JP4895481B2 - Resistance thin film and sputtering target for forming the resistance thin film - Google Patents

Resistance thin film and sputtering target for forming the resistance thin film Download PDF

Info

Publication number
JP4895481B2
JP4895481B2 JP2004108754A JP2004108754A JP4895481B2 JP 4895481 B2 JP4895481 B2 JP 4895481B2 JP 2004108754 A JP2004108754 A JP 2004108754A JP 2004108754 A JP2004108754 A JP 2004108754A JP 4895481 B2 JP4895481 B2 JP 4895481B2
Authority
JP
Japan
Prior art keywords
thin film
mass
resistance
rare earth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004108754A
Other languages
Japanese (ja)
Other versions
JP2005294612A (en
JP2005294612A5 (en
Inventor
敏行 大迫
巌 佐藤
敏夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004108754A priority Critical patent/JP4895481B2/en
Priority to CNB2004100900571A priority patent/CN1321206C/en
Priority to TW93133312A priority patent/TWI250218B/en
Publication of JP2005294612A publication Critical patent/JP2005294612A/en
Publication of JP2005294612A5 publication Critical patent/JP2005294612A5/ja
Application granted granted Critical
Publication of JP4895481B2 publication Critical patent/JP4895481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、電子部品の薄膜抵抗器に用いられる抵抗薄膜およびその製造方法、並びに、この抵抗薄膜を形成するためのスパッタリングターゲットに関する。 The present invention relates to a resistive thin film used for a thin film resistor of an electronic component, a manufacturing method thereof, and a sputtering target for forming the resistive thin film.

チップ抵抗器、精密抵抗器、ネットワーク抵抗器、高圧抵抗器などの抵抗器、測温抵抗体、感温抵抗器などの温度センサ、およびハイブリットICとその複合モジュール製品などの電子部品には、抵抗薄膜を使用した薄膜抵抗器が用いられている。   Resistors such as chip resistors, precision resistors, network resistors, high-voltage resistors, temperature sensors such as resistance temperature detectors, temperature sensitive resistors, and electronic components such as hybrid ICs and their combined module products Thin film resistors using thin films are used.

この薄膜抵抗器においては、多くの場合、抵抗薄膜を作製するための金属抵抗体材料として、Ta金属、TaN化合物、Ni−Cr合金が用いられており、中でもNi−Cr合金が、最も一般的に用いられている。   In this thin film resistor, Ta metal, TaN compound, and Ni—Cr alloy are often used as a metal resistor material for producing a resistive thin film, and Ni—Cr alloy is the most common. It is used for.

薄膜抵抗器では、その用途によっては、高温保持における経時的抵抗変化率が小さく、非常に安定であるという高温安定性と、抵抗温度係数(TCR)とが、重要な特性となる。このため、薄膜抵抗器の材料である金属抵抗体材料がこれらの特性を実現する必要がある。一般に、NiおよびCrのみからなる2元系合金の場合は、Ni/Crの比を変え、高温安定性と抵抗温度係数の制御を行う。しかし、抵抗値が高温で安定であること、および抵抗温度係数がほぼ0であることを、同時に実現することは困難である。そのため、特許第2542504号公報および特開平6−20803号公報に記載されるように、Ni−Cr−Al−Si合金のように4元素合金とすることにより、特性の改善が検討されてきた。   In a thin film resistor, depending on the application, the high temperature stability and the temperature coefficient of resistance (TCR) that are very stable and the resistance temperature coefficient (TCR) are important characteristics. For this reason, it is necessary for the metal resistor material, which is the material of the thin film resistor, to realize these characteristics. In general, in the case of a binary alloy composed only of Ni and Cr, the Ni / Cr ratio is changed to control the high temperature stability and the resistance temperature coefficient. However, it is difficult to simultaneously realize that the resistance value is stable at a high temperature and that the resistance temperature coefficient is substantially zero. Therefore, as described in Japanese Patent No. 25542504 and Japanese Patent Laid-Open No. 6-20803, improvement of characteristics has been studied by using a four-element alloy such as a Ni—Cr—Al—Si alloy.

しかしながら、一般に抵抗薄膜はスパッタリングにより成膜するが、このNi−Cr−Al−Si合金のようにAlを添加することによって鋳造性が悪化し、ターゲットの製造コストを上昇させる要因となっている。
特許第2542504号公報 特開平6−20803号公報
However, in general, the resistance thin film is formed by sputtering. However, by adding Al like this Ni-Cr-Al-Si alloy, the castability is deteriorated, which increases the manufacturing cost of the target.
Japanese Patent No. 25542504 Japanese Patent Laid-Open No. 6-20803

本発明は、従来のNi−Cr−Si系合金にAlを添加することなく、高い高温安定性と良好な抵抗温度特性を有する電子部品用抵抗薄膜、および該電子部品用抵抗薄膜を形成するためのスパッタリングターゲットを提供することを目的とする。 The present invention, without the addition of Al to a conventional Ni-Cr-Si alloy for electronic components resistive film, and to form the electronic component resistor thin film has a high temperature stability and good resistance temperature characteristic An object of the present invention is to provide a sputtering target.

本発明の電子部品用抵抗薄膜は、Si:0.2〜5.0質量%、希土類元素:0.01〜0.5質量%を含み、残部がCrおよびNiからなり、Cr/Ni比が質量で0.51〜1.1であって、大気中において、温度200〜500℃で、1〜10時間の条件で熱処理が施されていることにより、抵抗温度係数が±9ppm/℃以内であり、かつ、175℃で2000時間保持した場合の高温抵抗変化率が0.24%以下であることを特徴とする。 The resistive thin film for electronic parts of the present invention contains Si: 0.2 to 5.0 mass%, rare earth element: 0.01 to 0.5 mass%, the balance is made of Cr and Ni, and the Cr / Ni ratio is The mass temperature is 0.51 to 1.1, and the temperature coefficient of resistance is within ± 9 ppm / ° C. in the air at a temperature of 200 to 500 ° C. under conditions of 1 to 10 hours. And the high temperature resistance change rate when held at 175 ° C. for 2000 hours is 0.24 % or less.

本明細書における希土類元素とは、Yおよびランタノイド(典型的には、ランタン、セリウム)があげられるが、これらの中から1種類または2種類以上を選び、添加することができる。また、セリウム族希土類元素の混合物であるミッシュメタルを使用することもできる。   In this specification, the rare earth elements include Y and lanthanoids (typically lanthanum and cerium), and one or more of them can be selected and added. Misch metal which is a mixture of cerium group rare earth elements can also be used.

本発明の電子部品用抵抗薄膜を形成するためのスパッタリングターゲットは、Si:0.2〜5.0質量%、希土類元素:0.01〜0.5質量%を含み、残部がCrおよびNiからなり、Cr/Ni比が質量で0.51〜1.1である。その組成は、前記抵抗薄膜材料に実質的に同じである。 The sputtering target for forming the resistive thin film for electronic parts of the present invention contains Si: 0.2 to 5.0 mass%, rare earth element: 0.01 to 0.5 mass%, and the balance is made of Cr and Ni. becomes, Cr / Ni ratio is 0.51 to 1.1 mass. Its composition is substantially the same as the resistive thin film material.

かかるスパッタリングターゲットを用いて、スパッタリング法により、絶縁基板上に、Ni−Cr−Si−希土類元素合金からなる抵抗薄膜を生成させる。その後、前記抵抗薄膜が形成された基板に、大気中において、温度200℃〜500℃で、1〜10時間の条件で熱処理を行なうことにより、高い高温安定性と良好な抵抗温度特性を備えた抵抗薄膜を得ることができる。かかる抵抗薄膜を用いることで、高温での抵抗変化率が小さく、同時に抵抗温度特性がほぼ0である薄膜抵抗器を得ることができる。   Using such a sputtering target, a resistive thin film made of a Ni—Cr—Si—rare earth element alloy is formed on an insulating substrate by sputtering. Thereafter, the substrate on which the resistance thin film was formed was heat treated in the atmosphere at a temperature of 200 ° C. to 500 ° C. for 1 to 10 hours, thereby providing high temperature stability and good resistance temperature characteristics. A resistive thin film can be obtained. By using such a resistance thin film, it is possible to obtain a thin film resistor having a small resistance change rate at a high temperature and at the same time having a resistance temperature characteristic of almost zero.

本発明のスパッタリングターゲットを用いて、抵抗薄膜を作製した場合、真空中で成膜されたままの抵抗薄膜は、抵抗温度係数が負に大きく、また高温における抵抗安定性が不十分である。当該抵抗薄膜にそれぞれの組成に応じて設定される熱処理を実施することで、抵抗薄膜の抵抗温度係数を、安定的に±ppm/℃以内とすることが可能となる。さらに、本発明の抵抗薄膜に大気中で熱処理をすることによって、抵抗薄膜表面に緻密な酸化膜が形成され、高温で安定な抵抗薄膜も得られる。かかる抵抗薄膜を用いた薄膜抵抗器は、従来のNi−Cr−Al−Si系合金で達成する高温における抵抗安定性および良好な抵抗温度特性が得られ、その結果、厳しい高温環境下で使用される電子部品に適するという顕著な効果を有する。また、Alを含まない鋳造性のよい組成であるため、真空溶解・鋳造する合金ターゲットの生産性が改善される効果も有する。 When a resistive thin film is produced using the sputtering target of the present invention, the resistive thin film as it is formed in a vacuum has a large negative temperature coefficient of resistance and insufficient resistance stability at high temperatures. By performing heat treatment that is set according to the composition of the resistance thin film, the resistance temperature coefficient of the resistance thin film can be stably within ± 9 ppm / ° C. Further, by subjecting the resistive thin film of the present invention to heat treatment in the atmosphere, a dense oxide film is formed on the surface of the resistive thin film, and a resistive thin film that is stable at high temperatures can also be obtained. A thin film resistor using such a resistance thin film has obtained resistance stability at a high temperature and good resistance temperature characteristics achieved by a conventional Ni-Cr-Al-Si alloy, and as a result, is used in a severe high temperature environment. It has a remarkable effect that it is suitable for electronic components. In addition, since the composition does not contain Al and has good castability, it also has an effect of improving the productivity of an alloy target that is vacuum melted and cast.

発明者等は、鋭意、研究を重ねた結果、従来の抵抗薄膜材料として使用されているNi−Cr−Si系合金に特定の元素の希土類元素成分を添加することにより、当該抵抗薄膜材料をスパッタリングターゲットとして用いて、抵抗薄膜を基板上に形成した薄膜抵抗器において、抵抗温度係数がほぼ0で、高温における抵抗変化率をNi−Cr−Al−Si合金レベルと同等以下に抑えることができることを見いだし、本発明を完成させた。   As a result of intensive research, the inventors have sputtered the resistive thin film material by adding a rare earth element component of a specific element to a Ni-Cr-Si alloy used as a conventional resistive thin film material. In a thin film resistor having a resistive thin film formed on a substrate as a target, the resistance temperature coefficient is almost 0, and the rate of change in resistance at high temperatures can be suppressed to a level equal to or lower than the Ni-Cr-Al-Si alloy level. As a result, the present invention has been completed.

本発明の抵抗薄膜は、Cr/Ni比が質量で0.51〜1.1であるNi−Cr合金からなり、Siを0.2〜5.0質量%、希土類元素を0.01〜0.5質量%、それぞれ含有している。 The resistive thin film of the present invention is made of a Ni—Cr alloy having a Cr / Ni ratio of 0.51 to 1.1 in terms of mass, with 0.2 to 5.0 mass% of Si and 0.01 to 0 of rare earth elements. .5% by mass, respectively.

Cr/Ni比が質量で0.51未満であると、抵抗温度係数が大きくなり、好ましくない。一方、1.1を超えると、高温安定性が悪くなり、また、製造上の再現性が悪化するため、好ましくない。 If the Cr / Ni ratio is less than 0.51 , the temperature coefficient of resistance increases, which is not preferable. On the other hand, if it exceeds 1.1, the high temperature stability is deteriorated and the reproducibility in production is deteriorated, which is not preferable.

Siは、主として抵抗温度係数を改善するために添加するが、添加量が0.2質量%未満、または5質量%を超えると、抵抗温度係数が大きくなってしまい、高温安定性も悪くなるので、好ましくない。   Si is mainly added to improve the temperature coefficient of resistance. However, if the amount added is less than 0.2% by mass or exceeds 5% by mass, the temperature coefficient of resistance increases, and the high temperature stability also deteriorates. It is not preferable.

希土類元素は、主として高温安定性を改善するために添加するが、添加量が0.01質量%未満であると、高温安定性の改善に寄与せず、好ましくない。一方、0.5質量%を超えても、格別の効果増大が期待できず、コストアップとなるので、好ましくない。   Rare earth elements are added mainly to improve high-temperature stability. However, if the addition amount is less than 0.01% by mass, it does not contribute to improvement of high-temperature stability, which is not preferable. On the other hand, even if it exceeds 0.5% by mass, a special effect increase cannot be expected and the cost is increased.

本発明による抵抗薄膜材料は、以下のようにして製造する。上記の組成の金属抵抗体材料からなるスパッタリングターゲットを用いて、スパッタリング法により、絶縁基板上にNi−Cr−Si−希土類元素合金の特定組成の抵抗薄膜を成膜し、その後、この基板を大気中において、温度200〜500℃で、1〜10時間熱処理を行う。熱処理の温度が、200℃未満では、得られた抵抗薄膜材料の抵抗温度係数が安定せず好ましくない。一方、500℃を超えると、抵抗温度係数が大きくなり好ましくない。   The resistive thin film material according to the present invention is manufactured as follows. Using a sputtering target made of a metal resistor material having the above composition, a resistive thin film having a specific composition of Ni—Cr—Si—rare earth element alloy is formed on an insulating substrate by sputtering, and then the substrate is exposed to the atmosphere. Inside, heat treatment is performed at a temperature of 200 to 500 ° C. for 1 to 10 hours. When the temperature of the heat treatment is less than 200 ° C., the resistance temperature coefficient of the obtained resistance thin film material is not stable, which is not preferable. On the other hand, if it exceeds 500 ° C., the temperature coefficient of resistance increases, which is not preferable.

また、熱処理の時間が、1時間未満では抵抗温度係数が安定せず好ましくない。一方、10時間を超えても、抵抗安定性に対する効果の増大はみられず、コストアップとなり好ましくない。   Further, if the heat treatment time is less than 1 hour, the temperature coefficient of resistance is not stable, which is not preferable. On the other hand, even if it exceeds 10 hours, the increase in the effect on the resistance stability is not seen, and the cost increases, which is not preferable.

(実施例、参考例、比較例の薄膜抵抗材料の製造方法)
まず、電気ニッケル、電解クロム、金属シリコン、アルミニウムメタルショット、Yメタル塊(試薬)、ランタンメタル(試薬)、セリウムメタル(試薬)、ミッシュメタル(試薬)を原料とし、それぞれ所定の組成となるようにそれぞれ秤量して、真空溶解炉により、約2kgのNi−Cr−Si合金、Ni−Cr−Si−Al合金またはNi−Cr−Si−希土類元素合金からなる金属抵抗体材料のインゴットを作製した。
(Methods for producing thin film resistor materials of Examples, Reference Examples, and Comparative Examples)
First, using electric nickel, electrolytic chromium, metallic silicon, aluminum metal shot, Y metal lump (reagent), lanthanum metal (reagent), cerium metal (reagent), and misch metal (reagent) as raw materials, each has a predetermined composition. Ingots of metal resistor materials made of approximately 2 kg of Ni—Cr—Si alloy, Ni—Cr—Si—Al alloy or Ni—Cr—Si—rare earth element alloy were prepared in a vacuum melting furnace. .

次に、抵抗薄膜を製造するために、それぞれのインゴットを、均質化処理の後、ワイヤカットで厚さ5mm、直径150mmの丸板を切り出し、上下面を研削してスパッタリングターゲットとした。   Next, in order to manufacture a resistance thin film, each ingot was homogenized, and then a round plate having a thickness of 5 mm and a diameter of 150 mm was cut by wire cutting, and the upper and lower surfaces were ground to form a sputtering target.

成膜工程は、カソードスパッタリング法によって、以下のように行なった。   The film forming process was performed by the cathode sputtering method as follows.

真空室にアルミナ基板を装入し、1×10-4Paに排気した後、純度99.9995%のアルゴンガスを導入して、0.3Paの圧力に保ち、スパッタリングパワー0.3kWで、膜厚が500Åとなるように前記アルミナ基板上に成膜を行い、基板上に抵抗薄膜が形成された抵抗薄膜材料を得た。 An alumina substrate is charged into a vacuum chamber and evacuated to 1 × 10 −4 Pa. Then, an argon gas having a purity of 99.9995% is introduced and maintained at a pressure of 0.3 Pa, with a sputtering power of 0.3 kW. A film was formed on the alumina substrate so as to have a thickness of 500 mm to obtain a resistance thin film material in which a resistance thin film was formed on the substrate.

得られた抵抗薄膜の両側に、厚さ5000ÅのAu電極を、前述と同様に、カソードスパッタ法により成膜して、抵抗薄膜およびAu電極が形成された基板を得た。抵抗薄膜材料へのAu電極の成膜後、大気中300℃で3時間の熱処理を行うことにより、それぞれの薄膜抵抗器を得た。   An Au electrode having a thickness of 5000 mm was formed on both sides of the obtained resistance thin film by the cathode sputtering method in the same manner as described above to obtain a substrate on which the resistance thin film and the Au electrode were formed. After forming the Au electrode on the resistive thin film material, each thin film resistor was obtained by performing heat treatment at 300 ° C. for 3 hours in the atmosphere.

参考例1
Niが83.9質量%、Crが14.0質量%、Cr/Ni比が質量で0.17、Siが2.0質量%、希土類元素としてのLaは0.15質量%にそれぞれ秤量し、真空溶解炉により、約2kgのNi−Cr−Si−希土類元素合金のインゴットを作成した。その後の工程は、上記に示したとおりに、スパッタリングターゲットを得た後、スパッタリング法でアルミナ基板に抵抗薄膜を成膜し、さらにAu電極を形成した後に、大気中で300℃で3時間熱処理を行い、薄膜抵抗器を得た。
( Reference Example 1 )
Ni is 83.9% by mass, Cr is 14.0% by mass, Cr / Ni ratio is 0.17 by mass, Si is 2.0% by mass, and La as a rare earth element is 0.15% by mass. In a vacuum melting furnace, an ingot of about 2 kg of Ni—Cr—Si—rare earth element alloy was prepared. As shown above, after the sputtering target was obtained, a resistive thin film was formed on an alumina substrate by sputtering, and an Au electrode was formed. Thereafter, a heat treatment was performed at 300 ° C. for 3 hours in the atmosphere. And a thin film resistor was obtained.

以上のようにして作製した参考例1の薄膜抵抗器について、抵抗温度特性を評価するため、恒温槽で昇温しながら、25℃と125℃における抵抗測定を行い、抵抗温度係数を算出したところ、20ppm/℃であった。また、高温安定性を評価するため、それぞれの薄膜抵抗器を、175℃の恒温槽内に、2000時間保持し、高温における抵抗変化率を測定したところ、0.25%が得られた。 In order to evaluate the resistance temperature characteristics of the thin film resistor of Reference Example 1 produced as described above, the resistance temperature coefficient was calculated by measuring resistance at 25 ° C. and 125 ° C. while raising the temperature in a thermostatic bath. 20 ppm / ° C. Moreover, in order to evaluate high temperature stability, when each thin film resistor was hold | maintained in a 175 degreeC thermostat for 2000 hours and the resistance change rate in high temperature was measured, 0.25% was obtained.

(実施例2)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが64.8質量%、Crが32.9質量%、Cr/Ni比が質量で0.51、Siが2.0質量%、希土類元素としてのミッシュメタルは0.27質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は9ppm/℃で、高温における抵抗変化率は0.24%が得られた。
(Example 2)
The composition of the ingot of the Ni-Cr-Si-rare earth element alloy is as follows: Ni is 64.8% by mass, Cr is 32.9% by mass, Cr / Ni ratio is 0.51 by mass, Si is 2.0% by mass, A thin film resistor was obtained by the same process as in Reference Example 1 except that the amount of misch metal as a rare earth element was 0.27% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the resistance temperature coefficient was 9 ppm / ° C., and the rate of change in resistance at high temperature was 0.24%. It was.

(実施例3)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが49.2質量%、Crが48.5質量%、Cr/Ni比が質量で0.98、Siが2.0質量%、希土類元素としてのミッシュメタルは0.35質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は7ppm/℃で、高温における抵抗変化率は0.24%が得られた。
(Example 3)
The composition of the ingot of the Ni—Cr—Si—rare earth element alloy is as follows: Ni is 49.2% by mass, Cr is 48.5% by mass, Cr / Ni ratio is 0.98 by mass, Si is 2.0% by mass, A thin film resistor was obtained by the same process as in Reference Example 1 except that the amount of misch metal as a rare earth element was 0.35% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the temperature coefficient of resistance was 7 ppm / ° C, and the rate of change in resistance at high temperature was 0.24%. It was.

(実施例4)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが48.5質量%、Crが47.5質量%、Cr/Ni比が質量で0.98、Siが4.0質量%、希土類元素としてのYは0.03質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は4ppm/℃で、高温における抵抗変化率は0.23%が得られた。
Example 4
The composition of the ingot of the Ni—Cr—Si—rare earth element alloy is as follows: Ni is 48.5% by mass, Cr is 47.5% by mass, Cr / Ni ratio is 0.98 by mass, Si is 4.0% by mass, A thin film resistor was obtained in the same process as in Reference Example 1 except that Y as the rare earth element was 0.03% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the resistance temperature coefficient was 4 ppm / ° C., and the rate of change in resistance at high temperature was 0.23%. It was.

(実施例5)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが47.9質量%、Crが47.8質量%、Cr/Ni比が質量で1.0、Siが4.1質量%、希土類元素としてのCeは0.17質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は4ppm/℃で、高温における抵抗変化率は0.23%が得られた。
(Example 5)
The composition of the ingot of the Ni—Cr—Si—rare earth element alloy is as follows: Ni 47.9% by mass, Cr 47.8% by mass, Cr / Ni ratio 1.0 by mass, Si 4.1% by mass, A thin film resistor was obtained by the same process as in Reference Example 1 except that Ce as a rare earth element was 0.17% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the resistance temperature coefficient was 4 ppm / ° C., and the rate of change in resistance at high temperature was 0.23%. It was.

(実施例6)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが48.1質量%、Crが47.6質量%、Cr/Ni比が質量で0.99、Siが3.9質量%、希土類元素としてのミッシュメタルは0.42質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は4ppm/℃で、高温における抵抗変化率は0.22%が得られた。
(Example 6)
The composition of the ingot of the Ni—Cr—Si—rare earth element alloy is as follows: Ni is 48.1% by mass, Cr is 47.6% by mass, Cr / Ni ratio is 0.99 by mass, Si is 3.9% by mass, A thin film resistor was obtained by the same process as in Reference Example 1 except that the amount of misch metal as a rare earth element was 0.42% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the resistance temperature coefficient was 4 ppm / ° C., and the rate of change in resistance at high temperature was 0.22%. It was.

(実施例7)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが50.3質量%、Crが49.3質量%、Cr/Ni比が質量で0.98、Siが0.3質量%、希土類元素としてのYは0.19質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は7ppm/℃で、高温における抵抗変化率は0.21%が得られた。
(Example 7)
The composition of the ingot of the Ni—Cr—Si—rare earth element alloy is as follows: Ni is 50.3% by mass, Cr is 49.3% by mass, Cr / Ni ratio is 0.98 by mass, Si is 0.3% by mass, A thin film resistor was obtained by the same process as in Reference Example 1 except that Y as the rare earth element was 0.19% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the resistance temperature coefficient was 7 ppm / ° C., and the rate of change in resistance at high temperature was 0.21%. It was.

(比較例1)
Ni−Cr−Si−Alインゴットの組成を、Niが62.1質量%、Crが32.4質量%、Cr/Ni比が質量で0.52、Siが3.1質量%、Alが2.4質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は20ppm/℃で、高温における抵抗変化率は0.26%が得られた。
(Comparative Example 1)
The composition of the Ni—Cr—Si—Al ingot is as follows: Ni is 62.1% by mass, Cr is 32.4% by mass, Cr / Ni ratio is 0.52 by mass, Si is 3.1% by mass, and Al is 2%. A thin film resistor was obtained by the same process as in Reference Example 1 except that the content was 4% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the temperature coefficient of resistance was 20 ppm / ° C, and the rate of change in resistance at high temperature was 0.26%. It was.

(比較例2)
Ni−Cr−Si合金のインゴットの組成を、Niが48.2質量%、Crが47.6質量%、Cr/Ni比が質量で0.99、Siが4.2質量%にする以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は5ppm/℃で、高温における抵抗変化率は0.38%が得られた。
(Comparative Example 2)
The composition of the ingot of the Ni—Cr—Si alloy is 48.2% by mass of Ni, 47.6% by mass of Cr, 0.99 by mass of Cr / Ni, and 4.2% by mass of Si. In the same process as in Reference Example 1, a thin film resistor was obtained. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the temperature coefficient of resistance was 5 ppm / ° C, and the rate of change in resistance at high temperature was 0.38%. It was.

(比較例3)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが47.7質量%、Crが47.6質量%、Cr/Ni比が質量で1.0、Siが4.1質量%、希土類元素としてのLaは0.61質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は6ppm/℃で、高温における抵抗変化率は0.23%が得られた。本比較例のように、希土類元素が0.5質量%を超えても、コストアップとなるが、格別の効果増大は期待できない。
(Comparative Example 3)
The composition of the ingot of the Ni—Cr—Si—rare earth element alloy is as follows: Ni is 47.7% by mass, Cr is 47.6% by mass, Cr / Ni ratio is 1.0 by mass, Si is 4.1% by mass, A thin film resistor was obtained in the same process as Reference Example 1 except that La as the rare earth element was 0.61% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the temperature coefficient of resistance was 6 ppm / ° C., and the rate of change in resistance at high temperature was 0.23%. It was. As in this comparative example, even if the rare earth element exceeds 0.5 mass%, the cost is increased, but a significant increase in the effect cannot be expected.

(比較例4)
Ni−Cr−Si−希土類元素合金のインゴットの組成を、Niが47.7質量%、Crが47.6質量%、Cr/Ni比が質量で1.0、Siが6.2質量%、希土類元素としてのLaは0.61質量%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は−30ppm/℃で、高温における抵抗変化率は0.23%が得られた。
(Comparative Example 4)
The composition of the ingot of the Ni—Cr—Si—rare earth element alloy is as follows: Ni 47.7% by mass, Cr 47.6% by mass, Cr / Ni ratio 1.0 by mass, Si 6.2% by mass, A thin film resistor was obtained in the same process as Reference Example 1 except that La as the rare earth element was 0.61% by mass. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the resistance temperature coefficient was −30 ppm / ° C., and the rate of change in resistance at high temperature was 0.23%. Obtained.

(比較例5)
Ni−Cr−希土類元素合金のインゴットの組成を、Niが51.2質量%、Crが48.7質量%、Cr/Ni比が質量で0.95、希土類元素としてのYは0.09%としたこと以外は参考例1と同じ工程で、薄膜抵抗器を得た。得られた薄膜抵抗器を、参考例1と同じ条件で抵抗温度係数と高温における抵抗変化率を測定したところ、抵抗温度係数は−32ppm/℃で、高温における抵抗変化率は0.76%が得られた。
(Comparative Example 5)
The composition of the ingot of the Ni—Cr—rare earth element alloy is as follows: Ni is 51.2% by mass, Cr is 48.7% by mass, Cr / Ni ratio is 0.95 by mass, and Y as the rare earth element is 0.09%. A thin film resistor was obtained by the same process as in Reference Example 1 except that. When the temperature coefficient of resistance and the rate of change in resistance at high temperature of the obtained thin film resistor were measured under the same conditions as in Reference Example 1, the temperature coefficient of resistance was -32 ppm / ° C and the rate of change in resistance at high temperature was 0.76%. Obtained.

実施例2〜7の薄膜抵抗器は、いずれも抵抗温度係数が±9ppm/℃の範囲にあり、良好な抵抗温度特性を示した。また、実施例2〜7の薄膜抵抗器は、いずれも抵抗変化率が0.24%以下であり、主な従来技術であるNi−Cr−Al−Si合金系の比較例1と比較して、同等以上の高温安定性を示した。このようにAlを含まないNi−Cr−Si−希土類元素合金の薄膜抵抗器は、精密な精度を要求される電子機器を高温で使用するときに、信頼性が向上する。 All of the thin film resistors of Examples 2 to 7 had a resistance temperature coefficient in the range of ± 9 ppm / ° C., and exhibited good resistance temperature characteristics. In addition, the thin film resistors of Examples 2 to 7 all have a resistance change rate of 0.24 % or less, compared with the comparative example 1 of the Ni—Cr—Al—Si alloy system which is the main prior art. High temperature stability equivalent to or better. Thus, the Ni-Cr-Si-rare earth element thin film resistor not containing Al has improved reliability when an electronic device requiring precise accuracy is used at a high temperature.

Claims (3)

Si:0.2〜5.0質量%、希土類元素:0.01〜0.5質量%を含み、残部がCrおよびNiからなり、Cr/Ni比が質量で0.51〜1.1であって、大気中において、温度200〜500℃で、1〜10時間の条件で熱処理が施されていることにより、抵抗温度係数が±9ppm/℃以内であり、かつ、175℃で2000時間保持した場合の高温抵抗変化率が0.24%以下である電子部品用抵抗薄膜。 Si: 0.2 to 5.0% by mass, rare earth element: 0.01 to 0.5% by mass, the balance is made of Cr and Ni, and the Cr / Ni ratio is 0.51 to 1.1 by mass. In the atmosphere, heat treatment is performed at a temperature of 200 to 500 ° C. under a condition of 1 to 10 hours, so that the temperature coefficient of resistance is within ± 9 ppm / ° C. and is maintained at 175 ° C. for 2000 hours. A resistance thin film for electronic parts having a high-temperature resistance change rate of 0.24 % or less. Si:0.2〜5.0質量%、希土類元素:0.01〜0.5質量%を含み、残部がCrおよびNiからなり、Cr/Ni比が質量で0.51〜1.1である電子部品用抵抗薄膜を形成するためのスパッタリングターゲット。   Si: 0.2 to 5.0% by mass, rare earth element: 0.01 to 0.5% by mass, the balance is made of Cr and Ni, and the Cr / Ni ratio is 0.51 to 1.1 by mass. A sputtering target for forming a resistive thin film for an electronic component. 請求項2に記載するスパッタリングターゲットを用いて、スパッタリング法により、絶縁基板上に、Si:0.2〜5.0質量%、希土類元素:0.01〜0.5質量%を含み、残部がCrおよびNiからなり、Cr/Ni比が質量で0.51〜1.1である薄膜を形成し、その後、該薄膜が形成された前記基板を大気中において、温度200〜500℃で、1〜10時間の条件で熱処理を行うことを特徴とする電子部品用抵抗薄膜の製造方法。 The sputtering target according to claim 2 is used to contain Si: 0.2 to 5.0 mass%, rare earth element: 0.01 to 0.5 mass% on the insulating substrate by a sputtering method, and the balance is A thin film made of Cr and Ni and having a Cr / Ni ratio of 0.51 to 1.1 by mass is formed, and then the substrate on which the thin film is formed is 1 at a temperature of 200 to 500 ° C. in the atmosphere. A method for producing a resistance thin film for an electronic component, wherein the heat treatment is performed under a condition of 10 hours.
JP2004108754A 2003-11-04 2004-04-01 Resistance thin film and sputtering target for forming the resistance thin film Expired - Lifetime JP4895481B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004108754A JP4895481B2 (en) 2004-04-01 2004-04-01 Resistance thin film and sputtering target for forming the resistance thin film
CNB2004100900571A CN1321206C (en) 2003-11-04 2004-11-01 Metal resistor material, sputtering target material, resistor film and their manufactures
TW93133312A TWI250218B (en) 2003-11-04 2004-11-02 Metallic resistance material, sputtering target, resistance thin film, and method for making the resistance thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108754A JP4895481B2 (en) 2004-04-01 2004-04-01 Resistance thin film and sputtering target for forming the resistance thin film

Publications (3)

Publication Number Publication Date
JP2005294612A JP2005294612A (en) 2005-10-20
JP2005294612A5 JP2005294612A5 (en) 2006-11-16
JP4895481B2 true JP4895481B2 (en) 2012-03-14

Family

ID=35327193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108754A Expired - Lifetime JP4895481B2 (en) 2003-11-04 2004-04-01 Resistance thin film and sputtering target for forming the resistance thin film

Country Status (1)

Country Link
JP (1) JP4895481B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575555B (en) * 2014-08-18 2018-11-23 株式会社村田制作所 The manufacturing method of electronic component and electronic component
CN106435478A (en) * 2016-07-01 2017-02-22 中国计量大学 Preparation method of nickel-chromium-silicon film low in resistance temperature coefficient

Also Published As

Publication number Publication date
JP2005294612A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4436064B2 (en) Thermistor material and manufacturing method thereof
KR101804660B1 (en) Laminated wiring film for electronic components and sputtering target material for forming coating layer
JP4622522B2 (en) Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JP5045804B2 (en) Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof
JP4380586B2 (en) Thin film resistor and manufacturing method thereof
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
JP4775140B2 (en) Sputtering target
Liu et al. Effect of nitrogen partial pressure on the TCR of magnetron sputtered indium tin oxide thin films at high temperatures
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JP3852446B2 (en) Resistance thin film material and method of manufacturing resistance thin film using the same
JP2005294612A5 (en)
CN1321206C (en) Metal resistor material, sputtering target material, resistor film and their manufactures
JPS60204847A (en) Constant electric resistance alloy, production thereof and sensor using said alloy
TW202130827A (en) Copper alloy, copper alloy plastic working material, electronic/electrical device component, terminal, busbar, heat-dissipating board
JPH0681141A (en) Sputtering target
JP7087741B2 (en) A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film.
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
KR101250191B1 (en) Thin film interconnect for electronic component, and sputtering target material for formation of thin film interconnect
KR102486945B1 (en) Manufacturing method of high-purity silver sputtering target and silver sputtering target manufactured thereby
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JP2004303804A (en) Ternary alloy material
KR20230132862A (en) Cr-Si based film
KR20110047145A (en) Material for a resistor, a sputtering target for forming resistance thin film, a resistance thin film, a thin film resistor, and manufacturing method thereof
JP2000100755A (en) Ti-Al ALLOY SPUTTERING TARGET FOR FORMING BARRIER FILM OF SEMICONDUCTOR DEVICE

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091013

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3