JP7087741B2 - A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. - Google Patents
A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. Download PDFInfo
- Publication number
- JP7087741B2 JP7087741B2 JP2018128625A JP2018128625A JP7087741B2 JP 7087741 B2 JP7087741 B2 JP 7087741B2 JP 2018128625 A JP2018128625 A JP 2018128625A JP 2018128625 A JP2018128625 A JP 2018128625A JP 7087741 B2 JP7087741 B2 JP 7087741B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- less
- resistance
- mass
- resistance thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010409 thin film Substances 0.000 title claims description 169
- 238000005477 sputtering target Methods 0.000 title claims description 42
- 239000000463 material Substances 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000843 powder Substances 0.000 claims description 149
- 239000011521 glass Substances 0.000 claims description 107
- 239000002245 particle Substances 0.000 claims description 67
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 60
- 239000011812 mixed powder Substances 0.000 claims description 58
- 239000000654 additive Substances 0.000 claims description 47
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 40
- 238000004544 sputter deposition Methods 0.000 claims description 28
- 230000000996 additive effect Effects 0.000 claims description 26
- 229910052782 aluminium Inorganic materials 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 19
- 229910052804 chromium Inorganic materials 0.000 claims description 16
- 229910052727 yttrium Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 12
- 239000011810 insulating material Substances 0.000 claims description 11
- 238000010304 firing Methods 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 24
- 229910018487 Ni—Cr Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000002994 raw material Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000005245 sintering Methods 0.000 description 9
- 238000005054 agglomeration Methods 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Manufacturing Of Electric Cables (AREA)
- Physical Vapour Deposition (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、電子部品としての薄膜抵抗器、薄膜抵抗器を得るために用いられる抵抗薄膜、抵抗薄膜形成用スパッタリングターゲット及び抵抗薄膜形成用スパッタリングターゲットとなる抵抗体材料、並びに抵抗薄膜形成用スパッタリングターゲット及び抵抗薄膜の製造方法に関する。 The present invention relates to a thin film resistor as an electronic component, a resistance thin film used to obtain a thin film resistor, a sputtering target for forming a resistance thin film, a resistor material as a sputtering target for forming a resistance thin film, and a sputtering target for forming a resistance thin film. And a method for manufacturing a resistance thin film.
チップ抵抗器、精密抵抗器、ネットワーク抵抗器、高圧抵抗器などの抵抗器、側温抵抗体、感温抵抗器などの温度センサならびにハイブリッドICとその複合モジュール製品などの電子部品には、抵抗薄膜を使用した薄膜抵抗器が用いられている。 Resistors such as chip resistors, precision resistors, network resistors, high-voltage resistors, temperature sensors such as side temperature resistors and temperature-sensitive resistors, and electronic components such as hybrid ICs and their composite module products have resistance thin films. A thin film resistor using is used.
近年、電気・電子製品の小型化、高集積化に伴い、薄膜抵抗器を小型化することが求められている。電子部品の小型化、高機能化に伴い、電子部品の使用環境は従来よりも高温化しており、薄膜抵抗器に用いる抵抗薄膜には、特に抵抗薄膜を構成する抵抗体材料の高い比抵抗、及び、高温に保持された状態における経時的抵抗変化率が小さいという高温安定性がより強く求められている。 In recent years, with the miniaturization and high integration of electrical and electronic products, it has been required to reduce the size of thin film resistors. With the miniaturization and higher functionality of electronic components, the environment in which electronic components are used has become hotter than before. Further, high temperature stability is strongly required, in which the rate of change in resistance with time is small in a state of being held at a high temperature.
薄膜抵抗器においては、多くの場合、抵抗薄膜を形成するための抵抗体材料として、Ta合金、TaN化合物およびNi-Cr系合金が用いられている。 In thin film resistors, Ta alloys, TaN compounds, and Ni—Cr alloys are often used as resistor materials for forming resistance thin films.
このNi-Cr系合金を用いた抵抗薄膜は、金属の特性であるオーミック特性を有し、雰囲気温度の変化に対して抵抗値の変化が少なく、熱的安定性が高いという特徴を有するため、薄膜抵抗器に一般的に使用されている。 This resistance thin film using a Ni—Cr alloy has the characteristics of ohmic characteristics, which are the characteristics of metals, and has the characteristics that the resistance value does not change much with changes in the ambient temperature and the thermal stability is high. Commonly used for thin film resistors.
しかしながら、Ni-Cr系合金には、抵抗体材料としては比抵抗が低いという問題がある。この問題に対しては、例えば、次の特許文献1に、Ni-Cr系合金にTa、Al、Moを添加して比抵抗を高めた抵抗薄膜が提案されている。また更に、従来よりも低い温度で熱処理を施しても、薄膜抵抗の比抵抗を高める方法として、例えば、次の特許文献2に、Cr、AlおよびYから選択される1種以上の添加元素を含有するNi合金粉末に、SiO2(シリカ)を主成分とし、B、Mg、Ca、Ba、Al、Zrおよびこれらの酸化物から選択される1種以上を0~90質量%含有するシリケート系ガラス粉末を添加する工程を有する抵抗薄膜形成用スパッタリングターゲットの製造方法が提案されている。
However, the Ni—Cr based alloy has a problem that the specific resistance is low as a resistor material. To solve this problem, for example, the following Patent Document 1 proposes a resistance thin film in which Ta, Al, and Mo are added to a Ni—Cr based alloy to increase the specific resistance. Furthermore, as a method for increasing the specific resistance of the thin film resistivity even if the heat treatment is performed at a temperature lower than the conventional one, for example, in the following
特許文献1に提案されているNi-Cr系合金にTa、Al、Moを添加した抵抗薄膜や、特許文献2に提案されているCr、AlおよびYから選択される1種以上の添加元素を含有するNi合金粉末に、SiO2(シリカ)を主成分とし、B、Mg、Ca、Ba、Al、Zrおよびこれらの酸化物から選択される1種以上を含有するシリケート系ガラス粉末を添加して製造された抵抗薄膜形成用スパッタリングターゲットを用いて形成した抵抗薄膜は、従来のNi-Cr合金による抵抗薄膜に比べて、高い比抵抗を得ることができる。
A resistance film obtained by adding Ta, Al, and Mo to the Ni—Cr alloy proposed in Patent Document 1 and one or more additive elements selected from Cr, Al, and Y proposed in
ところで、特許文献1に提案されているNi-Cr系合金にTa、Al、Moを添加した抵抗薄膜は、所定の比抵抗及び抵抗変化率を得るために500℃を超える高温での熱処理が必要となる。
しかし、近年、所定の比抵抗及び高温安定性を得るための熱処理温度を低くすることが求められている。
By the way, the resistance thin film in which Ta, Al, and Mo are added to the Ni—Cr based alloy proposed in Patent Document 1 is heat-treated at a high temperature exceeding 500 ° C. in order to obtain a predetermined specific resistance and resistance change rate. You will need it.
However, in recent years, it has been required to lower the heat treatment temperature in order to obtain a predetermined resistivity and high temperature stability.
しかるに、特許文献2に提案されている抵抗薄膜は、特許文献1に提案されている抵抗薄膜に比べて低い温度で熱処理を施しても、特許文献1に提案されているNi-Cr系合金にTa、Al、Moを添加した抵抗薄膜と同様の高い比抵抗、優れた高温安定性が得られる。
しかし、近年、電子部品の小型化に伴い、特許文献2に提案されている抵抗薄膜と同様の比較的低い温度で熱処理を施した場合において、特許文献2に提案されている抵抗薄膜に比べて、更なる高抵抗、及び、更なる高温安定性を満たす抵抗薄膜が求められている。
However, the resistance thin film proposed in
However, in recent years, with the miniaturization of electronic components, when heat treatment is performed at a relatively low temperature similar to the resistance thin film proposed in
本発明はこのような問題を鑑みてなされたものであり、抵抗薄膜に対する熱処理を比較的低い温度で施しても、従来の抵抗薄膜に比べて高い比抵抗、及び高温安定性を有する抵抗薄膜及び抵抗薄膜を備えた薄膜抵抗器、抵抗薄膜を製造するための薄膜抵抗体材料、抵抗薄膜形成用スパッタリングターゲット、並びに抵抗薄膜形成用スパッタリングターゲット及び抵抗薄膜の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and even if the resistance thin film is heat-treated at a relatively low temperature, the resistance thin film has higher specific resistance and high-temperature stability than the conventional resistance thin film. It is an object of the present invention to provide a thin-film resistor provided with a resistance thin film, a thin-film resistor material for manufacturing a resistance thin film, a sputtering target for forming a resistance thin film, and a sputtering target for forming a resistance thin film and a method for manufacturing the resistance thin film. ..
本発明者らは、特許文献2に提案されている抵抗薄膜と同様、従来よりも抵抗薄膜に対する熱処理を比較的低い温度で施した場合において、特許文献2に提案されている抵抗薄膜に比べて更なる高抵抗、及び、更なる高温安定性を有するNi-Cr合金を用いた抵抗薄膜について鋭意検討評価した。その結果、本発明者らは、Ni-Cr合金粉末に、B、Mg、Ca、Ba、Al、Zrおよびこれらの酸化物を含まない、平均粒径が所定範囲内の純粋なSiO2(シリカ)のみのガラス粉末を含有するNi-Cr系合金材料を用いて形成された抵抗薄膜とすることにより、SiO2(シリカ)を主成分とし、B、Mg、Ca、Ba、Al、Zrおよびこれらの酸化物を含有するシリケート系ガラス入りのNi-Cr系合金等に比べて高い比抵抗、及び高温安定性を有することを見出した。
Similar to the resistance thin film proposed in
すなわち、本発明による抵抗体材料は、Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなるNi合金粉末に、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末を3質量%以上20質量%以下含有する混合粉末の焼結体からなる抵抗体材料であって、該抵抗体材料を材料として抵抗薄膜を形成したときにおける比抵抗が525μΩ・cm以上1700μΩ・cm以下となり、155℃の温度を1000時間保持したときにおける経時的抵抗変化率が0.1%以下となる特性を有することを特徴とする。 That is, the resistor material according to the present invention contains 10% by mass or more and 60% by mass or less of one or more additive elements selected from Cr, Al and Y, and the balance is a Ni alloy powder composed of Ni and unavoidable impurities. A resistor material made of a sintered body of a mixed powder containing 3% by mass or more and 20% by mass or less of a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less. It is characterized by having a specific resistance of 525 μΩ · cm or more and 1700 μΩ · cm or less when a thin film is formed, and a resistivity change rate of 0.1% or less over time when the temperature of 155 ° C. is maintained for 1000 hours. do.
また、本発明による抵抗体材料の1形態である、抵抗薄膜形成用スパッタリングターゲットは、Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなるNi合金粉末に、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末を3質量%以上20質量%以下含有する混合粉末の焼結体からなる抵抗薄膜形成用スパッタリングターゲットであって、該抵抗薄膜形成用スパッタリングターゲットを材料として抵抗薄膜を形成したときにおける比抵抗が525μΩ・cm以上1700μΩ・cm以下となり、155℃の温度を1000時間保持したときにおける経時的抵抗変化率が0.1%以下となる特性を有することを特徴とする。 Further, the sputtering target for forming a resistance thin film, which is one form of the resistor material according to the present invention, contains 10% by mass or more and 60% by mass or less of one or more additive elements selected from Cr, Al and Y, and the balance. A resistance thin film formed of a sintered body of a mixed powder containing 3% by mass or more and 20% by mass or less of a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less in a Ni alloy powder composed of Ni and unavoidable impurities. Sputtering target for forming a resistance thin film with a specific resistance of 525 μΩ · cm or more and 1700 μΩ · cm or less when a resistance thin film is formed using the sputtering target for forming a resistance thin film over time when the temperature of 155 ° C. is maintained for 1000 hours. It is characterized by having a characteristic that the resistance change rate is 0.1% or less .
また、本発明による抵抗薄膜は、Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなるNi合金粉末に、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末を3質量%以上20質量%以下含有する混合粉末の焼結体を材料として形成された薄膜であって、比抵抗が525μΩ・cm以上1700μΩ・cm以下であり、155℃の温度を1000時間保持したときの経時的抵抗変化率が0.1%以下となることを特徴とする。 Further, the resistivity thin film according to the present invention contains 10% by mass or more and 60% by mass or less of one or more additive elements selected from Cr, Al and Y, and the balance is a Ni alloy powder composed of Ni and unavoidable impurities on average. A thin film formed from a sintered body of a mixed powder containing 3% by mass or more and 20% by mass or less of a glass powder made of pure SiO 2 having a particle size of 30 μm or more and 200 μm or less, and having a specific resistance of 525 μΩ · cm or more. It is characterized by having a resistance change rate of 1700 μΩ · cm or less and 0.1% or less over time when the temperature of 155 ° C. is maintained for 1000 hours.
また、本発明による薄膜抵抗器は、絶縁材料基板と、該絶縁材料基板上に形成された上記本発明の抵抗薄膜と、該絶縁材料基板上で該抵抗薄膜の両側に形成された電極とからなることを特徴とする。 Further, the thin film resistor according to the present invention is composed of an insulating material substrate, the above-mentioned resistance thin film of the present invention formed on the insulating material substrate, and electrodes formed on both sides of the resistance thin film on the insulating material substrate. It is characterized by becoming.
また、本発明による抵抗薄膜形成用スパッタリングターゲットの製造方法は、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末と、Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなる、平均粒径10μm以上200μm以下のNi合金粉末とを、前記ガラス粉末が3質量%以上20質量%以下となるように混合し、得られた混合粉末を所望の形状に成形し、得られた成形体を、真空または不活性雰囲気中にて、50kg/cm2以上の加圧下において、1100℃以上1400℃以下の温度で焼成して焼結体を作製し、該焼結体を材料として抵抗薄膜を形成したときにおける比抵抗が525μΩ・cm以上1700μΩ・cm以下となり、155℃の温度を1000時間保持したときにおける経時的抵抗変化率が0.1%以下となる特性を有するようにすることを特徴とする。 Further, in the method for manufacturing a sputtering target for forming a resistance thin film according to the present invention, a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less and one or more additive elements selected from Cr, Al and Y are used. A Ni alloy powder having an average particle size of 10 μm or more and 200 μm or less, which contains 10% by mass or more and 60% by mass or less and the balance is composed of Ni and unavoidable impurities, so that the glass powder has an average particle size of 3% by mass or more and 20% by mass or less. After mixing, the obtained mixed powder is molded into a desired shape, and the obtained molded product is subjected to a pressure of 50 kg / cm 2 or more in a vacuum or an inert atmosphere at a temperature of 1100 ° C. or higher and 1400 ° C. or lower. When a sintered body was produced by firing in 1 and a resistance thin film was formed using the sintered body as a material, the specific resistance became 525 μΩ · cm or more and 1700 μΩ · cm or less, and the time elapsed when the temperature of 155 ° C. was maintained for 1000 hours. It is characterized by having a characteristic that the target resistance change rate is 0.1% or less .
また、本発明による抵抗薄膜の製造方法は、上記本発明のスパッタリングターゲットを用いて、スパッタリング法により、絶縁材料基板上に薄膜を形成し、得られた薄膜を、大気中または不活性ガス雰囲気中において、200℃以上500℃以下の温度で、1時間以上10時間以下の熱処理を行うことを特徴とする。 Further, in the method for producing a resistance thin film according to the present invention, a thin film is formed on an insulating material substrate by a sputtering method using the sputtering target of the present invention, and the obtained thin film is placed in the atmosphere or an inert gas atmosphere. The present invention is characterized in that the heat treatment is performed at a temperature of 200 ° C. or higher and 500 ° C. or lower for 1 hour or longer and 10 hours or shorter.
なお、本発明における「平均粒径」とは、ガラス粉末、及びNi合金粉末のいずれの粉末も、レーザー回折法で測定した各粉末の粒度分布において、小径側から存在比率(体積基準)を積算したときに、その値が全粒径に亘った存在比率の積算値の半分の値となる粒径(D50)のことである。 The "average particle size" in the present invention means that the abundance ratio (volume basis) of both the glass powder and the Ni alloy powder is integrated from the small diameter side in the particle size distribution of each powder measured by the laser diffraction method. This is the particle size (D50) whose value is half the integrated value of the abundance ratio over the entire particle size.
また、スパッタリング法によって形成される抵抗薄膜の組成は、抵抗体材料であるスパッタリングターゲットの組成がスパッタリングによって対象基板上に形成されるため、スパッタリングターゲットの組成とほぼ同じになると考えることができる。 Further, the composition of the resistance thin film formed by the sputtering method can be considered to be substantially the same as the composition of the sputtering target because the composition of the sputtering target, which is the resistor material, is formed on the target substrate by sputtering.
本発明によれば、抵抗薄膜に対する熱処理を比較的低い温度で施しても、従来の抵抗薄膜に比べて高い比抵抗、及び高温安定性を有する抵抗薄膜及び抵抗薄膜を備えた薄膜抵抗器、抵抗薄膜を製造するための薄膜抵抗体材料、抵抗薄膜形成用スパッタリングターゲット、並びに抵抗薄膜形成用スパッタリングターゲット及び抵抗薄膜の製造方法が得られる。例えば、本発明の抵抗薄膜材料を抵抗薄膜形成用スパッタリングターゲットとして用い、スパッタリング法により得られた抵抗薄膜を用いて構成される薄膜抵抗器は、抵抗薄膜に対する熱処理を比較的低い温度で施しても、従来の抵抗薄膜に比べて高い比抵抗、及び高温安定性を有し、525μΩ・cm以上1700μΩ・cm以下という高い比抵抗、155℃の温度で1000時間保持した状態における経時的抵抗変化率が0.1%以下という高い高温安定性を得ることができる。 According to the present invention, a thin film resistor having a resistance thin film and a resistance thin film having a higher specific resistance and high temperature stability than a conventional resistance thin film even when a heat treatment is applied to the resistance thin film at a relatively low temperature. A thin-film resistor material for manufacturing a resistance thin film, a sputtering target for forming a resistance thin film, a sputtering target for forming a resistance thin film, and a method for manufacturing a resistance thin film can be obtained. For example, a thin-film resistor configured by using the resistance thin film material of the present invention as a sputtering target for forming a resistance thin film and using the resistance thin film obtained by the sputtering method is subjected to heat treatment on the resistance thin film at a relatively low temperature. However, it has higher specific resistance and high temperature stability than conventional resistance thin films, and has a high specific resistance of 525 μΩ · cm or more and 1700 μΩ · cm or less, and the rate of change in resistance over time when held at a temperature of 155 ° C for 1000 hours. High high temperature stability of 0.1% or less can be obtained.
以下、本発明の実施形態について、具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.
薄膜抵抗器には、各種特性が要求されるが、その中でも近年の電子部品の小型化に対する特性としては、高抵抗、優れた高温安定性という特性が特に要求され、Ni-Cr系合金を中心として、その改善のための様々な試みがなされてきている。
特許文献1に提案されているNi-Cr系合金にTa、AlおよびMoを添加した抵抗薄膜は、従来のNi-Cr系合金を用いた抵抗薄膜と比較して、高温安定性を維持したまま、抵抗および耐食性が改善されている。
また、特許文献2に提案されている抵抗薄膜は、電子部品用の薄膜抵抗器に用いられる抵抗体材料としては従来利用されていなかった、シリケート系ガラスをNi合金に所定量添加することにより、所望の特性を得るための熱処理温度を相対的に低下させている。
しかしながら、近年の電子部品の小型化に伴い、所定の比抵抗及び高温安定性を得るための熱処理温度を相対的に低下させた場合において、特許文献2に提案されている抵抗薄膜における改善効果以上の、十分な高抵抗、及び高温安定性が求められている。
Thin-film resistors are required to have various characteristics, but among them, the characteristics for miniaturization of electronic components in recent years are particularly required to have high resistance and excellent high-temperature stability, mainly Ni-Cr alloys. As a result, various attempts have been made to improve it.
The resistance thin film in which Ta, Al and Mo are added to the Ni—Cr based alloy proposed in Patent Document 1 maintains high temperature stability as compared with the resistance thin film using the conventional Ni—Cr based alloy. , Resistance and corrosion resistance are improved.
Further, the resistance thin film proposed in
However, with the recent miniaturization of electronic components, when the heat treatment temperature for obtaining predetermined resistivity and high temperature stability is relatively lowered, the improvement effect in the resistance thin film proposed in
本発明の実施形態の抵抗体材料は、Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなるNi合金粉末に、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末を3質量%以上20質量%以下含有する混合粉末の焼結体からなる。
なお、本発明における「抵抗体材料」とは、本発明の抵抗薄膜を形成するための材料を示し、上記の組成を有する混合粉末の焼結体からなるものであれば、その形態には特に制限されない。例えば、タブレットや、スパッタリングターゲットは、そのような抵抗体材料の形態の1つである。以下、本発明の実施形態に関して詳細に説明する。
The resistor material of the embodiment of the present invention contains 10% by mass or more and 60% by mass or less of one or more additive elements selected from Cr, Al and Y, and the balance is a Ni alloy powder composed of Ni and unavoidable impurities. It is composed of a sintered body of a mixed powder containing 3% by mass or more and 20% by mass or less of a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less.
The "resistor material" in the present invention refers to a material for forming the resistance thin film of the present invention, and is particularly suitable for the form as long as it is made of a sintered body of a mixed powder having the above composition. Not limited. For example, tablets and sputtering targets are one of the forms of such resistor materials. Hereinafter, embodiments of the present invention will be described in detail.
(抵抗体材料)
本発明の実施形態の抵抗体材料は、NiをベースとしたNi合金粉末を用いて構成される。このNi合金粉末は、Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなっている。
各添加元素を所定量含有させることにより、抵抗体材料としての特性を有した組成になっている。Crの含有は抵抗温度係数の絶対値の低減に特に効果がある。また、Alの含有は耐食性の向上に特に効果がある。また、Yの含有はNi合金とガラス粉末の密着性の向上に特に効果がある。これらの添加元素は、要求される特性に応じて必要量だけ添加されるものであるが、本発明の抵抗薄膜及び薄膜抵抗器における特性を具備するためには、すべての添加元素を一定量含有する必要があり、各添加元素の効果を発揮するためには、総量で10質量%以上含有させる必要がある。それぞれの特性をより効果的に発揮するためには、Crは20質量%以上含有させるのが好ましく、Alは10質量%以上含有させるのが好ましく、Yは0.3質量%以上含有させるのが好ましい。一方、これらの添加元素は過多になると成膜、加熱後の安定性が悪くなり、抵抗値など各種特性が大きくばらつき、再現性が悪くなってしまう場合がある。このため、これらの添加元素の含有量は、総量で60質量%以下とする必要がある。なお、添加元素の含有量の総量は、40質量%以上50質量%以下の範囲とするのがより好ましい。
本発明の実施形態の抵抗体材料は、このような組成のNi合金粉末に、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラスを3質量%以上20質量%以下含有する混合粉末の焼結体からなる。
(Resistance material)
The resistor material of the embodiment of the present invention is constructed by using a Ni alloy powder based on Ni. This Ni alloy powder contains 10% by mass or more and 60% by mass or less of one or more additive elements selected from Cr, Al and Y, and the balance is Ni and unavoidable impurities.
By containing each additive element in a predetermined amount, the composition has characteristics as a resistor material. The content of Cr is particularly effective in reducing the absolute value of the temperature coefficient of resistance. Further, the inclusion of Al is particularly effective in improving the corrosion resistance. Further, the content of Y is particularly effective in improving the adhesion between the Ni alloy and the glass powder. These additive elements are added in a required amount according to the required characteristics, but in order to have the characteristics in the resistance thin film and the thin film resistor of the present invention, all the additive elements are contained in a fixed amount. In order to exert the effect of each additive element, it is necessary to contain 10% by mass or more in total. In order to more effectively exhibit each characteristic, Cr is preferably contained in an amount of 20% by mass or more, Al is preferably contained in an amount of 10% by mass or more, and Y is preferably contained in an amount of 0.3% by mass or more. preferable. On the other hand, if the amount of these additive elements is excessive, the stability after film formation and heating is deteriorated, various characteristics such as resistance value are greatly varied, and the reproducibility may be deteriorated. Therefore, the total content of these additive elements needs to be 60% by mass or less. The total content of the added elements is more preferably in the range of 40% by mass or more and 50% by mass or less.
The resistor material of the embodiment of the present invention is a mixed powder containing 3% by mass or more and 20% by mass or less of glass made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less in a Ni alloy powder having such a composition. It consists of a sintered body.
本発明者らは、特許文献2に記載の、Cr、AlおよびYから選択される1種以上の添加元素を含有するNi合金粉末に、SiO2(シリカ)を主成分とし、B、Mg、Ca、Ba、Al、Zrおよびこれらの酸化物から選択される1種以上を含有するシリケート系ガラス粉末を添加して形成された抵抗体材料をなす混合粉末の焼結体の断面の組織を調べた。その結果、図3に示すように、シリケート系ガラス粉末は溶融して凝集した状態となっているのに対し、Ni合金粉末は、ほとんど溶融せずに粉末の形状(図3では球状)を保ったまま、溶融して凝集したシリケート系ガラスに押されて集まった状態となっており、Ni合金粉末とシリケート系ガラス粉末とが混ざり合っていないことが確認された。
この原因に関し、本発明者らは、シリケート系ガラス粉末の軟化点がNi合金粉末の融点に比べて低すぎることにあると考えた。
そこで、本発明者らは、上記B等の添加元素を含有するシリケート系ガラス粉末の代わりに、シリケート系ガラスよりも軟化点の高い添加元素を含有しない純粋なSiO2からなるガラス粉末をNi合金粉末に添加した混合粉末を準備し、準備した混合粉末を焼成して混合粉末の焼結体を作製し、作製した混合粉末の焼結体の断面の組織を調べた。
しかし、Ni合金粉末に添加する純粋なSiO2からなるガラス粉末の平均粒径が特許文献2に記載されている10μm程度の場合、焼成して混合粉末の焼結体を作製し、作製した混合粉末の焼結体の断面の組織は、図3に示したのと同様、ガラス粉末が溶融して凝集した状態となり、Ni合金粉末と純粋なSiO2からなるガラス粉末とが混ざり合っていないことが確認された。
この原因に関し、本発明者らは、純粋なSiO2からなるガラス粉末の平均粒径が小さすぎて、速く溶融してしまうことにあると考えた。
そこで、本発明者らは、次に、平均粒径の異なる純粋なSiO2からなるガラス粉末をNi合金粉末に添加した、数種類の混合粉末を準備し、夫々の混合粉末を焼成して混合粉末の焼結体を作製し、作製した夫々の混合粉末の焼結体の断面の組織を調べた。
その結果、本発明者らは、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末をNi合金粉末に添加した混合粉末を、焼成して作製した混合粉末の焼結体は、図2に示すように、純粋なSiO2からなるガラス粉末の凝集がなく、Ni合金粉末が溶融して変形し、Ni合金粉末と純粋なSiO2からなるガラス粉末とが適度に混ざり合った状態となることを見出した。
The present inventors have described in Patent Document 2 a Ni alloy powder containing one or more additive elements selected from Cr, Al and Y, containing SiO 2 (silica) as a main component, and B, Mg, and the like. The texture of the cross section of the sintered body of the mixed powder forming the resistor material formed by adding a silicate-based glass powder containing Ca, Ba, Al, Zr and one or more selected from these oxides was investigated. rice field. As a result, as shown in FIG. 3, the silicate-based glass powder is in a molten and agglomerated state, whereas the Ni alloy powder hardly melts and maintains the shape of the powder (spherical in FIG. 3). It was confirmed that the Ni alloy powder and the silicate-based glass powder were not mixed with each other because they were pushed and collected by the silicate-based glass that had been melted and aggregated.
Regarding this cause, the present inventors considered that the softening point of the silicate-based glass powder was too low compared to the melting point of the Ni alloy powder.
Therefore, instead of the silicate-based glass powder containing the additive element such as B, the present inventors use a glass powder made of pure SiO 2 containing no additive element having a higher softening point than the silicate-based glass as a Ni alloy. The mixed powder added to the powder was prepared, and the prepared mixed powder was fired to prepare a sintered body of the mixed powder, and the structure of the cross section of the sintered body of the prepared mixed powder was examined.
However, when the average particle size of the glass powder made of pure SiO 2 added to the Ni alloy powder is about 10 μm described in
Regarding this cause, the present inventors considered that the average particle size of the glass powder made of pure SiO 2 is too small and melts quickly.
Therefore, the present inventors next prepare several kinds of mixed powders in which glass powders made of pure SiO 2 having different average particle sizes are added to Ni alloy powders, and each mixed powder is fired to form a mixed powder. The sintered body of the above was prepared, and the structure of the cross section of the sintered body of each of the prepared mixed powders was examined.
As a result, the present inventors have obtained a sintered body of the mixed powder produced by firing a mixed powder obtained by adding a glass powder composed of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less to a Ni alloy powder. As shown in 2, there is no agglomeration of the glass powder made of pure SiO 2 , the Ni alloy powder is melted and deformed, and the Ni alloy powder and the glass powder made of pure SiO 2 are appropriately mixed. I found that it would be.
また、本発明者らは、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末を、Ni合金粉末に含有させた混合粉末の焼結体からなる抵抗体材料を用いて抵抗薄膜を形成することにより、抵抗薄膜の抵抗値を上昇させることができ、かつ、高温時の抵抗値の変化率を低く抑えることができることを見出した。また、本発明の実施形態の抵抗薄膜は、抵抗値などの電気的特性の向上効果だけでなく、耐食性を向上させる効果も有していることが確認された。
また、本発明者らは、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末は絶縁体であり、3質量%以上の含有量でその効果を得ることができることを見出した。含有量が20質量%を超えるとNi合金による導電性が十分に発揮されず、絶縁体となってしまい、抵抗体材料をスパッタリングターゲットの形態にしても、スパッタリングターゲットを用いたDCスパッタリングによる成膜ができなくなる場合があるため、好ましくない。なお、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末の含有量は、5質量%以上10質量%以下とするのがより好ましい。
Further, the present inventors have made a resistance thin film by using a resistor material made of a sintered body of a mixed powder in which a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less is contained in a Ni alloy powder. It has been found that the resistance value of the resistance thin film can be increased by forming the resistance thin film, and the rate of change of the resistance value at high temperature can be suppressed to a low level. Further, it was confirmed that the resistance thin film of the embodiment of the present invention has not only the effect of improving electrical characteristics such as resistance value but also the effect of improving corrosion resistance.
Further, the present inventors have found that a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less is an insulator, and the effect can be obtained with a content of 3% by mass or more. If the content exceeds 20% by mass, the conductivity of the Ni alloy will not be sufficiently exhibited and it will become an insulator. Even if the resistor material is in the form of a sputtering target, film formation by DC sputtering using the sputtering target It is not preferable because it may not be possible. The content of the glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less is more preferably 5% by mass or more and 10% by mass or less.
(抵抗薄膜形成用スパッタリングターゲットの作製)
本発明の実施形態の抵抗薄膜形成用スパッタリングターゲットの原材料には、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末と、Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなる平均粒径10μm以上200μm以下のNi合金粉末とを用いる。Ni合金粉末における上記添加元素の含有量の総量は40質量%以上50質量%以下とするのがより好ましい。
(Preparation of sputtering target for forming resistance thin film)
The raw materials of the sputtering target for forming a resistance thin film according to the embodiment of the present invention include a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less, and one or more additive elements selected from Cr, Al and Y. Is contained in an amount of 10% by mass or more and 60% by mass or less, and a Ni alloy powder having an average particle size of 10 μm or more and 200 μm or less, the balance of which is Ni and unavoidable impurities, is used. The total content of the additive elements in the Ni alloy powder is more preferably 40% by mass or more and 50% by mass or less.
本発明の実施形態の抵抗薄膜形成用スパッタリングターゲットの原材料に用いる純粋なSiO2からなるガラス粉末の平均粒径は、上述のとおり、30μm以上200μm以下であるが、100μm程度の粉末を用いることがより好ましい。純粋なSiO2からなるガラス粉末の平均粒径が30μm未満であると、Ni合金粉末と混合した混合粉末を焼成して混合粉末の焼結体を作製したときに、図3に示した状態と同様、SiO2ガラス粉末が凝集して、組成偏析が生じ、焼結密度が上がらず、作製した抵抗薄膜形成用スパッタリングターゲットを用いたスパッタリングによって得られた抵抗薄膜が所望の特性を得られないか、スパッタリング自体ができない場合があるため好ましくない。 As described above, the average particle size of the glass powder made of pure SiO 2 used as the raw material of the sputtering target for forming a resistance thin film according to the embodiment of the present invention is 30 μm or more and 200 μm or less, but it is possible to use a powder of about 100 μm. More preferred. When the average particle size of the glass powder made of pure SiO 2 is less than 30 μm, the state shown in FIG. 3 is obtained when the mixed powder mixed with the Ni alloy powder is fired to prepare a sintered body of the mixed powder. Similarly, if the SiO 2 glass powder aggregates, composition segregation occurs, the sintering density does not increase, and the resistance thin film obtained by sputtering using the produced sputtering target for forming a resistance thin film can obtain the desired characteristics. , It is not preferable because sputtering itself may not be possible.
また、Ni合金粉末としては、平均粒径が10μm以上200μm以下の球状粉末を用いる。このような球状のNi合金粉末は、例えばアトマイズによって得ることができる。焼結を行う場合、通常は原料粉末の粒径は細かい方が望ましい。しかしながら、ホットプレスで焼結を行う場合は、その限りではない。ホットプレスを行う際に、カーボン型に原料粉末を充填するが、カーボン型にはつなぎ目に隙間が存在するため、原料粉末が細かすぎると隙間から原料粉末が漏れ出し、作業性が低下するためである。また、原料粉末が細かすぎると、原料粉末同士の摩擦力も増大し、プレスした際に原料粉末の移動が十分に行われず、焼結後の抵抗体材料(焼結体)の密度を十分に高くすることができない場合もあるため好ましくない。 As the Ni alloy powder, a spherical powder having an average particle size of 10 μm or more and 200 μm or less is used. Such spherical Ni alloy powder can be obtained, for example, by atomization. When sintering, it is usually desirable that the particle size of the raw material powder is fine. However, this is not the case when sintering is performed by hot pressing. When hot-pressing, the carbon mold is filled with the raw material powder, but since the carbon mold has gaps at the joints, if the raw material powder is too fine, the raw material powder will leak from the gaps and workability will deteriorate. be. In addition, if the raw material powder is too fine, the frictional force between the raw material powders also increases, the raw material powder does not move sufficiently when pressed, and the density of the resistor material (sintered body) after sintering is sufficiently high. It is not preferable because it may not be possible to do so.
これらの原材料を、平均粒径30μm以上200μm以下の純粋なSiO2からなるガラス粉末が3質量%以上20質量%以下(より好ましくは、5質量%以上10質量%以下)の範囲の所定量になるように混合して、原料粉末となる混合粉末を得る。得られた混合粉末をカーボン型に充填する等して所望形状に成形し、得られた成形体を、好ましくはホットプレス法によって焼結させることにより、混合粉末の焼結体を得ることができる。具体的な焼結条件としては、真空または不活性雰囲気中にて、50kg/cm2以上の加圧下において、1100℃以上1400℃以下の温度で、1時間以上5時間以下の焼成により焼結させる。なお、本発明におけるホットプレス法には、HIP(熱間静水圧プレス)法も含まれる。 These raw materials are added to a predetermined amount in the range of 3% by mass or more and 20% by mass or less (more preferably 5% by mass or more and 10% by mass or less) of a glass powder made of pure SiO 2 having an average particle size of 30 μm or more and 200 μm or less. To obtain a mixed powder as a raw material powder. A sintered body of the mixed powder can be obtained by filling the obtained mixed powder into a carbon mold or the like to form a desired shape, and sintering the obtained molded body by a hot press method. .. As specific sintering conditions, it is sintered in a vacuum or in an inert atmosphere under pressure of 50 kg / cm 2 or more at a temperature of 1100 ° C. or higher and 1400 ° C. or lower by firing for 1 hour or longer and 5 hours or shorter. .. The hot pressing method in the present invention also includes a HIP (hot hydrostatic pressure pressing) method.
焼結温度は、1000℃以上1300℃以下程度のNi合金の焼結温度に合わせて設定するのが好ましい。純粋なSiO2からなるガラスの軟化点が1600℃程度のため、上記範囲(1100℃以上1400℃以下)の温度で焼結を行うことにより、本発明の実施形態の抵抗体材料をなす混合粉末の焼結体の組織を、図2に示すような、ガラス粉末の凝集がなく、組成偏析のない状態にすることができる。 The sintering temperature is preferably set according to the sintering temperature of the Ni alloy of about 1000 ° C. or higher and 1300 ° C. or lower. Since the softening point of the glass made of pure SiO 2 is about 1600 ° C., the mixed powder forming the resistor material of the embodiment of the present invention is obtained by sintering at a temperature within the above range (1100 ° C. or higher and 1400 ° C. or lower). As shown in FIG. 2, the structure of the sintered body of the above can be brought into a state where there is no agglomeration of glass powder and no composition segregation.
このようして得られた混合粉末の焼結体を必要に応じて寸法を調製することにより、本発明の実施形態の抵抗薄膜形成用スパッタリングターゲットを得ることができる。スパッタリングを行うときは、スパッタ装置に取り付けるための部材であるバッキングプレートと呼ばれる銅製の板にボンディングするなどして、スパッタ装置等に取り付けて使用する。 By adjusting the dimensions of the sintered body of the mixed powder thus obtained as necessary, the sputtering target for forming a resistance thin film according to the embodiment of the present invention can be obtained. When sputtering is performed, it is used by attaching it to a sputtering device or the like by bonding it to a copper plate called a backing plate, which is a member for attaching to the sputtering device.
(抵抗薄膜の作製)
本発明の実施形態の抵抗薄膜は、例えば、上記のようにして得られた本発明の実施形態の抵抗薄膜形成用スパッタリングターゲットを使用して、スパッタリング法により成膜して得ることができる。このようなスパッタリングなどの方法により形成された抵抗薄膜は、抵抗体材料と実質的に同じ組成を得ることができる。このような抵抗薄膜を有する薄膜抵抗器用の基板としては、Al2O3、SiO2などの絶縁材料基板を用いるのが望ましい。なお、抵抗薄膜の形成は、上記スパッタリング法のほか、本発明の実施形態の抵抗体材料を蒸着用タブレットに加工して、真空蒸着などの蒸着法により抵抗薄膜を成膜することも可能である。
(Preparation of resistance thin film)
The resistance thin film of the embodiment of the present invention can be obtained, for example, by forming a film by a sputtering method using the sputtering target for forming a resistance thin film of the embodiment of the present invention obtained as described above. The resistance thin film formed by such a method such as sputtering can obtain substantially the same composition as the resistor material. As a substrate for a thin film resistor having such a resistance thin film, it is desirable to use an insulating material substrate such as Al 2 O 3 or SiO 2 . In addition to the above sputtering method, the resistance thin film can also be formed by processing the resistor material of the embodiment of the present invention into a thin-film deposition tablet and forming a resistance thin film by a vapor deposition method such as vacuum deposition. ..
スパッタリング法には各種方式が存在し、本発明の実施形態への適用に関して、特にその方式の種類による制限はないが、コスト面および量産性の観点からDCスパッタリング法を用いることが好ましい。スパッタリング条件は、スパッタリング装置にもよるが、例えば、ターゲットサイズ:φ75mm×3mmのスパッタリングターゲットを用いて、出力:200W(固定)のスパッタリング装置を用いる場合には、電圧:400~600V、電流:0.3~0.5A、Ar流量:15~25SCCM、全圧力:0.4~0.6Pa、TS距離(ターゲットから基板までの距離):85mmの条件で成膜することができる。 There are various methods in the sputtering method, and the application to the embodiment of the present invention is not particularly limited by the type of the method, but it is preferable to use the DC sputtering method from the viewpoint of cost and mass productivity. The sputtering conditions depend on the sputtering device, but for example, when a sputtering target having a target size of φ75 mm × 3 mm is used and a sputtering device having an output of 200 W (fixed) is used, the voltage is 400 to 600 V and the current is 0. The film can be formed under the conditions of .3 to 0.5 A, Ar flow rate: 15 to 25 SCCM, total pressure: 0.4 to 0.6 Pa, and TS distance (distance from the target to the substrate): 85 mm.
スパッタリング成膜を行った直後の薄膜は、抵抗温度係数が負に大きく、さらに高温における抵抗安定性が不十分な場合がある。この成膜直後の薄膜を、薄膜の組成に応じて、大気中または不活性ガス中において、200℃以上500℃以下の温度で、1時間以上10時間以下の熱処理を行うことにより、抵抗温度係数を小さくし、高温時の抵抗安定性を向上させた抵抗薄膜として完成させることができる。 The thin film immediately after the sputtering film formation has a negative temperature coefficient of resistance and may have insufficient resistance stability at high temperatures. The temperature coefficient of resistance of the thin film immediately after film formation is subjected to heat treatment in the air or in an inert gas at a temperature of 200 ° C. or higher and 500 ° C. or lower for 1 hour or longer and 10 hours or lower, depending on the composition of the thin film. Can be completed as a resistance thin film with improved resistance stability at high temperatures.
本発明の実施形態の薄膜抵抗器は、図1に示すように、絶縁材料基板1と、絶縁材料基板1上に上述のようにして形成された本発明の実施形態の抵抗薄膜2と、絶縁材料基板1上で抵抗薄膜2の両側に形成された電極3とで構成される。電極3としては、Au電極のほかにAl、Ag、Cu、Ni、Crなどの電極を用いることができる。このように構成される薄膜抵抗器は、本発明の実施形態の抵抗薄膜に基づく特性を有するため、高抵抗で高温時の抵抗変化率を低く抑えた電子部品とすることができる。
As shown in FIG. 1, the thin film resistor of the embodiment of the present invention is insulated from the insulating material substrate 1 and the resistance
以下、本発明をより具体的な実施例に基づき詳細に説明する。なお、本発明の範囲は実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in detail based on more specific examples. The scope of the present invention is not limited to the examples.
(実施例1)
1.評価用焼結体の作製
Ni合金粉末として、Cr、Al、およびYを総量で40質量%添加(Cr:Al:Y=29.5:10.0:0.5(質量比))した平均粒径50μmのNi合金粉末を準備した。一方、純粋なSiO2ガラス粉末として、不純物量10ppm以下の平均粒径100μmのSiO2ガラス粉末を準備した。
この2種類の粉末を、SiO2ガラス粉末の添加量が5質量%となるように混合し、原料粉末とした。
この原料粉末を、所定の形状のカーボン型に装填し、雰囲気ホットプレス炉を用いてホットプレスを行い、所定の形状の成形体を得た。その後、成形体を、Arを2L/minで流す不活性雰囲気中で、200kg/cm2の圧力、1100℃の焼成温度、3時間の焼成時間という条件で焼成し、混合粉末の焼結体を得た。得られた混合粉末の焼結体を平面研削盤にて厚さを3.0mmに加工した後、ワイヤーカットを用いて直径75.0mmの円盤状の抵抗薄膜形成用スパッタリングターゲットに加工した。得られたスパッタリングターゲットを、インジウム蝋材を使用して、銅バッキングプレートにボンディングしてスパッタリング用の試料を作製した。
(Example 1)
1. 1. Preparation of sintered body for evaluation
As a Ni alloy powder, 40% by mass of Cr, Al, and Y are added in total (Cr: Al: Y = 29.5: 10.0: 0.5 (mass ratio)), and a Ni alloy powder having an average particle size of 50 μm is added. Prepared. On the other hand, as a pure SiO 2 glass powder, a SiO 2 glass powder having an average particle size of 100 μm with an impurity content of 10 ppm or less was prepared.
These two types of powders were mixed so that the amount of SiO 2 glass powder added was 5% by mass to obtain a raw material powder.
This raw material powder was loaded into a carbon mold having a predetermined shape and hot-pressed using an atmospheric hot press furnace to obtain a molded product having a predetermined shape. Then, the molded body was fired in an inert atmosphere in which Ar was flown at 2 L / min under the conditions of a pressure of 200 kg / cm 2 , a firing temperature of 1100 ° C., and a firing time of 3 hours to obtain a sintered body of the mixed powder. Obtained. The obtained sintered body of the mixed powder was processed into a thickness of 3.0 mm by a surface grinding machine, and then processed into a disk-shaped sputtering target for forming a resistance thin film having a diameter of 75.0 mm by using a wire cut. The obtained sputtering target was bonded to a copper backing plate using an indium wax material to prepare a sample for sputtering.
2.焼結体の評価
得られた混合粉末の焼結体に対し、以下のように、密度、ガラス粉末の凝集の評価を行った。
密度の評価は、得られた混合粉末の焼結体(抵抗薄膜形成用スパッタリングターゲット)の重量及び体積から密度を求め、理論密度との比率を算出することにより行った。
ガラス粉末の凝集の評価は、得られた混合粉末の焼結体の断面観察を行い、ガラス粉末凝集の有無を確認することにより行った。
混合粉末の焼結体の評価結果を、ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に表1に示す。
2. 2. Evaluation of Sintered Body The density and agglomeration of glass powder were evaluated for the obtained mixed powder sintered body as follows.
The density was evaluated by obtaining the density from the weight and volume of the obtained sintered body of the mixed powder (sputtering target for forming a resistance thin film) and calculating the ratio with the theoretical density.
The evaluation of the agglomeration of the glass powder was carried out by observing the cross section of the sintered body of the obtained mixed powder and confirming the presence or absence of the agglomeration of the glass powder.
The evaluation results of the sintered body of the mixed powder are shown in Table 1 together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
3.評価用薄膜抵抗器の作製
このようにして得られた抵抗薄膜形成用スパッタリングターゲットを、スパッタリング装置に基板と距離が85mmとなるように装着し、5×10-4Paまで排気した後、純度99.999%以上のArガスを導入して、0.5Paの圧力に保持し、スパッタリングパワー200W、電圧500V、電流0.4Aで、膜厚が100nmとなるように、スパッタリングを行い、基板上に20mm×25mmの大きさの抵抗薄膜を成膜した。このときの基板にはAl2O3を使用した。
次に、スパッタリング装置から抵抗薄膜形成用スパッタリングターゲットを取り外し、別途準備しておいたAu電極形成用スパッタリングターゲットをスパッタリング装置に装着し、抵抗薄膜形成用スパッタリングターゲットによって得られた抵抗薄膜の両端に、膜厚が500nmのAu電極を、抵抗薄膜成膜時と同様のDCスパッタリング法により成膜した。その後、大気雰囲気中、300℃の温度で、3時間の熱処理を行い、本発明の実施例1の抵抗薄膜を用いた薄膜抵抗器を得た。
3. 3. Fabrication of Thin Film Resistor for Evaluation The sputtering target for forming a resistance thin film thus obtained is mounted on a sputtering device so that the distance from the substrate is 85 mm, and after exhausting to 5 × 10 -4 Pa, the purity is 99. .999% or more of Ar gas is introduced and maintained at a pressure of 0.5 Pa, and sputtering is performed at a sputtering power of 200 W, a voltage of 500 V, and a current of 0.4 A so that the film thickness becomes 100 nm, and the film is placed on the substrate. A resistance thin film having a size of 20 mm × 25 mm was formed. At this time, Al 2 O 3 was used for the substrate.
Next, the sputtering target for forming a resistance thin film is removed from the sputtering device, and the separately prepared sputtering target for forming an Au electrode is attached to the sputtering device. An Au electrode having a film thickness of 500 nm was formed by the same DC sputtering method as in the case of forming a resistance thin film. Then, the heat treatment was carried out in an air atmosphere at a temperature of 300 ° C. for 3 hours to obtain a thin film resistor using the resistance thin film of Example 1 of the present invention.
4.薄膜抵抗器の評価
得られた薄膜抵抗器について、以下のように、比抵抗、および高温安定性の評価を行った。
比抵抗は、室温において、四探針法による測定により得た。
高温安定性については、得られた薄膜抵抗器を155℃の恒温槽内に1000時間保持し、その前後において測定した抵抗値から抵抗変化率(155℃、1000時間)を算出することにより評価した。
薄膜抵抗器の評価結果を、ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に表1に示す。
4. Evaluation of thin-film resistors The obtained thin-film resistors were evaluated for specific resistance and high-temperature stability as follows.
The specific resistance was obtained by measurement by the four-probe method at room temperature.
The high temperature stability was evaluated by holding the obtained thin film resistor in a constant temperature bath at 155 ° C. for 1000 hours and calculating the resistance change rate (155 ° C., 1000 hours) from the resistance values measured before and after that. ..
The evaluation results of the thin film resistor are shown in Table 1 together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例2)
SiO2ガラス粉末の添加量を3質量%としたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 2)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Example 1 except that the amount of the SiO 2 glass powder added was 3% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例3)
SiO2ガラス粉末の平均粒径を30μmとしたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 3)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Example 1 except that the average particle size of the SiO 2 glass powder was 30 μm, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例4)
SiO2ガラス粉末の平均粒径を200μmとしたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 4)
A sintered body of the mixed powder and a thin film resistor were obtained and their characteristics were measured in the same manner as in Example 1 except that the average particle size of the SiO 2 glass powder was set to 200 μm. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例5)
SiO2ガラス粉末の添加量を7質量%としたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 5)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Example 1 except that the amount of the SiO 2 glass powder added was 7% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例6)
SiO2ガラス粉末の添加量を10質量%としたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 6)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Example 1 except that the amount of the SiO 2 glass powder added was 10% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例7)
SiO2ガラス粉末の添加量を15質量%としたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 7)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Example 1 except that the amount of the SiO 2 glass powder added was 15% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例8)
SiO2ガラス粉末の添加量を20質量%としたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 8)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Example 1 except that the amount of the SiO 2 glass powder added was 20% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(実施例9)
SiO2ガラス粉末の平均粒径を200μmとしたこと以外は、実施例8と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Example 9)
A sintered body of the mixed powder and a thin film resistor were obtained and their characteristics were measured in the same manner as in Example 8 except that the average particle size of the SiO 2 glass powder was set to 200 μm. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例1)
ガラス粉末として、SiO2ガラスに、B、Ba、Mg、Ca、Zr、およびAlを総量で50質量%添加(B:Ba:Mg:Ca:Zr:Al=2:18:5:18:5:2(質量比))した平均粒径3μmのSiO2系ガラス粉末を添加量が20質量%となるようにNi合金粉末との混合に使用したこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 1)
As a glass powder, 50% by mass of B, Ba, Mg, Ca, Zr, and Al are added to SiO 2 glass in a total amount (B: Ba: Mg: Ca: Zr: Al = 2: 18: 5: 18: 5). : 2 (mass ratio)) The same as in Example 1 except that the SiO 2 glass powder having an average particle size of 3 μm was used for mixing with the Ni alloy powder so that the addition amount was 20% by mass. A sintered body of mixed powder and a thin film resistor were obtained, and their characteristics were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例2)
SiO2系ガラス粉末の平均粒径を30μmとしたこと以外は、比較例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 2)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Comparative Example 1 except that the average particle size of the SiO 2 glass powder was set to 30 μm, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例3)
SiO2系ガラス粉末の平均粒径を100μmとしたこと以外は、比較例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 3)
A sintered body of the mixed powder and a thin film resistor were obtained and their characteristics were measured in the same manner as in Comparative Example 1 except that the average particle size of the SiO 2 glass powder was 100 μm. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例4)
SiO2系ガラス粉末の平均粒径を200μmとしたこと以外は、比較例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 4)
A sintered body of the mixed powder and a thin film resistor were obtained and their characteristics were measured in the same manner as in Comparative Example 1 except that the average particle size of the SiO 2 glass powder was set to 200 μm. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例5)
SiO2ガラス粉末の平均粒径を3μmとしたこと以外は、実施例1と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 5)
A sintered body of the mixed powder and a thin film resistor were obtained and their characteristics were measured in the same manner as in Example 1 except that the average particle size of the SiO 2 glass powder was 3 μm. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例6)
SiO2ガラス粉末の添加量を3質量%としたこと以外は、比較例5と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 6)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Comparative Example 5, except that the amount of the SiO 2 glass powder added was 3% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例7)
SiO2ガラス粉末の添加量を7質量%としたこと以外は、比較例5と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 7)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Comparative Example 5, except that the amount of the SiO 2 glass powder added was 7% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例8)
SiO2ガラス粉末の添加量を10質量%としたこと以外は、比較例5と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 8)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Comparative Example 5, except that the amount of the SiO 2 glass powder added was 10% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例9)
SiO2ガラス粉末の添加量を15質量%としたこと以外は、比較例5と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 9)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Comparative Example 5, except that the amount of the SiO 2 glass powder added was 15% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例10)
SiO2ガラス粉末の添加量を20質量%としたこと以外は、比較例5と同様にして、混合粉末の焼結体、及び薄膜抵抗器を得て、その特性についての測定を行った。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。
(Comparative Example 10)
A sintered body of the mixed powder and a thin film resistor were obtained in the same manner as in Comparative Example 5, except that the amount of the SiO 2 glass powder added was 20% by mass, and the characteristics thereof were measured. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size).
(比較例11)
SiO2ガラス粉末の添加量を30質量%としたこと以外は、実施例1と同様にして、混合粉末の焼結体(スパッタリングターゲット)を得た。しかしながら、このスパッタリングターゲットを用いて実施例1と同様に抵抗薄膜を成膜しようとしたところ、ターゲットの導電性が不十分であるため、成膜できなかった。ガラス粉末の条件(含有量、添加物の有無、平均粒径)と共に評価結果を表1に示す。なお、薄膜抵抗器は作製できなかったため、評価は「-」で示してある。
(Comparative Example 11)
A sintered body (sputtering target) of the mixed powder was obtained in the same manner as in Example 1 except that the amount of the SiO 2 glass powder added was 30% by mass. However, when an attempt was made to form a resistance thin film using this sputtering target in the same manner as in Example 1, the film could not be formed because the conductivity of the target was insufficient. Table 1 shows the evaluation results together with the conditions of the glass powder (content, presence / absence of additives, average particle size). Since the thin film resistor could not be manufactured, the evaluation is indicated by "-".
表1に示すように、本発明の構成要件を具備する実施例1、2、4~9の試料は、混合粉末の焼結体の密度比が95.4%以上と高く、ガラス粉末の凝集もなく、525μΩ・cm以上の比抵抗を容易に発揮することができ、155℃、1000時間の高温保管においても、抵抗変化率が0.09%以下と非常に安定していることが認められる結果となった。
また、本発明の構成要件を具備する試料であって、平均粒径が本発明の範囲の下限値となっているSiO2ガラス粉末を用いた実施例3の試料は、混合粉末の焼結体の密度比は94.5%と比較的低い値を示したが、ガラス粉末の凝集もなく、比抵抗が530μΩ・cm、抵抗変化率が0.07%と本発明で要求される特性(比抵抗:525μΩ・cm以上、抵抗変化率:0.1%以下)を満たすことが認められる結果となった。
As shown in Table 1, in the samples of Examples 1, 2, 4 to 9 having the constituent requirements of the present invention, the density ratio of the sintered body of the mixed powder was as high as 95.4% or more, and the glass powder was aggregated. It is recognized that the specific resistance of 525 μΩ · cm or more can be easily exhibited, and the resistance change rate is 0.09% or less, which is very stable even in high temperature storage at 155 ° C. for 1000 hours. The result was.
Further, the sample of Example 3 using the SiO 2 glass powder whose average particle size is the lower limit of the range of the present invention, which is a sample satisfying the constituent requirements of the present invention, is a sintered body of a mixed powder. Although the density ratio was 94.5%, which was a relatively low value, there was no agglomeration of glass powder, the specific resistance was 530 μΩ · cm, and the resistivity change rate was 0.07%, which are the characteristics (ratio) required by the present invention. Resistance: 525 μΩ · cm or more, resistivity change rate: 0.1% or less) was confirmed to be satisfied.
これに対し、従来のB等の添加元素を含有し、かつ、ガラス粉末の平均粒径が本発明の範囲の下限値よりも小さいSiO2系ガラスを用いた比較例1の試料は、ガラス粉末の凝集がなく、抵抗変化率が0.09%と本発明で要求される特性(0.1%以下)を満たしたが、密度比が93.7%までしか上がらず、比抵抗も386μΩ・cmと十分には高くすることができないことが認められる結果となった。
また、ガラス粉末の平均粒径が本発明の範囲内ではあるものの、従来のB等の添加元素を含有するSiO2系ガラスを用いた比較例2~4の試料は、ガラス粉末の凝集はなかったが、密度比が94.5%以下と高くはならず、比抵抗も407μΩ・cmと十分には高くすることができず、また、抵抗変化率も0.11%以上と本発明で要求される特性(0.1%以下)を満たさないことが認められる結果となった。
また、添加元素を含有しないSiO2ガラスを用いた場合であっても、ガラス粉末の平均粒径が本発明の範囲の下限値よりも小さい比較例5~10の試料は、密度比が92.7%以下と低い値を示し、かつガラス粉末の凝集があり、抵抗変化率も0.22%以上と本発明で要求される特性(0.1%以下)が得られないことが認められる結果となった。比較例5~10の試料において、ガラスの含有量を増やすことにより比抵抗を高くすることは可能であるが、それに伴い高温保管時の抵抗変化率も高くなってしまうため、薄膜抵抗器として好ましくない。
また、ガラス粉末の含有量のみを本発明の範囲よりも多く含有させた比較例11の試料は、Ni合金粉末の含有量が少なすぎてスパッタリングに必要な導電性を得ることができず、抵抗薄膜を形成することができないことが認められる結果となった。
On the other hand, the sample of Comparative Example 1 using a SiO 2 -based glass containing an additive element such as B and having an average particle size of the glass powder smaller than the lower limit of the range of the present invention is a glass powder. The resistance change rate was 0.09%, which satisfied the characteristics required in the present invention (0.1% or less), but the density ratio increased only to 93.7%, and the specific resistance was 386 μΩ. The result was that it could not be made sufficiently high as cm.
Further, although the average particle size of the glass powder is within the range of the present invention, the samples of Comparative Examples 2 to 4 using the conventional SiO 2 -based glass containing an additive element such as B do not aggregate the glass powder. However, the density ratio does not increase to 94.5% or less, the specific resistance cannot be sufficiently increased to 407 μΩ · cm, and the resistance change rate is required to be 0.11% or more in the present invention. As a result, it was confirmed that the specified characteristics (0.1% or less) were not satisfied.
Further, even when SiO 2 glass containing no additive element is used, the samples of Comparative Examples 5 to 10 in which the average particle size of the glass powder is smaller than the lower limit of the range of the present invention have a density ratio of 92. Results showing a low value of 7% or less, agglomeration of glass powder, and a resistance change rate of 0.22% or more, indicating that the characteristics (0.1% or less) required by the present invention cannot be obtained. It became. In the samples of Comparative Examples 5 to 10, it is possible to increase the specific resistance by increasing the glass content, but the resistance change rate during high temperature storage also increases accordingly, which is preferable as a thin film resistor. do not have.
Further, in the sample of Comparative Example 11 in which only the content of the glass powder was contained more than the range of the present invention, the content of the Ni alloy powder was too small to obtain the conductivity required for sputtering, and the resistance was increased. The result was that it was not possible to form a thin film.
本発明は、高温化した使用環境にある電子部品に用いる薄膜抵抗器を製造することが求められている分野に有用である。 INDUSTRIAL APPLICABILITY The present invention is useful in a field where it is required to manufacture a thin film resistor used for an electronic component in a high temperature usage environment.
1 アルミナ基板
2 抵抗薄膜
3 (Au)電極
1
Claims (6)
Cr、AlおよびYから選択される1種以上の添加元素を10質量%以上60質量%以下含有し、残部がNiと不可避不純物からなる、平均粒径10μm以上200μm以下のNi合金粉末とを、
前記ガラス粉末が3質量%以上20質量%以下となるように混合し、得られた混合粉末を所望形状に成形し、得られた成形体を、真空または不活性雰囲気中にて、50kg/cm2以上の加圧下において、1100℃以上1400℃以下の温度で焼成して焼結体を作製し、該焼結体を材料として抵抗薄膜を形成したときにおける比抵抗が525μΩ・cm以上1700μΩ・cm以下となり、155℃の温度を1000時間保持したときにおける経時的抵抗変化率が0.1%以下となる特性を有するようにすることを特徴とする、抵抗薄膜形成用スパッタリングターゲットの製造方法。 Glass powder consisting of pure SiO 2 with an average particle size of 30 μm or more and 200 μm or less,
A Ni alloy powder having an average particle size of 10 μm or more and 200 μm or less, which contains 10% by mass or more and 60% by mass or less of one or more additive elements selected from Cr, Al and Y, and the balance is Ni and unavoidable impurities.
The glass powder is mixed so as to be 3% by mass or more and 20% by mass or less, the obtained mixed powder is molded into a desired shape, and the obtained molded product is 50 kg / cm in a vacuum or an inert atmosphere. A sintered body is produced by firing at a temperature of 1100 ° C. or higher and 1400 ° C. or lower under a pressure of 2 or more, and the specific resistance when a resistance thin film is formed using the sintered body as a material is 525 μΩ · cm or more and 1700 μΩ · cm. The following is a method for manufacturing a sputtering target for forming a resistance thin film, which has a characteristic that the rate of change in resistance with time when the temperature of 155 ° C. is maintained for 1000 hours is 0.1% or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018128625A JP7087741B2 (en) | 2018-07-05 | 2018-07-05 | A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018128625A JP7087741B2 (en) | 2018-07-05 | 2018-07-05 | A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020007601A JP2020007601A (en) | 2020-01-16 |
JP7087741B2 true JP7087741B2 (en) | 2022-06-21 |
Family
ID=69150744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018128625A Active JP7087741B2 (en) | 2018-07-05 | 2018-07-05 | A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7087741B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011119234A (en) | 2009-10-29 | 2011-06-16 | Sumitomo Metal Mining Co Ltd | Resistor material, sputtering target for forming resistor thin film, resistor thin film, thin film resistor, and method of manufacturing same |
JP2012212761A (en) | 2011-03-31 | 2012-11-01 | Jx Nippon Mining & Metals Corp | Metal foil with electrical resistance film and manufacturing method therefor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139858A (en) * | 1990-11-05 | 1992-08-18 | University Of Delaware | Cryogenic resistance thermometer comprising a granular nickel in silica film |
-
2018
- 2018-07-05 JP JP2018128625A patent/JP7087741B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011119234A (en) | 2009-10-29 | 2011-06-16 | Sumitomo Metal Mining Co Ltd | Resistor material, sputtering target for forming resistor thin film, resistor thin film, thin film resistor, and method of manufacturing same |
JP2012212761A (en) | 2011-03-31 | 2012-11-01 | Jx Nippon Mining & Metals Corp | Metal foil with electrical resistance film and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2020007601A (en) | 2020-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6129738B2 (en) | Ceramic circuit board | |
WO2013008919A1 (en) | Ceramic circuit board | |
US10863587B2 (en) | Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus | |
JP5045804B2 (en) | Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof | |
JP4018839B2 (en) | SnO2-based sintered body, thin film forming material and conductive film | |
TWI669283B (en) | Oxide sintered body and sputtering target material and their manufacturing method | |
JP4622946B2 (en) | Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof. | |
JP7087741B2 (en) | A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. | |
TW201739723A (en) | Oxide sintered body, sputtering target, and methods for manufacturing same | |
JP4775140B2 (en) | Sputtering target | |
JP3852446B2 (en) | Resistance thin film material and method of manufacturing resistance thin film using the same | |
KR20110047145A (en) | Material for a resistor, a sputtering target for forming resistance thin film, a resistance thin film, a thin film resistor, and manufacturing method thereof | |
JP6627993B2 (en) | Cu-Ni alloy sputtering target | |
CN102117670B (en) | Resistor material, resistance film form by sputtering target, resistance film, thin film resistor and their manufacture method | |
JP7609258B2 (en) | Cr-Si based film | |
JP4042714B2 (en) | Metal resistor material, sputtering target and resistive thin film | |
JP4895481B2 (en) | Resistance thin film and sputtering target for forming the resistance thin film | |
JP3969110B2 (en) | W-based sintered alloy mold for hot press molding of high-precision optical glass lenses with excellent glass corrosion resistance | |
JP7554687B2 (en) | Cu-Bi2O3 sputtering target and its manufacturing method | |
JP2010010009A (en) | Method of flattening of resistance temperature curve of molten silicon electrical heating alloy | |
JP2002033525A (en) | Thermoelectric element and manufacturing method thereof | |
JP2005294612A5 (en) | ||
WO2019167564A1 (en) | Cu-Ni ALLOY SPUTTERING TARGET | |
JP2006005104A (en) | Thin film resistor, its manufacturing method and sputtering target for manufacturing the same | |
CN115516651A (en) | Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180709 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210501 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220523 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7087741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |