVD method. At least one selected from
One transition metal, at least one element selected from nitrogen and carbon, and silicon, and the composition of silicon is 5 to 6
A method of manufacturing a resistance film, which comprises forming an alloy film of 0 wt%.
【請求項3】 窒素成分を含むプラズマ中、或いは炭素
成分を含むプラズマ中、或いは窒素と炭素の混合成分を
含むプラズマ中で、Ti,Zrから選択された少なくと
も1つの遷移金属とケイ素を含むターゲットを用い、ス
パツタ法により該ターゲットにスパッタリングして基板
上にTi,Zrから選択された少なくとも1つの遷移金
属と、窒素、炭素から選択された少なくとも1つの元素
と、ケイ素から成り、ケイ素の組成が5〜60wt%で
ある合金膜を形成することを特徴とする抵抗膜の形成方
法。
3. A target containing silicon and at least one transition metal selected from Ti and Zr in a plasma containing a nitrogen component, a plasma containing a carbon component, or a plasma containing a mixed component of nitrogen and carbon. Is sputtered on the target by a sputtering method, and at least one transition metal selected from Ti and Zr on the substrate, at least one element selected from nitrogen and carbon, and silicon. A method of forming a resistance film, which comprises forming an alloy film of 5 to 60 wt%.
【請求項4】 不活性ガスプラズマ中で、Ti,Zrか
ら選択された少なくとも1つの遷移金属と、ケイ素と、
窒素、炭素から選択された1つの元素とから成る三元合
金、或いは四元合金のターゲットを用い、スパッタ法に
より該ターゲットにスパッタリングして基板上にTi,
Zrから選択された1つの遷移金属と、窒素、炭素から
選択された少なくとも1つの元素と、ケイ素から成り、
ケイ素が5〜60wt%である合金膜を形成することを
特徴とする抵抗膜の製造方法。
4. At least one transition metal selected from Ti and Zr in an inert gas plasma, and silicon.
A target of a ternary alloy or a quaternary alloy consisting of one element selected from nitrogen and carbon is used, and the target is sputtered by a sputtering method to form Ti on the substrate.
Consisting of one transition metal selected from Zr, at least one element selected from nitrogen and carbon, and silicon,
A method of manufacturing a resistance film, comprising forming an alloy film containing 5 to 60 wt% of silicon.
JP30723892A 1992-11-17 1992-11-17 Resistance film and production thereof Pending JPH06158272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30723892A JPH06158272A (en) 1992-11-17 1992-11-17 Resistance film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30723892A JPH06158272A (en) 1992-11-17 1992-11-17 Resistance film and production thereof

Publications (1)

Publication Number Publication Date
JPH06158272A true JPH06158272A (en) 1994-06-07

Family

ID=17966703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30723892A Pending JPH06158272A (en) 1992-11-17 1992-11-17 Resistance film and production thereof

Country Status (1)

Country Link
JP (1) JPH06158272A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335834C2 (en) * 1993-10-12 2003-05-28 Gold Star Electronics Non-volatile memory cell with an L-shaped floating gate electrode and method for its production
DE102004014466B4 (en) * 2003-03-25 2011-05-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Use of a hard material layer as coating of a sliding component for a hydraulic component in an aqueous environment
WO2013129638A1 (en) * 2012-02-28 2013-09-06 三菱マテリアル株式会社 Metal nitride material for thermistor, method for producing same, and film thermistor sensor
WO2013129680A1 (en) * 2012-02-28 2013-09-06 三菱マテリアル株式会社 Metal nitride material for thermistor, method for producing same, and film thermistor sensor
JP2013211434A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Metal nitride film for thermistor and method of manufacturing the same, and film type thermistor sensor
WO2014097910A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097883A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097949A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097891A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014196649A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196486A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196583A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196488A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2015012413A1 (en) * 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
WO2015012414A1 (en) * 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
CN104425089A (en) * 2013-08-30 2015-03-18 三菱综合材料株式会社 Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP2015220325A (en) * 2014-05-16 2015-12-07 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film-type thermistor sensor
RU2720003C1 (en) * 2019-09-16 2020-04-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method of producing multilayer coating for cutting tools

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335834C2 (en) * 1993-10-12 2003-05-28 Gold Star Electronics Non-volatile memory cell with an L-shaped floating gate electrode and method for its production
DE102004014466B4 (en) * 2003-03-25 2011-05-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Use of a hard material layer as coating of a sliding component for a hydraulic component in an aqueous environment
US9905341B2 (en) 2012-02-28 2018-02-27 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
KR20140136434A (en) * 2012-02-28 2014-11-28 미쓰비시 마테리알 가부시키가이샤 Metal nitride material for thermistor, method for producing same, and film thermistor sensor
JP2013179162A (en) * 2012-02-28 2013-09-09 Mitsubishi Materials Corp Metal nitride material for thermistor and method of manufacturing the same, and film type thermistor sensor
JP2013179161A (en) * 2012-02-28 2013-09-09 Mitsubishi Materials Corp Metal nitride material for thermistor and method of manufacturing the same, and film type thermistor sensor
CN104040647B (en) * 2012-02-28 2017-03-08 三菱综合材料株式会社 Thermistor metal nitride materials and its manufacture method and film-type thermistor (temperature) sensor
WO2013129680A1 (en) * 2012-02-28 2013-09-06 三菱マテリアル株式会社 Metal nitride material for thermistor, method for producing same, and film thermistor sensor
WO2013129638A1 (en) * 2012-02-28 2013-09-06 三菱マテリアル株式会社 Metal nitride material for thermistor, method for producing same, and film thermistor sensor
US9852829B2 (en) 2012-02-28 2017-12-26 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film thermistor sensor
KR20140138658A (en) * 2012-02-28 2014-12-04 미쓰비시 마테리알 가부시키가이샤 Metal nitride material for thermistor, method for producing same, and film thermistor sensor
CN104040647A (en) * 2012-02-28 2014-09-10 三菱综合材料株式会社 Metal nitride material for thermistor, method for producing same, and film thermistor sensor
JP2013211434A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Metal nitride film for thermistor and method of manufacturing the same, and film type thermistor sensor
WO2014097883A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
JP2014122388A (en) * 2012-12-21 2014-07-03 Mitsubishi Materials Corp Metallic nitride material for thermistor, production method thereof, and film type thermistor sensor
CN104797734A (en) * 2012-12-21 2015-07-22 三菱综合材料株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
US9905342B2 (en) 2012-12-21 2018-02-27 Mitsubishi Materials Corporation Thermistor method made of metal nitride material, method for producing same, and film type thermistor sensor
US9903013B2 (en) 2012-12-21 2018-02-27 Mitsubishi Materials Corporation Thermistor made of metal nitride material, method for producing same, and film type thermistor sensor
US9863035B2 (en) 2012-12-21 2018-01-09 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
WO2014097891A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097949A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
US9831019B2 (en) 2012-12-21 2017-11-28 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
WO2014097910A1 (en) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
JP2014236205A (en) * 2013-06-05 2014-12-15 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
WO2014196486A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196649A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
CN105144309A (en) * 2013-06-05 2015-12-09 三菱综合材料株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
CN105144310A (en) * 2013-06-05 2015-12-09 三菱综合材料株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196583A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196488A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
US9754706B2 (en) 2013-06-05 2017-09-05 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP2014236204A (en) * 2013-06-05 2014-12-15 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
US9842675B2 (en) 2013-06-05 2017-12-12 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
WO2015012413A1 (en) * 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
WO2015012414A1 (en) * 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
CN105210161A (en) * 2013-07-25 2015-12-30 三菱综合材料株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
US10054497B2 (en) 2013-07-25 2018-08-21 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film-type thermistor sensor
CN104425089A (en) * 2013-08-30 2015-03-18 三菱综合材料株式会社 Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP2015220325A (en) * 2014-05-16 2015-12-07 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film-type thermistor sensor
RU2720003C1 (en) * 2019-09-16 2020-04-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method of producing multilayer coating for cutting tools

Similar Documents

Publication Publication Date Title
JPH06158272A (en) Resistance film and production thereof
US4414274A (en) Thin film electrical resistors and process of producing the same
JPS6323305A (en) Highly stable metal film and manufacture of the same
US4172718A (en) Ta-containing amorphous alloy layers and process for producing the same
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
Van Den Broek et al. Metal film precision resistors: resistive metal films and a new resistor concept
JPS5955001A (en) Resistor
JPS634321B2 (en)
US5543208A (en) Resistive film
JPH06112009A (en) High resistance film and manufacture thereof
WO2022210428A1 (en) Cr-si film
JPH04370901A (en) Electric resistance material
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
US3315208A (en) Nitrogen stabilized titanium thin film resistor and method of making same
JPH05171417A (en) Manufacture of tantalum metallic thin film
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JPH0620803A (en) Thin film resistor and manufacture thereof
JPH0344007A (en) Manufacture of thin film resistor
JPH06275409A (en) Manufacture of thin-film resistive element
EP2100313B1 (en) High resistivity thin film composition and fabrication method
JPS6024562B2 (en) resistive thin film
JPS6395601A (en) Resistance thin film
JPS634322B2 (en)
JPH07120573B2 (en) Method for manufacturing amorphous binary alloy thin film resistor
JPH047561B2 (en)