WO2019167564A1 - Cu-Ni ALLOY SPUTTERING TARGET - Google Patents

Cu-Ni ALLOY SPUTTERING TARGET Download PDF

Info

Publication number
WO2019167564A1
WO2019167564A1 PCT/JP2019/003997 JP2019003997W WO2019167564A1 WO 2019167564 A1 WO2019167564 A1 WO 2019167564A1 JP 2019003997 W JP2019003997 W JP 2019003997W WO 2019167564 A1 WO2019167564 A1 WO 2019167564A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
sputtering target
alloy sputtering
oxide
powder
Prior art date
Application number
PCT/JP2019/003997
Other languages
French (fr)
Japanese (ja)
Inventor
謙介 井尾
加藤 慎司
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019000734A external-priority patent/JP6627993B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201980015784.6A priority Critical patent/CN111788332B/en
Publication of WO2019167564A1 publication Critical patent/WO2019167564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Definitions

  • the present invention relates to a Cu—Ni alloy sputtering target used for forming a thin film of Cu—Ni alloy containing Ni and the balance being Cu and inevitable impurities.
  • the Cu—Ni alloy described above is used as a wiring film for displays and the like because it is excellent in low reflection, heat resistance, and electrical characteristics as disclosed in Patent Document 1, for example.
  • Patent Document 2-4 it is also used as a base film for copper wiring.
  • a copper-nickel alloy containing 40 to 50 mass% Ni has a small temperature coefficient of resistance, and is used as a thin film resistor for a strain gauge, as shown in Patent Document 5, for example. Since this copper-nickel alloy has a large electromotive force, it is used, for example, as a thin film thermocouple and a compensating conductor as shown in Patent Document 6-8.
  • a copper nickel alloy containing 22 mass% or less of Ni is also used as a general electric resistor, a low-temperature heating element, or the like.
  • the thin film made of the Cu—Ni alloy as described above is formed by, for example, a sputtering method.
  • a Cu—Ni alloy sputtering target used for the sputtering method is conventionally manufactured by a melt casting method as shown in, for example, Patent Documents 9 and 10.
  • Patent Document 11 proposes a method for producing a sintered body of a Cu—Ni alloy.
  • JP 2017-005233 A Japanese Patent Laid-Open No. 05-251844 Japanese Patent Laid-Open No. 06-097616 JP 2010-199283 A Japanese Patent Laid-Open No. 04-346275 Japanese Patent Laid-Open No. 04-290245 JP-A-62-144074 Japanese Patent Laid-Open No. 06-104494 JP 2016-029216 A JP 2012-193444 A Japanese Patent Laid-Open No. 05-051662
  • the present invention has been made in view of the circumstances described above, and it is possible to stably form a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are uniformized.
  • An object of the present invention is to provide a Cu—Ni alloy sputtering target.
  • the Cu—Ni alloy sputtering target of the present invention is a Cu—Ni alloy sputtering target containing Ni, the balance being Cu and inevitable impurities, and comprising a solid solution of Cu and Ni.
  • Ni oxide phases exist at the grain boundaries of the phases, and the area ratio of these Ni oxide phases is in the range of 0.1% to 5.0%.
  • the Ni oxide phase is present at the grain boundary of the parent phase composed of a solid solution of Cu and Ni, and the area ratio of these Ni oxide phases is 0.1% or more. Therefore, growth of crystal grains can be suppressed by the Ni oxide phase, and coarsening of crystal grains can be suppressed.
  • the area ratio of the Ni oxide phase is 5.0% or less, it is possible to suppress the occurrence of abnormal discharge due to the Ni oxide phase. Therefore, it is possible to stably form a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are uniform.
  • the Ni content is preferably in the range of 16 mass% or more and 55 mass% or less, and the balance is preferably composed of Cu and inevitable impurities.
  • the Ni content is 16 mass% or more, a Cu—Ni alloy film having excellent corrosion resistance can be formed. Further, since the Ni content is 55 mass% or less, a Cu—Ni alloy film with low electrical resistance can be formed. Therefore, a Cu—Ni alloy film particularly suitable for applications requiring corrosion resistance and conductivity can be stably formed.
  • the maximum particle size of the Ni oxide phase is preferably less than 10 ⁇ m. In this case, since the maximum particle diameter of the Ni oxide phase is limited to less than 10 ⁇ m, the occurrence of abnormal discharge due to the Ni oxide phase can be further suppressed, and stable sputter film formation can be achieved. It becomes possible.
  • the average particle size of the parent phase composed of a solid solution of Cu and Ni is in the range of 5 ⁇ m to 100 ⁇ m.
  • the average particle size of the parent phase made of a solid solution of Cu and Ni is 100 ⁇ m or less, the occurrence of abnormal discharge during sputtering film formation can be sufficiently suppressed.
  • the average particle diameter of the parent phase made of a solid solution of Cu and Ni is 5 ⁇ m or more, the manufacturing cost can be kept low.
  • a Cu—Ni alloy sputtering target capable of stably forming a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are made uniform. Can do.
  • the Cu—Ni alloy sputtering target according to this embodiment is a Cu film used as a wiring film, a copper wiring base film, a strain gauge thin film resistor, a thin film thermocouple and a compensating conductor, a general electric resistor, a low temperature heating element, and the like. -Used when forming a Ni alloy thin film.
  • the Cu—Ni alloy sputtering target according to the present embodiment may be a rectangular flat plate type sputtering target having a rectangular sputtering surface or a disk type sputtering target having a circular sputtering surface.
  • a cylindrical sputtering target whose sputtering surface is a cylindrical surface may be used.
  • the Cu—Ni alloy sputtering target according to this embodiment has a composition containing Ni, with the balance being Cu and inevitable impurities. Since Ni and Cu form a complete solid solution as shown in the binary phase diagram of FIG. 1, the content of Ni can be appropriately set according to the required characteristics such as corrosion resistance and electrical resistance. preferable. In the Cu—Ni alloy sputtering target of this embodiment, the Ni content is in the range of 16 mass% or more and 55 mass% or less, and the balance is composed of Cu and inevitable impurities.
  • Ni oxide phases exist at the grain boundaries of the parent phase composed of a solid solution of Cu and Ni.
  • the area ratio is in the range of 0.1% to 5.0%.
  • the maximum particle size of the Ni oxide phase is less than 10 ⁇ m. Furthermore, in the Cu—Ni alloy sputtering target according to the present embodiment, the average particle size of the parent phase composed of a solid solution of Cu and Ni is set in the range of 5 ⁇ m to 100 ⁇ m.
  • the area ratio of the Ni oxide phase, the maximum particle diameter of the Ni oxide phase, and the average grain size of the parent phase composed of a solid solution of Cu and Ni As described above, the area ratio of the Ni oxide phase, the maximum particle diameter of the Ni oxide phase, and the average grain size of the parent phase composed of a solid solution of Cu and Ni. The reason for defining the diameter and the component composition will be described.
  • Ni oxide phase area ratio In the Cu—Ni alloy sputtering target according to this embodiment, a Ni oxide phase is present at the crystal grain boundary of the parent phase composed of a solid solution of Cu and Ni. By this Ni oxide phase, the growth of crystal grains of the parent phase is suppressed, and the coarsening of the crystal grains is suppressed.
  • the area ratio of the Ni oxide phase is less than 0.1%, the above-described effect of suppressing the growth of crystal grains may not be sufficiently obtained.
  • the area ratio of the Ni oxide phase exceeds 5.0%, there is a possibility that abnormal discharge due to the Ni oxide phase as an insulator may occur.
  • the area ratio of the Ni oxide phase is in the range of 0.1% to 5.0%.
  • the lower limit of the area ratio of the Ni oxide phase is preferably 0.2% or more, and more preferably 0.3% or more.
  • the upper limit of the area ratio of the Ni oxide phase is preferably 4.5% or less, and is preferably 4.0% or less. More preferably.
  • the maximum particle size of the Ni oxide phase is less than 10 ⁇ m.
  • the maximum particle size of the Ni oxide phase is preferably 8 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the lower limit of the maximum particle size of the Ni oxide phase is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the average particle size of the parent phase made of a solid solution of Cu and Ni is set to 100 ⁇ m. The following is preferable.
  • the average particle size of the parent phase composed of a solid solution of Cu and Ni is 5 ⁇ m or more.
  • the lower limit of the average particle size of the parent phase composed of a solid solution of Cu and Ni is preferably 8 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the upper limit of the average particle size of the parent phase composed of a solid solution of Cu and Ni is preferably 90 ⁇ m or less, and more preferably 70 ⁇ m or less.
  • the Ni content in the Cu—Ni alloy sputtering target is set according to the required characteristics of the formed Cu—Ni alloy film.
  • the Ni content in the Cu—Ni alloy sputtering target is preferably set to 16 mass% or more.
  • the Ni content in the Cu—Ni alloy sputtering target is preferably 55 mass% or less.
  • the specific resistance of a Cu—Ni alloy sputtering target having a Ni content of 55 mass% or less is about 5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm.
  • the lower limit of the Ni content in the Cu—Ni alloy sputtering target is preferably 20 mass% or more, and more preferably 25 mass% or more.
  • the upper limit of the Ni content in the Cu—Ni alloy sputtering target is preferably 50 mass% or less, and more preferably 45 mass% or less. .
  • a manufacturing method of the Cu—Ni alloy sputtering target according to the present embodiment will be described with reference to the flowchart of FIG.
  • a Cu—Ni alloy sputtering target is manufactured by a powder sintering method.
  • a sintered raw material powder is formed.
  • a mixed powder of Cu powder and Ni powder may be used, or Cu—Ni alloy powder may be used.
  • Cu—Ni alloy powder manufactured as follows is used. First, Cu raw material and Ni raw material are weighed so as to have a predetermined blending ratio. It is preferable to use a Cu raw material having a purity of 99.99 mass% or more. Moreover, it is preferable to use a Ni raw material having a purity of 99.9 mass% or more. Specifically, oxygen-free copper is preferably used as the Cu material, and electrolytic Ni is preferably used as the Ni material.
  • the crucible is filled with the Cu raw material and the Ni raw material weighed as described above, and dissolved by heating.
  • ceramic refractories such as alumina, mullite, magnesia, zirconia, or carbon can be used. It is preferable to hold the molten Cu—Ni alloy after melting the Cu raw material and the Ni raw material within a range of 3 minutes to 15 minutes. If the holding time is short, the composition of Ni and Cu may be nonuniform. Further, if the holding time is short, there is a possibility that the magnetism of Ni remains.
  • the nozzle hole diameter is preferably in the range of 0.5 mm to 5.0 mm.
  • the Ar gas injection gas pressure is preferably in the range of 1 MPa to 10 MPa.
  • the molten metal temperature is preferably in the range of 1400 ° C. or higher and 1700 ° C. or lower.
  • the gas atomized powder obtained as described above is classified by sieving after cooling to obtain a Cu—Ni alloy powder having a predetermined particle size.
  • the average particle diameter of the Cu—Ni alloy powder is in the range of 1 ⁇ m to 300 ⁇ m.
  • Ni oxide powder is further added to the above-described Cu—Ni alloy powder. It is preferable to use a stable NiO powder as the Ni oxide powder. It is preferable to use Ni oxide powder having a purity of 95 mass% or more and an average particle size in the range of 0.1 ⁇ m or more and less than 10 ⁇ m. Further, the amount of Ni oxide powder added is preferably adjusted as appropriate so that the area ratio of the Ni oxide phase in the Cu—Ni alloy sputtering target is within the above range.
  • a mixer or a blender specifically, a Henschel mixer, a rocking mixer, or a V-type mixer can be used. As described above, a sintered raw material powder containing Ni oxide is obtained.
  • the obtained sintering raw material powder composed of the mixed powder of Cu—Ni alloy powder and Ni oxide powder is pressurized and heated to obtain a sintered body having a predetermined shape.
  • a hot isostatic pressing method HIP
  • HP hot press method
  • a hot isostatic pressing method HIP
  • the sintering conditions are preferably temperature: 800 ° C. or higher and 1200 ° C. or lower, pressure: 10 MPa or higher and 200 MPa or lower, holding time: 1 hour or longer and 6 hours or shorter.
  • the Cu—Ni alloy sputtering target according to the present embodiment is manufactured by the powder sintering method.
  • a Ni oxide phase exists at the grain boundary of the parent phase composed of a solid solution of Cu and Ni. Since the area ratio of the phase is 0.1% or more, the growth of crystal grains can be suppressed by the Ni oxide phase, and the coarsening of the crystal grains can be suppressed. In addition, since the area ratio of the Ni oxide phase is 5.0% or less, it is possible to suppress the occurrence of abnormal discharge due to the Ni oxide phase. Therefore, it is possible to stably form a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are uniform.
  • the maximum particle size of the Ni oxide phase is limited to less than 10 ⁇ m, the occurrence of abnormal discharge due to the Ni oxide phase as an insulator is further suppressed. Therefore, it becomes possible to form a sputter film stably.
  • the Ni content when the Ni content is 16 mass% or more, a Cu—Ni alloy film having excellent corrosion resistance can be formed. In addition, when the Ni content is 55 mass% or less, a Cu—Ni alloy film with low electrical resistance can be formed. Therefore, it is possible to form a Cu—Ni alloy film that is particularly suitable for applications requiring corrosion resistance and conductivity.
  • the sputtering rate can be further stabilized over the entire sputtering surface, It is possible to further suppress the occurrence of abnormal discharge during sputtering film formation.
  • the average particle diameter of the parent phase made of a solid solution of Cu and Ni is 5 ⁇ m or more, an increase in manufacturing cost can be suppressed.
  • the Ni—O powder is mixed with the Cu—Ni alloy powder to form the sintered raw material powder.
  • the present invention is not limited to this, and the Ni oxide is used as the raw material during atomization.
  • a Cu—Ni alloy powder containing Ni oxides may be produced by adding a material.
  • Cu—Ni alloy powder containing Ni oxide may be manufactured by introducing oxygen gas into the atomizing to oxidize Ni.
  • Cu—Ni alloy sputtering targets of Invention Examples 1 to 7 and Comparative Examples 1 to 4 were produced by a powder sintering method as follows. Prepare oxygen free copper with a purity of 99.99 mass% as a Cu raw material, and electrolytic Ni with a purity of 99.9% or higher as a Ni raw material, put it in a crucible made of alumina and set it in a gas atomizer, and have an average particle size of 50 ⁇ m Cu—Ni alloy powder was obtained.
  • the atomizing conditions were a molten metal temperature of 1550 ° C., a holding time of 8 minutes, an injection pressure of 5 MPa, and a nozzle diameter of 2.0 mm.
  • NiO powder having a purity of 99 mass% or more and an average particle size of less than 10 ⁇ m was prepared as Ni oxide powder.
  • Ni oxide powder having the composition shown in Table 1 was mixed with the above-described Cu—Ni alloy powder to obtain a sintered raw material powder.
  • Ni of the added Ni oxide powder NiO powder
  • the mixing ratio of the Ni raw material and the Cu raw material was determined so that the composition shown in Table 1 was obtained, to produce a Cu—Ni alloy powder.
  • the above sintered raw material powder was sintered by the HIP method under the conditions of a temperature of 1000 ° C., a pressure of 100 MPa, and a holding time of 2 hours to obtain a sintered body.
  • the obtained sintered body was machined to obtain a disk-shaped Cu—Ni alloy sputtering target having a diameter of 150.4 mm and a thickness of 6 mm.
  • An element mapping image of Cu, Ni, and O was taken with an observation area of 2 , and from the obtained element mapping image of Cu, Ni, and O, a region where only Ni and O coexisted was determined to be a Ni oxide phase. . And the area ratio of the Ni oxide phase which occupies for the whole image was computed, and the result of the sample of 5 points
  • the observed equivalent circle diameter of the Ni oxide phase was determined using image analysis software Winroof, and the largest equivalent circle diameter was shown in Table 1 as the maximum particle diameter of the Ni oxide phase.
  • Variation in oxygen amount (%) ⁇ (maximum value ⁇ minimum value) / average value ⁇ ⁇ 100 As a result, it was confirmed that the variation in the amount of oxygen in the Cu—Ni alloy sputtering targets of Invention Examples 1 to 7 and Comparative Examples 1 to 4 was 30% or less.
  • Comparative Example 1 In Comparative Example 1 in which the Ni oxide phase was not confirmed, the average particle size of the parent phase composed of a solid solution of Cu and Ni became as large as 163 ⁇ m, and the number of occurrences of abnormal discharge increased.
  • Comparative Example 2 In Comparative Example 2 in which the area ratio of the Ni oxide phase was less than 0.1%, the average particle size of the parent phase made of a solid solution of Cu and Ni was coarsened to 121 ⁇ m, and the number of occurrences of abnormal discharge increased. . This is presumably because the effect of suppressing crystal growth by the Ni oxide phase could not be obtained.
  • Examples 1 to 7 of the present invention in which the area ratio of the Ni oxide phase was in the range of 0.1% to 5.0%, the coarsening of the parent phase composed of a solid solution of Cu and Ni was suppressed, and the occurrence of abnormal discharge was suppressed.
  • the maximum particle size of the Ni oxide phase was less than 10 ⁇ m, the occurrence of abnormal discharge was further suppressed.
  • Cu—Ni alloy capable of stably forming a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are made uniform is stable. It was confirmed that a sputtering target could be provided.
  • a Cu—Ni alloy sputtering target capable of stably forming a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are made uniform. Can do.

Abstract

A Cu-Ni alloy sputtering target containing Ni, with the remainder comprising Cu and unavoidable impurities, said target characterized in that Ni oxide phases are present at grain boundaries in a matrix phase comprising a solid solution of Cu and Ni, and the area proportion of said Ni oxide phases is in the range of 0.1% to 5.0%, inclusive.

Description

Cu-Ni合金スパッタリングターゲットCu-Ni alloy sputtering target
 本発明は、Niを含み、残部がCuと不可避不純物からなるCu-Ni合金の薄膜を成膜する際に用いられるCu-Ni合金スパッタリングターゲットに関するものである。
 本願は、2018年3月1日に日本に出願された特願2018-036509号、および、2019年1月7日に日本に出願された特願2019-000734号について優先権を主張し、その内容をここに援用する。
The present invention relates to a Cu—Ni alloy sputtering target used for forming a thin film of Cu—Ni alloy containing Ni and the balance being Cu and inevitable impurities.
This application claims priority to Japanese Patent Application No. 2018-036509 filed in Japan on March 1, 2018 and Japanese Patent Application No. 2019-000734 filed in Japan on January 7, 2019. The contents are incorporated herein.
 上述のCu-Ni合金は、例えば特許文献1に示すように、低反射、耐熱性、電気特性に優れていることから、ディスプレイ等の配線膜として用いられている。例えば特許文献2-4に記載されているように、銅配線の下地膜としても使用されている。
 40~50mass%のNiを含む銅ニッケル合金においては、抵抗温度係数が小さいことから、例えば特許文献5に示すように、ひずみゲージ用薄膜抵抗体として使用されている。
 この銅ニッケル合金は、起電力が大きいことから、例えば特許文献6-8に示すように、薄膜熱電対及び補償導線として使用されている。
 22mass%以下のNiを含む銅ニッケル合金においても、一般電気抵抗体や低温発熱体等として利用されている。
The Cu—Ni alloy described above is used as a wiring film for displays and the like because it is excellent in low reflection, heat resistance, and electrical characteristics as disclosed in Patent Document 1, for example. For example, as described in Patent Document 2-4, it is also used as a base film for copper wiring.
A copper-nickel alloy containing 40 to 50 mass% Ni has a small temperature coefficient of resistance, and is used as a thin film resistor for a strain gauge, as shown in Patent Document 5, for example.
Since this copper-nickel alloy has a large electromotive force, it is used, for example, as a thin film thermocouple and a compensating conductor as shown in Patent Document 6-8.
A copper nickel alloy containing 22 mass% or less of Ni is also used as a general electric resistor, a low-temperature heating element, or the like.
 上述のようなCu-Ni合金からなる薄膜は、例えばスパッタ法によって成膜される。スパッタ法に使用されるCu-Ni合金スパッタリングターゲットは、従来、例えば特許文献9,10に示すように、溶解鋳造法によって製造されている。
 特許文献11には、Cu-Ni合金の焼結体の製造方法が提案されている。
The thin film made of the Cu—Ni alloy as described above is formed by, for example, a sputtering method. A Cu—Ni alloy sputtering target used for the sputtering method is conventionally manufactured by a melt casting method as shown in, for example, Patent Documents 9 and 10.
Patent Document 11 proposes a method for producing a sintered body of a Cu—Ni alloy.
特開2017-005233号公報JP 2017-005233 A 特開平05-251844号公報Japanese Patent Laid-Open No. 05-251844 特開平06-097616号公報Japanese Patent Laid-Open No. 06-097616 特開2010-199283号公報JP 2010-199283 A 特開平04-346275号公報Japanese Patent Laid-Open No. 04-346275 特開平04-290245号公報Japanese Patent Laid-Open No. 04-290245 特開昭62-144074号公報JP-A-62-144074 特開平06-104494号公報Japanese Patent Laid-Open No. 06-104494 特開2016-029216号公報JP 2016-029216 A 特開2012-193444号公報JP 2012-193444 A 特開平05-051662号公報Japanese Patent Laid-Open No. 05-051662
 上述のCu―Ni合金膜においては、膜厚や組成にばらつきが生じた際に、電気抵抗等の特性が膜内でばらついてしまう。このため、膜厚や組成が均一化されたCu―Ni合金膜を成膜することが求められている。
 Cu―Ni合金スパッタリングターゲットにおいて結晶粒が粗大化した場合には、スパッタが進行した際にスパッタ面に凹凸が生じ、膜厚や組成の均一な膜を成膜できなくなるおそれがあった。また、異常放電が発生しやすくなり、スパッタ成膜を安定して実施することができなくなるおそれがあった。
In the above-described Cu—Ni alloy film, characteristics such as electric resistance vary when the film thickness and composition vary. For this reason, it is required to form a Cu—Ni alloy film having a uniform film thickness and composition.
In the case where the crystal grains are coarsened in the Cu—Ni alloy sputtering target, the sputtering surface has irregularities when the sputtering proceeds, and there is a possibility that a film having a uniform film thickness and composition cannot be formed. Further, abnormal discharge is likely to occur, and there is a possibility that sputtering film formation cannot be performed stably.
 この発明は、前述した事情に鑑みてなされたものであって、結晶粒の粗大化が抑制され、膜厚や組成が均一化されたCu―Ni合金膜を安定して成膜することが可能なCu-Ni合金スパッタリングターゲットを提供することを目的とする。 The present invention has been made in view of the circumstances described above, and it is possible to stably form a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are uniformized. An object of the present invention is to provide a Cu—Ni alloy sputtering target.
 上記の課題を解決するために、本発明のCu-Ni合金スパッタリングターゲットは、Niを含み、残部がCuと不可避不純物からなるCu-Ni合金スパッタリングターゲットであって、CuとNiの固溶体からなる母相の粒界にNi酸化物相が存在しており、これらNi酸化物相の面積率が0.1%以上5.0%以下の範囲内とされていることを特徴としている。 In order to solve the above problems, the Cu—Ni alloy sputtering target of the present invention is a Cu—Ni alloy sputtering target containing Ni, the balance being Cu and inevitable impurities, and comprising a solid solution of Cu and Ni. Ni oxide phases exist at the grain boundaries of the phases, and the area ratio of these Ni oxide phases is in the range of 0.1% to 5.0%.
 本発明のCu-Ni合金スパッタリングターゲットによれば、CuとNiの固溶体からなる母相の粒界にNi酸化物相が存在しており、これらNi酸化物相の面積率が0.1%以上とされているので、Ni酸化物相によって結晶粒の成長を抑制することができ、結晶粒の粗大化を抑制することが可能となる。また、上述のNi酸化物相の面積率が5.0%以下とされているので、Ni酸化物相に起因した異常放電の発生を抑制することが可能となる。
 よって、結晶粒の粗大化が抑制され、膜厚や組成が均一化されたCu―Ni合金膜を安定して成膜することが可能となる。
According to the Cu—Ni alloy sputtering target of the present invention, the Ni oxide phase is present at the grain boundary of the parent phase composed of a solid solution of Cu and Ni, and the area ratio of these Ni oxide phases is 0.1% or more. Therefore, growth of crystal grains can be suppressed by the Ni oxide phase, and coarsening of crystal grains can be suppressed. In addition, since the area ratio of the Ni oxide phase is 5.0% or less, it is possible to suppress the occurrence of abnormal discharge due to the Ni oxide phase.
Therefore, it is possible to stably form a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are uniform.
 本発明のCu-Ni合金スパッタリングターゲットにおいては、Niの含有量が16mass%以上55mass%以下の範囲内とされ、残部がCuと不可避不純物からなる組成とされていることが好ましい。
 この場合、Niの含有量が16mass%以上とされているので、耐食性に優れたCu-Ni合金膜を成膜することができる。また、Niの含有量が55mass%以下とされているので、電気抵抗が低いCu-Ni合金膜を成膜することができる。
 よって、耐食性及び導電性が求められる用途に特に適したCu-Ni合金膜を、安定して成膜することができる。
In the Cu—Ni alloy sputtering target of the present invention, the Ni content is preferably in the range of 16 mass% or more and 55 mass% or less, and the balance is preferably composed of Cu and inevitable impurities.
In this case, since the Ni content is 16 mass% or more, a Cu—Ni alloy film having excellent corrosion resistance can be formed. Further, since the Ni content is 55 mass% or less, a Cu—Ni alloy film with low electrical resistance can be formed.
Therefore, a Cu—Ni alloy film particularly suitable for applications requiring corrosion resistance and conductivity can be stably formed.
 本発明のCu-Ni合金スパッタリングターゲットにおいては、前記Ni酸化物相の最大粒径が10μm未満とされていることが好ましい。
 この場合、前記Ni酸化物相の最大粒径が10μm未満に制限されているので、Ni酸化物相に起因した異常放電の発生をさらに抑制することができ、安定してスパッタ成膜することが可能となる。
In the Cu—Ni alloy sputtering target of the present invention, the maximum particle size of the Ni oxide phase is preferably less than 10 μm.
In this case, since the maximum particle diameter of the Ni oxide phase is limited to less than 10 μm, the occurrence of abnormal discharge due to the Ni oxide phase can be further suppressed, and stable sputter film formation can be achieved. It becomes possible.
 本発明のCu-Ni合金スパッタリングターゲットにおいては、CuとNiの固溶体からなる母相の平均粒径が5μm以上100μm以下の範囲内とされていることが好ましい。
 この場合、CuとNiの固溶体からなる母相の平均粒径が100μm以下とされているので、スパッタ成膜時における異常放電の発生を十分に抑制することができる。また、CuとNiの固溶体からなる母相の平均粒径が5μm以上とされているので、製造コストを低く抑えることができる。
In the Cu—Ni alloy sputtering target of the present invention, it is preferable that the average particle size of the parent phase composed of a solid solution of Cu and Ni is in the range of 5 μm to 100 μm.
In this case, since the average particle size of the parent phase made of a solid solution of Cu and Ni is 100 μm or less, the occurrence of abnormal discharge during sputtering film formation can be sufficiently suppressed. Moreover, since the average particle diameter of the parent phase made of a solid solution of Cu and Ni is 5 μm or more, the manufacturing cost can be kept low.
 本発明によれば、結晶粒の粗大化が抑制され、膜厚や組成が均一化されたCu―Ni合金膜を安定して成膜することが可能なCu-Ni合金スパッタリングターゲットを提供することができる。 According to the present invention, there is provided a Cu—Ni alloy sputtering target capable of stably forming a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are made uniform. Can do.
CuとNiの2元状態図である。It is a binary phase diagram of Cu and Ni. 本実施形態であるCu―Ni合金スパッタリングターゲットの組織写真の一例である。It is an example of the structure | tissue photograph of the Cu-Ni alloy sputtering target which is this embodiment. 本実施形態であるCu―Ni合金スパッタリングターゲットの製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the Cu-Ni alloy sputtering target which is this embodiment. 実施例におけるCu―Ni合金スパッタリングターゲットのスパッタ面におけるサンプルの採取位置を示す説明図である。It is explanatory drawing which shows the collection position of the sample in the sputtering surface of the Cu-Ni alloy sputtering target in an Example.
 以下に、本発明の一実施形態に係るCu-Ni合金スパッタリングターゲットについて説明する。
 本実施形態であるCu-Ni合金スパッタリングターゲットは、配線膜、銅配線の下地膜、ひずみゲージ用薄膜抵抗体、薄膜熱電対及び補償導線、一般電気抵抗体や低温発熱体等として使用されるCu-Ni合金薄膜を成膜する際に用いられるものである。
Hereinafter, a Cu—Ni alloy sputtering target according to one embodiment of the present invention will be described.
The Cu—Ni alloy sputtering target according to this embodiment is a Cu film used as a wiring film, a copper wiring base film, a strain gauge thin film resistor, a thin film thermocouple and a compensating conductor, a general electric resistor, a low temperature heating element, and the like. -Used when forming a Ni alloy thin film.
 本実施形態であるCu-Ni合金スパッタリングターゲットは、スパッタ面が矩形状をなす矩形平板型スパッタリングターゲットであってもよいし、スパッタ面が円形状をなす円板型スパッタリングターゲットであってもよい。あるいは、スパッタ面が円筒面とされた円筒型スパッタリングターゲットであってもよい。 The Cu—Ni alloy sputtering target according to the present embodiment may be a rectangular flat plate type sputtering target having a rectangular sputtering surface or a disk type sputtering target having a circular sputtering surface. Alternatively, a cylindrical sputtering target whose sputtering surface is a cylindrical surface may be used.
 本実施形態であるCu-Ni合金スパッタリングターゲットは、Niを含み、残部がCuと不可避不純物からなる組成とされている。NiとCuは図1の2元状態図に示すように全率固溶体を形成することから、Niの含有量は、要求される耐食性、電気抵抗等の特性に応じて、適宜、設定することが好ましい。
 本実施形態のCu-Ni合金スパッタリングターゲットにおいては、Niの含有量が16mass%以上55mass%以下の範囲内とされ、残部がCuと不可避不純物からなる組成としている。
The Cu—Ni alloy sputtering target according to this embodiment has a composition containing Ni, with the balance being Cu and inevitable impurities. Since Ni and Cu form a complete solid solution as shown in the binary phase diagram of FIG. 1, the content of Ni can be appropriately set according to the required characteristics such as corrosion resistance and electrical resistance. preferable.
In the Cu—Ni alloy sputtering target of this embodiment, the Ni content is in the range of 16 mass% or more and 55 mass% or less, and the balance is composed of Cu and inevitable impurities.
 本実施形態であるCu-Ni合金スパッタリングターゲットにおいては、図2に示すように、CuとNiの固溶体からなる母相の粒界にNi酸化物相が存在しており、これらNi酸化物相の面積率が0.1%以上5.0%以下の範囲内とされている。 In the Cu—Ni alloy sputtering target according to the present embodiment, as shown in FIG. 2, Ni oxide phases exist at the grain boundaries of the parent phase composed of a solid solution of Cu and Ni. The area ratio is in the range of 0.1% to 5.0%.
 本実施形態であるCu-Ni合金スパッタリングターゲットにおいては、Ni酸化物相の最大粒径が10μm未満とされている。
 さらに、本実施形態であるCu-Ni合金スパッタリングターゲットにおいては、CuとNiの固溶体からなる母相の平均粒径が5μm以上100μm以下の範囲内とされている。
In the Cu—Ni alloy sputtering target according to this embodiment, the maximum particle size of the Ni oxide phase is less than 10 μm.
Furthermore, in the Cu—Ni alloy sputtering target according to the present embodiment, the average particle size of the parent phase composed of a solid solution of Cu and Ni is set in the range of 5 μm to 100 μm.
 以下に、本実施形態であるCu-Ni合金スパッタリングターゲットにおいて、上述のように、Ni酸化物相の面積率、Ni酸化物相の最大粒径、CuとNiの固溶体からなる母相の平均粒径、成分組成を規定した理由について説明する。 Hereinafter, in the Cu—Ni alloy sputtering target according to the present embodiment, as described above, the area ratio of the Ni oxide phase, the maximum particle diameter of the Ni oxide phase, and the average grain size of the parent phase composed of a solid solution of Cu and Ni. The reason for defining the diameter and the component composition will be described.
(Ni酸化物相の面積率)
 本実施形態であるCu-Ni合金スパッタリングターゲットにおいては、CuとNiの固溶体からなる母相の結晶粒界に、Ni酸化物相が存在している。このNi酸化物相により、母相の結晶粒の成長が抑制されることになり、結晶粒の粗大化が抑制される。
 Ni酸化物相の面積率が0.1%未満の場合には、上述した結晶粒の成長を抑制する効果を十分に得ることができないおそれがある。一方、Ni酸化物相の面積率が5.0%を超える場合には、絶縁体であるNi酸化物相を起因とした異常放電が発生するおそれがある。
 このため、本実施形態であるCu-Ni合金スパッタリングターゲットにおいては、Ni酸化物相の面積率を0.1%以上5.0%以下の範囲内としている。
 結晶粒の成長を確実に抑制するためには、Ni酸化物相の面積率の下限を0.2%以上とすることが好ましく、0.3%以上とすることがさらに好ましい。一方、Ni酸化物相を起因とした異常放電の発生をさらに抑制するためには、Ni酸化物相の面積率の上限を4.5%以下とすることが好ましく、4.0%以下とすることがさらに好ましい。
(Ni oxide phase area ratio)
In the Cu—Ni alloy sputtering target according to this embodiment, a Ni oxide phase is present at the crystal grain boundary of the parent phase composed of a solid solution of Cu and Ni. By this Ni oxide phase, the growth of crystal grains of the parent phase is suppressed, and the coarsening of the crystal grains is suppressed.
When the area ratio of the Ni oxide phase is less than 0.1%, the above-described effect of suppressing the growth of crystal grains may not be sufficiently obtained. On the other hand, when the area ratio of the Ni oxide phase exceeds 5.0%, there is a possibility that abnormal discharge due to the Ni oxide phase as an insulator may occur.
For this reason, in the Cu—Ni alloy sputtering target according to the present embodiment, the area ratio of the Ni oxide phase is in the range of 0.1% to 5.0%.
In order to reliably suppress the growth of crystal grains, the lower limit of the area ratio of the Ni oxide phase is preferably 0.2% or more, and more preferably 0.3% or more. On the other hand, in order to further suppress the occurrence of abnormal discharge due to the Ni oxide phase, the upper limit of the area ratio of the Ni oxide phase is preferably 4.5% or less, and is preferably 4.0% or less. More preferably.
(Ni酸化物相の最大粒径)
 上述のように、Ni酸化物相は絶縁体であることから、スパッタ成膜時に異常放電の発生の原因となる。
 このため、本実施形態において、さらにNi酸化物相に起因した異常放電の発生を抑制するためには、Ni酸化物相の最大粒径を10μm未満とすることが好ましい。
 Ni酸化物相に起因した異常放電の発生をさらに抑制するためには、Ni酸化物相の最大粒径を8μm以下とすることが好ましく、5μm以下とすることがさらに好ましい。また、Ni酸化物相の最大粒径の下限は、0.1μm以上とすることが好ましく、1μm以上とすることがさらに好ましい。
(Maximum particle size of Ni oxide phase)
As described above, since the Ni oxide phase is an insulator, it causes abnormal discharge during sputtering film formation.
For this reason, in this embodiment, in order to further suppress the occurrence of abnormal discharge due to the Ni oxide phase, it is preferable that the maximum particle size of the Ni oxide phase is less than 10 μm.
In order to further suppress the occurrence of abnormal discharge due to the Ni oxide phase, the maximum particle size of the Ni oxide phase is preferably 8 μm or less, and more preferably 5 μm or less. Further, the lower limit of the maximum particle size of the Ni oxide phase is preferably 0.1 μm or more, and more preferably 1 μm or more.
(母相の平均粒径)
 Cu-Ni合金スパッタリングターゲットにおいては、結晶粒径を微細化することにより、スパッタ面全体でスパッタレートを安定させることが可能となる。また、結晶粒が粗大化すると、スパッタ成膜時に異常放電が発生するおそれがある。
 このため、本実施形態において、さらにスパッタ面全体でスパッタレートを安定させるとともにスパッタ成膜時の異常放電の発生を抑制するためには、CuとNiの固溶体からなる母相の平均粒径を100μm以下とすることが好ましい。一方、製造コストの増加をさらに抑制するためには、CuとNiの固溶体からなる母相の平均粒径を5μm以上とすることが好ましい。
 CuとNiの固溶体からなる母相の平均粒径の下限は8μm以上とすることが好ましく、10μm以上とすることがさらに好ましい。また、CuとNiの固溶体からなる母相の平均粒径の上限は90μm以下とすることが好ましく、70μm以下とすることがさらに好ましい。
(Average particle size of parent phase)
In the Cu—Ni alloy sputtering target, it is possible to stabilize the sputtering rate over the entire sputtering surface by reducing the crystal grain size. Further, when the crystal grains become coarse, abnormal discharge may occur during sputtering film formation.
Therefore, in this embodiment, in order to further stabilize the sputtering rate over the entire sputtering surface and suppress the occurrence of abnormal discharge during sputtering film formation, the average particle size of the parent phase made of a solid solution of Cu and Ni is set to 100 μm. The following is preferable. On the other hand, in order to further suppress the increase in production cost, it is preferable that the average particle size of the parent phase composed of a solid solution of Cu and Ni is 5 μm or more.
The lower limit of the average particle size of the parent phase composed of a solid solution of Cu and Ni is preferably 8 μm or more, and more preferably 10 μm or more. Further, the upper limit of the average particle size of the parent phase composed of a solid solution of Cu and Ni is preferably 90 μm or less, and more preferably 70 μm or less.
(成分組成)
 上述のように、NiとCuは全率固溶体を形成することから、Ni含有量を調整することで、Cu-Ni合金膜の電気抵抗、耐食性等の特性を制御することが可能となる。このため、成膜したCu-Ni合金膜への要求特性に応じて、Cu-Ni合金スパッタリングターゲットにおけるNi含有量を設定することになる。
 耐食性に十分に優れたCu-Ni合金膜を成膜する場合には、Cu-Ni合金スパッタリングターゲットにおけるNiの含有量を16mass%以上とすることが好ましい。一方、Cu-Ni合金膜の電気抵抗を低く抑えて導電性を確保する場合には、Cu-Ni合金スパッタリングターゲットにおけるNiの含有量を55mass%以下とすることが好ましい。Niの含有量を55mass%以下としたCu-Ni合金スパッタリングターゲットの比抵抗は、5×10-5Ω・cm程度となる。
 さらに耐食性に優れたCu-Ni合金膜を成膜する場合には、Cu-Ni合金スパッタリングターゲットにおけるNiの含有量の下限を20mass%以上とすることが好ましく、25mass%以上とすることがより好ましい。一方、Cu-Ni合金膜の電気抵抗をさらに低く抑える場合には、Cu-Ni合金スパッタリングターゲットにおけるNiの含有量の上限を50mass%以下とすることが好ましく、45mass%以下とすることがより好ましい。
(Component composition)
As described above, since Ni and Cu form a complete solid solution, it is possible to control characteristics such as electrical resistance and corrosion resistance of the Cu—Ni alloy film by adjusting the Ni content. For this reason, the Ni content in the Cu—Ni alloy sputtering target is set according to the required characteristics of the formed Cu—Ni alloy film.
When forming a Cu—Ni alloy film sufficiently excellent in corrosion resistance, the Ni content in the Cu—Ni alloy sputtering target is preferably set to 16 mass% or more. On the other hand, when the electrical resistance of the Cu—Ni alloy film is kept low to ensure conductivity, the Ni content in the Cu—Ni alloy sputtering target is preferably 55 mass% or less. The specific resistance of a Cu—Ni alloy sputtering target having a Ni content of 55 mass% or less is about 5 × 10 −5 Ω · cm.
Further, when a Cu—Ni alloy film having excellent corrosion resistance is formed, the lower limit of the Ni content in the Cu—Ni alloy sputtering target is preferably 20 mass% or more, and more preferably 25 mass% or more. . On the other hand, when the electric resistance of the Cu—Ni alloy film is further suppressed, the upper limit of the Ni content in the Cu—Ni alloy sputtering target is preferably 50 mass% or less, and more preferably 45 mass% or less. .
 次に、本実施形態であるCu-Ni合金スパッタリングターゲットの製造方法について、図3のフロー図を用いて説明する。
 本実施形態においては、粉末焼結法によって、Cu-Ni合金スパッタリングターゲットを製造している。
Next, a manufacturing method of the Cu—Ni alloy sputtering target according to the present embodiment will be described with reference to the flowchart of FIG.
In this embodiment, a Cu—Ni alloy sputtering target is manufactured by a powder sintering method.
(焼結原料粉形成工程S01)
 焼結原料粉を形成する。Cu粉とNi粉との混合粉を用いてもよいし、Cu-Ni合金粉を用いてもよい。
 本実施形態では、以下のように製造したCu-Ni合金粉を用いている。
 まず、Cu原料とNi原料を所定の配合比となるように秤量する。Cu原料は純度99.99mass%以上のものを用いることが好ましい。また、Ni原料は純度99.9mass%以上のものを用いることが好ましい。具体的には、Cu原料として無酸素銅を用いることが好ましく、Ni原料として電解Niを用いることが好ましい。
(Sintering raw material powder forming step S01)
A sintered raw material powder is formed. A mixed powder of Cu powder and Ni powder may be used, or Cu—Ni alloy powder may be used.
In the present embodiment, Cu—Ni alloy powder manufactured as follows is used.
First, Cu raw material and Ni raw material are weighed so as to have a predetermined blending ratio. It is preferable to use a Cu raw material having a purity of 99.99 mass% or more. Moreover, it is preferable to use a Ni raw material having a purity of 99.9 mass% or more. Specifically, oxygen-free copper is preferably used as the Cu material, and electrolytic Ni is preferably used as the Ni material.
 上述のように秤量したCu原料及びNi原料をるつぼに充填し、加熱して溶解する。るつぼの材料としては、アルミナ、ムライト、マグネシア、ジルコニアなどのセラミック耐火物、あるいは、カーボンを用いることができる。
 Cu原料及びNi原料を溶解した後のCu-Ni合金溶湯を、3分以上15分以下の範囲内で保持することが好ましい。保持時間が短いと、NiとCuの組成が不均一となるおそれがある。また、保持時間が短いと、Niの磁性が残るおそれがある。
The crucible is filled with the Cu raw material and the Ni raw material weighed as described above, and dissolved by heating. As the crucible material, ceramic refractories such as alumina, mullite, magnesia, zirconia, or carbon can be used.
It is preferable to hold the molten Cu—Ni alloy after melting the Cu raw material and the Ni raw material within a range of 3 minutes to 15 minutes. If the holding time is short, the composition of Ni and Cu may be nonuniform. Further, if the holding time is short, there is a possibility that the magnetism of Ni remains.
 ガスアトマイズ装置のノズルから上述のCu-Ni合金溶湯を落下させながら、Arガスを噴射させ、ガスアトマイズ粉を作製する。
 ノズルの孔径は0.5mm以上5.0mm以下の範囲内とすることが好ましい。また、Arガスの噴射ガス圧は1MPa以上10MPa以下の範囲内とすることが好ましい。さらに、溶湯温度は1400℃以上1700℃以下の範囲内とすることが好ましい。上述のようにして得られたガスアトマイズ粉を、冷却後にふるいで分級することにより、所定の粒径のCu―Ni合金粉を得る。本実施形態では、Cu―Ni合金粉の平均粒径を1μm以上300μm以下の範囲内としている。
While dropping the above-mentioned Cu—Ni alloy melt from the nozzle of the gas atomizer, Ar gas is injected to produce gas atomized powder.
The nozzle hole diameter is preferably in the range of 0.5 mm to 5.0 mm. The Ar gas injection gas pressure is preferably in the range of 1 MPa to 10 MPa. Furthermore, the molten metal temperature is preferably in the range of 1400 ° C. or higher and 1700 ° C. or lower. The gas atomized powder obtained as described above is classified by sieving after cooling to obtain a Cu—Ni alloy powder having a predetermined particle size. In the present embodiment, the average particle diameter of the Cu—Ni alloy powder is in the range of 1 μm to 300 μm.
 そして、本実施形態では、上述のCu-Ni合金粉に対して、さらにNi酸化物粉を添加する。Ni酸化物粉としては、安定なNiO粉を用いることが好ましい。
 Ni酸化物粉は、純度が95mass%以上、平均粒径が0.1μm以上10μm未満の範囲内のものを用いることが好ましい。また、Ni酸化物粉の添加量は、Cu-Ni合金スパッタリングターゲットにおけるNi酸化物相の面積率が上述の範囲内となるように、適宜調整することが好ましい。
 Cu-Ni合金粉とNi酸化物粉を混合する際には、ミキサーやブレンダー、具体的には、ヘンシェルミキサー、ロッキングミキサー、V型混合機を用いることができる。
 以上のようにして、Ni酸化物を含む焼結原料粉を得る。
In this embodiment, Ni oxide powder is further added to the above-described Cu—Ni alloy powder. It is preferable to use a stable NiO powder as the Ni oxide powder.
It is preferable to use Ni oxide powder having a purity of 95 mass% or more and an average particle size in the range of 0.1 μm or more and less than 10 μm. Further, the amount of Ni oxide powder added is preferably adjusted as appropriate so that the area ratio of the Ni oxide phase in the Cu—Ni alloy sputtering target is within the above range.
When mixing the Cu—Ni alloy powder and the Ni oxide powder, a mixer or a blender, specifically, a Henschel mixer, a rocking mixer, or a V-type mixer can be used.
As described above, a sintered raw material powder containing Ni oxide is obtained.
(焼結工程S02)
 次に、得られたCu-Ni合金粉及びNi酸化物粉の混合紛からなる焼結原料粉を、加圧及び加熱して、所定形状の焼結体を得る。
 焼結工程S02における焼結方法については、例えば熱間等方圧加圧法(HIP)、ホットプレス法(HP)等を適用することができる。
 本実施形態では、熱間等方圧加圧法(HIP)を適用している。また、焼結条件は、温度:800℃以上1200℃以下、圧力:10MPa以上200MPa以下、保持時間:1時間以上6時間以下、とすることが好ましい。
(Sintering step S02)
Next, the obtained sintering raw material powder composed of the mixed powder of Cu—Ni alloy powder and Ni oxide powder is pressurized and heated to obtain a sintered body having a predetermined shape.
As the sintering method in the sintering step S02, for example, a hot isostatic pressing method (HIP), a hot press method (HP), or the like can be applied.
In this embodiment, a hot isostatic pressing method (HIP) is applied. The sintering conditions are preferably temperature: 800 ° C. or higher and 1200 ° C. or lower, pressure: 10 MPa or higher and 200 MPa or lower, holding time: 1 hour or longer and 6 hours or shorter.
(機械加工工程S03)
 焼結工程S02で得られた焼結体に対して、機械加工を行うことにより、所定の形状及び寸法のCu-Ni合金スパッタリングターゲットを得る。
(Machining process S03)
A Cu—Ni alloy sputtering target having a predetermined shape and size is obtained by machining the sintered body obtained in the sintering step S02.
 以上のようにして、粉末焼結法によって、本実施形態であるCu-Ni合金スパッタリングターゲットが製造される。 As described above, the Cu—Ni alloy sputtering target according to the present embodiment is manufactured by the powder sintering method.
 以上のような構成とされた本実施形態であるCu-Ni合金スパッタリングターゲットによれば、CuとNiの固溶体からなる母相の粒界にNi酸化物相が存在しており、このNi酸化物相の面積率が0.1%以上とされているので、Ni酸化物相によって結晶粒の成長を抑制することができ、結晶粒の粗大化を抑制することが可能となる。また、上述のNi酸化物相の面積率が5.0%以下とされているので、Ni酸化物相に起因した異常放電の発生を抑制することが可能となる。
 よって、結晶粒の粗大化が抑制され、膜厚や組成が均一化されたCu―Ni合金膜を安定して成膜することが可能となる。
According to the Cu—Ni alloy sputtering target of the present embodiment configured as described above, a Ni oxide phase exists at the grain boundary of the parent phase composed of a solid solution of Cu and Ni. Since the area ratio of the phase is 0.1% or more, the growth of crystal grains can be suppressed by the Ni oxide phase, and the coarsening of the crystal grains can be suppressed. In addition, since the area ratio of the Ni oxide phase is 5.0% or less, it is possible to suppress the occurrence of abnormal discharge due to the Ni oxide phase.
Therefore, it is possible to stably form a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are uniform.
 本実施形態であるCu-Ni合金スパッタリングターゲットにおいて、Ni酸化物相の最大粒径を10μm未満に制限した場合には、絶縁体であるNi酸化物相に起因した異常放電の発生をさらに抑制することができ、安定してスパッタ成膜することが可能となる。 In the Cu—Ni alloy sputtering target of this embodiment, when the maximum particle size of the Ni oxide phase is limited to less than 10 μm, the occurrence of abnormal discharge due to the Ni oxide phase as an insulator is further suppressed. Therefore, it becomes possible to form a sputter film stably.
 本実施形態であるCu-Ni合金スパッタリングターゲットにおいて、Niの含有量を16mass%以上とした場合には、耐食性に優れたCu-Ni合金膜を成膜することができる。また、Niの含有量を55mass%以下とした場合には、電気抵抗が低いCu-Ni合金膜を成膜することができる。よって、耐食性及び導電性が求められる用途に特に適したCu-Ni合金膜を成膜することができる。 In the Cu—Ni alloy sputtering target of the present embodiment, when the Ni content is 16 mass% or more, a Cu—Ni alloy film having excellent corrosion resistance can be formed. In addition, when the Ni content is 55 mass% or less, a Cu—Ni alloy film with low electrical resistance can be formed. Therefore, it is possible to form a Cu—Ni alloy film that is particularly suitable for applications requiring corrosion resistance and conductivity.
 本実施形態であるCu-Ni合金スパッタリングターゲットにおいて、CuとNiの固溶体からなる母相の平均粒径を100μm以下とした場合には、スパッタ面全体でスパッタレートをさらに安定させることができるとともに、スパッタ成膜時における異常放電の発生をさらに抑制することが可能となる。一方、CuとNiの固溶体からなる母相の平均粒径を5μm以上とした場合には、製造コストの増加を抑制することができる。 In the Cu—Ni alloy sputtering target of the present embodiment, when the average particle size of the parent phase composed of a solid solution of Cu and Ni is 100 μm or less, the sputtering rate can be further stabilized over the entire sputtering surface, It is possible to further suppress the occurrence of abnormal discharge during sputtering film formation. On the other hand, when the average particle diameter of the parent phase made of a solid solution of Cu and Ni is 5 μm or more, an increase in manufacturing cost can be suppressed.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、Cu-Ni合金粉にNi酸化物粉を混合して焼結原料粉を形成するものとして説明したが、これに限定されることはなく、アトマイズ時の原料にNi酸化物を添加して、Ni酸化物を含むCu-Ni合金粉を製造してもよい。また、アトマイズ中に酸素ガスを導入してNiを酸化させることで、Ni酸化物を含むCu-Ni合金粉を製造してもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, it has been described that the Ni—O powder is mixed with the Cu—Ni alloy powder to form the sintered raw material powder. However, the present invention is not limited to this, and the Ni oxide is used as the raw material during atomization. A Cu—Ni alloy powder containing Ni oxides may be produced by adding a material. In addition, Cu—Ni alloy powder containing Ni oxide may be manufactured by introducing oxygen gas into the atomizing to oxidize Ni.
 以下に、前述した本発明のCu-Ni合金スパッタリングターゲットについて評価した評価試験の結果について説明する。 The results of the evaluation test evaluated for the above-described Cu—Ni alloy sputtering target of the present invention will be described below.
 まず、本発明例1~7及び比較例1~4のCu-Ni合金スパッタリングターゲットは、以下のようにして粉末焼結法によって製造した。
 Cu原料として純度99.99mass%の無酸素銅を、Ni原料として純度99.9%以上の電解Niを準備し、これをアルミナ製のるつぼに入れてガスアトマイズ装置にセットし、平均粒径50μmのCu-Ni合金粉末を得た。アトマイズ条件は、溶湯温度1550℃、保持時間8分、噴射圧5MPa、ノズル径2.0mmとした。
 Ni酸化物粉として、純度99mass%以上で、平均粒径10μm未満のNiO粉を準備した。
First, Cu—Ni alloy sputtering targets of Invention Examples 1 to 7 and Comparative Examples 1 to 4 were produced by a powder sintering method as follows.
Prepare oxygen free copper with a purity of 99.99 mass% as a Cu raw material, and electrolytic Ni with a purity of 99.9% or higher as a Ni raw material, put it in a crucible made of alumina and set it in a gas atomizer, and have an average particle size of 50 μm Cu—Ni alloy powder was obtained. The atomizing conditions were a molten metal temperature of 1550 ° C., a holding time of 8 minutes, an injection pressure of 5 MPa, and a nozzle diameter of 2.0 mm.
NiO powder having a purity of 99 mass% or more and an average particle size of less than 10 μm was prepared as Ni oxide powder.
 上述のCu-Ni合金粉に、表1に示す配合でNi酸化物粉を混合して、焼結原料粉を得た。
 表1の配合組成のNiの欄においては、添加したNi酸化物粉(NiO粉)のNiも含むものである。すなわち、Ni酸化物紛に含まれるNi量を考慮して、表1の配合組成となるように、Ni原料とCu原料との配合比を決定し、Cu-Ni合金粉末を製造した。
Ni oxide powder having the composition shown in Table 1 was mixed with the above-described Cu—Ni alloy powder to obtain a sintered raw material powder.
In the column of Ni in the blend composition of Table 1, Ni of the added Ni oxide powder (NiO powder) is also included. That is, in consideration of the amount of Ni contained in the Ni oxide powder, the mixing ratio of the Ni raw material and the Cu raw material was determined so that the composition shown in Table 1 was obtained, to produce a Cu—Ni alloy powder.
 上述の焼結原料粉を、HIP法にて、温度1000℃、圧力100MPa、保持時間2時間の条件で焼結を行い、焼結体を得た。
 得られた焼結体を機械加工し、直径150.4mm×厚さ6mmの円板形状のCu-Ni合金スパッタリングターゲットを得た。
The above sintered raw material powder was sintered by the HIP method under the conditions of a temperature of 1000 ° C., a pressure of 100 MPa, and a holding time of 2 hours to obtain a sintered body.
The obtained sintered body was machined to obtain a disk-shaped Cu—Ni alloy sputtering target having a diameter of 150.4 mm and a thickness of 6 mm.
 上述のようにして得られたCu-Ni合金スパッタリングターゲットについて、成分組成、Ni酸化物相の面積率及び最大粒径、CuとNiの固溶体からなる母相の平均粒径、酸素量のばらつき、異常放電の発生状況、を以下のようにして評価した。 Regarding the Cu—Ni alloy sputtering target obtained as described above, the component composition, the area ratio and maximum particle size of the Ni oxide phase, the average particle size of the parent phase composed of a solid solution of Cu and Ni, the variation in the amount of oxygen, The occurrence of abnormal discharge was evaluated as follows.
(成分組成)
 得られたCu-Ni合金スパッタリングターゲットから測定試料を採取し、これを酸で前処理した後、ICP分析を実施した。
 その結果、本発明例1~7及び比較例1~4のCu-Ni合金スパッタリングターゲットのCuとNiの含有量については、配合組成と略同等であることを確認した。
(Component composition)
A measurement sample was collected from the obtained Cu—Ni alloy sputtering target, pretreated with acid, and then subjected to ICP analysis.
As a result, it was confirmed that the Cu and Ni contents of the Cu—Ni alloy sputtering targets of Invention Examples 1 to 7 and Comparative Examples 1 to 4 were substantially the same as the blend composition.
(Ni酸化物相)
 図4に示すように、Cu-Ni合金スパッタリングターゲットのスパッタ面(円形面)の中心(1)、および、その中心で互いに直交する2本の直線のそれぞれの両端部(2)、(3)、(4)、(5)の合計5点からサンプルを採取した。採取した各サンプルをエポキシ樹脂に埋め込み、表面(スパッタ面に該当する面)を研磨加工した後、プローブマイクロアナライザ(EPMA)装置(日本電子株式会社製)を用いて、倍率1500倍、0.005mmの観察面積でCu,Ni,Oの元素マッピング像を撮影し、得られたCu,Ni,Oの元素マッピング像から、NiとOのみが共存している領域をNi酸化物相と判断した。そして、画像全体に占めるNi酸化物相の面積率を算出し、5点のサンプルの結果を平均した。
 観察されたNi酸化物相の円相当径を、画像解析ソフトWinroofを用いて求め、最も大きな円相当径を、Ni酸化物相の最大粒径として表1に示した。
(Ni oxide phase)
As shown in FIG. 4, the center (1) of the sputtering surface (circular surface) of the Cu—Ni alloy sputtering target, and both ends (2) and (3) of two straight lines orthogonal to each other at the center. Samples were collected from a total of 5 points (4) and (5). Each sample collected was embedded in an epoxy resin, and the surface (the surface corresponding to the sputter surface) was polished, and then using a probe microanalyzer (EPMA) device (manufactured by JEOL Ltd.), the magnification was 1500 times and 0.005 mm. An element mapping image of Cu, Ni, and O was taken with an observation area of 2 , and from the obtained element mapping image of Cu, Ni, and O, a region where only Ni and O coexisted was determined to be a Ni oxide phase. . And the area ratio of the Ni oxide phase which occupies for the whole image was computed, and the result of the sample of 5 points | pieces was averaged.
The observed equivalent circle diameter of the Ni oxide phase was determined using image analysis software Winroof, and the largest equivalent circle diameter was shown in Table 1 as the maximum particle diameter of the Ni oxide phase.
(CuとNiの固溶体からなる母相の平均粒径)
 図4に示すように、Cu-Ni合金スパッタリングターゲットのスパッタ面(円形面)の中心(1)、および、その中心で互いに直交する2本の直線のそれぞれの両端部(2)、(3)、(4)、(5)の合計5点からサンプルを採取した。採取した各サンプルの表面(スパッタ面に該当する面)を研磨加工した後、研磨された表面を、エッチング液を用いてエッチング処理した。
 次に、光学顕微鏡を用いて研磨面を観察し、1400倍の倍率、0.040mmの観察面積にて組織写真を撮影した。そして、組織写真中の結晶粒径を、ASTM E 112に記載の切断法によって計測した。
 上述の5つのサンプルでそれぞれ結晶粒径を測定し、CuとNiの固溶体からなる母相の平均粒径を算出した。評価結果を表1に示す。
(Average particle size of parent phase consisting of solid solution of Cu and Ni)
As shown in FIG. 4, the center (1) of the sputtering surface (circular surface) of the Cu—Ni alloy sputtering target, and both ends (2) and (3) of two straight lines orthogonal to each other at the center. Samples were collected from a total of 5 points (4) and (5). After polishing the surface of each sample (surface corresponding to the sputter surface), the polished surface was etched using an etching solution.
Next, the polished surface was observed using an optical microscope, and a tissue photograph was taken at a magnification of 1400 and an observation area of 0.040 mm 2 . And the crystal grain diameter in a structure | tissue photograph was measured by the cutting method as described in ASTM E112.
The crystal grain size was measured for each of the above five samples, and the average grain size of the parent phase composed of a solid solution of Cu and Ni was calculated. The evaluation results are shown in Table 1.
(酸素量のばらつき)
 図4に示すように、Cu-Ni合金スパッタリングターゲットのスパッタ面(円形面)の中心(1)、および、その中心で互いに直交する2本の直線のそれぞれの両端部(2)、(3)、(4)、(5)の合計5点からサンプルを採取した。これらのサンプルを用いて、JIS Z 2613「金属材料の酸素定量方法通則」に記載された赤外線吸収法に準拠して,LECO社製TC600を用いて、酸素含有量を測定した。
 そして、5つのサンプルの酸素含有量の平均値、最小値、最大値を用いて、以下の式によって酸素量のばらつきを求めた。
  酸素量のばらつき(%)={(最大値-最小値)/平均値}×100
 その結果、本発明例1~7及び比較例1~4のCu-Ni合金スパッタリングターゲットの酸素量のばらつきは、いずれも30%以下であることを確認した。
(Oxygen variation)
As shown in FIG. 4, the center (1) of the sputtering surface (circular surface) of the Cu—Ni alloy sputtering target, and both ends (2) and (3) of two straight lines orthogonal to each other at the center. Samples were collected from a total of 5 points (4) and (5). Using these samples, the oxygen content was measured using a TC600 manufactured by LECO in accordance with the infrared absorption method described in JIS Z 2613 “General Rules for Oxygen Determination of Metallic Materials”.
And the variation of oxygen amount was calculated | required by the following formula | equation using the average value of oxygen content of five samples, the minimum value, and the maximum value.
Variation in oxygen amount (%) = {(maximum value−minimum value) / average value} × 100
As a result, it was confirmed that the variation in the amount of oxygen in the Cu—Ni alloy sputtering targets of Invention Examples 1 to 7 and Comparative Examples 1 to 4 was 30% or less.
(異常放電)
 Cu-Ni合金スパッタリングターゲットを無酸素銅製のバッキングプレートにはんだ付けし、これをマグネトロン式のDCスパッタ装置に装着した。
 次いで、以下のスパッタ条件にて、60分間連続して、スパッタ法による成膜を実施した。このスパッタ成膜の間、DCスパッタ装置の電源に付属されたアークカウンターを用いて、異常放電の発生回数をカウントした。評価結果を表1に示す。
 到達真空度:5×10-5Pa
 Arガス圧:0.3Pa
 スパッタ出力:直流1000W
(Abnormal discharge)
A Cu—Ni alloy sputtering target was soldered to an oxygen-free copper backing plate, and this was mounted on a magnetron DC sputtering apparatus.
Next, film formation by a sputtering method was performed continuously for 60 minutes under the following sputtering conditions. During the sputtering film formation, the number of occurrences of abnormal discharge was counted using an arc counter attached to the power source of the DC sputtering apparatus. The evaluation results are shown in Table 1.
Ultimate vacuum: 5 × 10 −5 Pa
Ar gas pressure: 0.3 Pa
Sputter output: DC 1000W
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Ni酸化物相が確認されなかった比較例1においては、CuとNiの固溶体からなる母相の平均粒径が163μmと粗大化し、異常放電の発生回数が多くなった。Ni酸化物相の面積率が0.1%未満とされた比較例2においては、CuとNiの固溶体からなる母相の平均粒径が121μmと粗大化し、異常放電の発生回数が多くなった。Ni酸化物相による結晶成長の抑制効果を得ることができなかったためと推測される。
 Ni酸化物相の面積率が5.0%を超える比較例3,4においては、CuとNiの固溶体からなる母相の平均粒径は小さくなったが、異常放電の発生回数が多くなった。Ni酸化物相を起因とした異常放電が発生したためと推測される。
In Comparative Example 1 in which the Ni oxide phase was not confirmed, the average particle size of the parent phase composed of a solid solution of Cu and Ni became as large as 163 μm, and the number of occurrences of abnormal discharge increased. In Comparative Example 2 in which the area ratio of the Ni oxide phase was less than 0.1%, the average particle size of the parent phase made of a solid solution of Cu and Ni was coarsened to 121 μm, and the number of occurrences of abnormal discharge increased. . This is presumably because the effect of suppressing crystal growth by the Ni oxide phase could not be obtained.
In Comparative Examples 3 and 4 in which the area ratio of the Ni oxide phase exceeds 5.0%, the average particle size of the parent phase made of a solid solution of Cu and Ni is reduced, but the number of occurrences of abnormal discharge is increased. . It is presumed that abnormal discharge due to the Ni oxide phase occurred.
 これに対して、Ni酸化物相の面積率が0.1%以上5.0%以下の範囲内とされた本発明例1~7においては、CuとNiの固溶体からなる母相の粗大化が抑制されており、異常放電の発生が抑制された。
 Ni酸化物相の最大粒径が10μm未満とされた本発明例1~6においては、さらに異常放電の発生が抑制された。
On the other hand, in Examples 1 to 7 of the present invention in which the area ratio of the Ni oxide phase was in the range of 0.1% to 5.0%, the coarsening of the parent phase composed of a solid solution of Cu and Ni Was suppressed, and the occurrence of abnormal discharge was suppressed.
In Invention Examples 1 to 6 in which the maximum particle size of the Ni oxide phase was less than 10 μm, the occurrence of abnormal discharge was further suppressed.
 以上のことから、本発明例によれば、結晶粒の粗大化が抑制され、膜厚や組成が均一化されたCu―Ni合金膜を安定して成膜することが可能なCu-Ni合金スパッタリングターゲットを提供可能であることが確認された。 From the above, according to the present invention example, Cu—Ni alloy capable of stably forming a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are made uniform is stable. It was confirmed that a sputtering target could be provided.
 本発明によれば、結晶粒の粗大化が抑制され、膜厚や組成が均一化されたCu―Ni合金膜を安定して成膜することが可能なCu-Ni合金スパッタリングターゲットを提供することができる。 According to the present invention, there is provided a Cu—Ni alloy sputtering target capable of stably forming a Cu—Ni alloy film in which the coarsening of crystal grains is suppressed and the film thickness and composition are made uniform. Can do.

Claims (4)

  1.  Niを含み、残部がCuと不可避不純物からなるCu-Ni合金スパッタリングターゲットであって、
     CuとNiの固溶体からなる母相の粒界にNi酸化物相が存在しており、これらNi酸化物相の面積率が0.1%以上5.0%以下の範囲内とされていることを特徴とするCu-Ni合金スパッタリングターゲット。
    A Cu—Ni alloy sputtering target containing Ni, with the balance being Cu and inevitable impurities,
    The Ni oxide phase exists in the grain boundary of the parent phase composed of a solid solution of Cu and Ni, and the area ratio of these Ni oxide phases is in the range of 0.1% to 5.0%. Cu—Ni alloy sputtering target characterized by the above.
  2.  Niの含有量が16mass%以上55mass%以下の範囲内とされ、残部がCuと不可避不純物からなる組成とされていることを特徴とする請求項1に記載のCu-Ni合金スパッタリングターゲット。 The Cu-Ni alloy sputtering target according to claim 1, wherein the Ni content is in the range of 16 mass% or more and 55 mass% or less, and the balance is composed of Cu and inevitable impurities.
  3.  前記Ni酸化物相の最大粒径が10μm未満とされていることを特徴とする請求項1又は請求項2に記載のCu-Ni合金スパッタリングターゲット。 3. The Cu—Ni alloy sputtering target according to claim 1, wherein the maximum particle size of the Ni oxide phase is less than 10 μm.
  4.  CuとNiの固溶体からなる母相の平均粒径が5μm以上100μm以下の範囲内とされていることを特徴とする請求項1から請求項3のいずれか一項に記載のCu-Ni合金スパッタリングターゲット。 The Cu-Ni alloy sputtering according to any one of claims 1 to 3, wherein an average particle diameter of a parent phase comprising a solid solution of Cu and Ni is in a range of 5 µm to 100 µm. target.
PCT/JP2019/003997 2018-03-01 2019-02-05 Cu-Ni ALLOY SPUTTERING TARGET WO2019167564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980015784.6A CN111788332B (en) 2018-03-01 2019-02-05 Cu-Ni alloy sputtering target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018036509 2018-03-01
JP2018-036509 2018-03-01
JP2019-000734 2019-01-07
JP2019000734A JP6627993B2 (en) 2018-03-01 2019-01-07 Cu-Ni alloy sputtering target

Publications (1)

Publication Number Publication Date
WO2019167564A1 true WO2019167564A1 (en) 2019-09-06

Family

ID=67805274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003997 WO2019167564A1 (en) 2018-03-01 2019-02-05 Cu-Ni ALLOY SPUTTERING TARGET

Country Status (1)

Country Link
WO (1) WO2019167564A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079941A (en) * 2013-09-10 2015-04-23 日立金属株式会社 Multilayer wiring film, method for manufacturing the same, and nickel alloy sputtering target material
WO2015170534A1 (en) * 2014-05-08 2015-11-12 三井金属鉱業株式会社 Sputtering target material
CN105734507A (en) * 2016-04-05 2016-07-06 基迈克材料科技(苏州)有限公司 Fine grain nickel alloy rotary target capable of achieving even film forming and hot extrusion optimizing preparation method thereof
JP2016157925A (en) * 2015-02-25 2016-09-01 日立金属株式会社 Multilayer wiring film for electronic component, and sputtering target material for coating layer formation
WO2018207770A1 (en) * 2017-05-09 2018-11-15 三菱マテリアル株式会社 CuNi ALLOY SPUTTERING TARGET AND CuNi ALLOY POWDER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079941A (en) * 2013-09-10 2015-04-23 日立金属株式会社 Multilayer wiring film, method for manufacturing the same, and nickel alloy sputtering target material
WO2015170534A1 (en) * 2014-05-08 2015-11-12 三井金属鉱業株式会社 Sputtering target material
JP2016157925A (en) * 2015-02-25 2016-09-01 日立金属株式会社 Multilayer wiring film for electronic component, and sputtering target material for coating layer formation
CN105734507A (en) * 2016-04-05 2016-07-06 基迈克材料科技(苏州)有限公司 Fine grain nickel alloy rotary target capable of achieving even film forming and hot extrusion optimizing preparation method thereof
WO2018207770A1 (en) * 2017-05-09 2018-11-15 三菱マテリアル株式会社 CuNi ALLOY SPUTTERING TARGET AND CuNi ALLOY POWDER

Similar Documents

Publication Publication Date Title
TWI496905B (en) A sputtering target having an oxide phase dispersed in a Co or Co alloy phase, a magnetic thin film composed of a Co or Co alloy phase and an oxide phase, and a magnetic recording medium using the magnetic thin film
KR101155358B1 (en) Composite oxide sinter, process for producing amorphous composite oxide film, amorphous composite oxide film, process for producing crystalline composite oxide film, and crystalline composite oxide film
JP5761691B2 (en) COMPOSITE CERAMIC, CONSTITUENT MEMBER FOR SEMICONDUCTOR MANUFACTURING APPARATUS AND METHOD FOR PRODUCING THEM
WO2015170534A1 (en) Sputtering target material
KR20120108062A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
WO2011102359A1 (en) Sputtering target-backing plate assembly body
KR20210025710A (en) Tungsten silicide target and method of manufacturing same
WO2014024519A1 (en) Sintered body and sputtering target
JP2017025348A (en) Mo-W OXIDE SPUTTERING TARGET, AND MANUFACTURING METHOD OF Mo-W OXIDE SPUTTERING TARGET
WO2018207770A1 (en) CuNi ALLOY SPUTTERING TARGET AND CuNi ALLOY POWDER
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
WO2019167564A1 (en) Cu-Ni ALLOY SPUTTERING TARGET
JP6627993B2 (en) Cu-Ni alloy sputtering target
WO2019203258A1 (en) Cu-ni alloy sputtering target
JP4775140B2 (en) Sputtering target
CN112055758B (en) W-Ti sputtering target
JP2017218621A (en) Target material and method for manufacturing the same
JP2019039070A (en) SiC sputtering target
JP3852446B2 (en) Resistance thin film material and method of manufacturing resistance thin film using the same
JP7178707B2 (en) Method for manufacturing MgO-TiO-based sputtering target
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JP7087741B2 (en) A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film.
JP2018188731A (en) CuNi ALLOY SPUTTERING TARGET AND CuNi ALLOY POWER
JP2004319410A (en) Thin film for contact electrode of micro-machine switch, and sputtering target for depositing thin film for contact electrode
KR101960206B1 (en) Tungsten sputtering target and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760304

Country of ref document: EP

Kind code of ref document: A1