JP3852446B2 - Resistance thin film material and method of manufacturing resistance thin film using the same - Google Patents

Resistance thin film material and method of manufacturing resistance thin film using the same Download PDF

Info

Publication number
JP3852446B2
JP3852446B2 JP2004006981A JP2004006981A JP3852446B2 JP 3852446 B2 JP3852446 B2 JP 3852446B2 JP 2004006981 A JP2004006981 A JP 2004006981A JP 2004006981 A JP2004006981 A JP 2004006981A JP 3852446 B2 JP3852446 B2 JP 3852446B2
Authority
JP
Japan
Prior art keywords
thin film
resistance
mass
rare earth
resistance thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004006981A
Other languages
Japanese (ja)
Other versions
JP2005154884A (en
Inventor
敏行 大迫
巌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004006981A priority Critical patent/JP3852446B2/en
Priority to CNB2004100900571A priority patent/CN1321206C/en
Priority to TW93133312A priority patent/TWI250218B/en
Publication of JP2005154884A publication Critical patent/JP2005154884A/en
Application granted granted Critical
Publication of JP3852446B2 publication Critical patent/JP3852446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、電子部品に用いられる抵抗薄膜材料、抵抗薄膜形成用のスパッタリングターゲット、およびこのスパッタリングターゲットを用いた抵抗薄膜の製造方法に関する。   The present invention relates to a resistance thin film material used for an electronic component, a sputtering target for forming a resistance thin film, and a method of manufacturing a resistance thin film using the sputtering target.

チップ抵抗器、精密抵抗器、ネットワーク抵抗器、高圧抵抗器などの抵抗器、測温抵抗体、感温抵抗器などの温度センサ、および、ハイブリットICとその複合モジュール製品などの電子部品には、抵抗薄膜を使用した薄膜抵抗器が用いられている。   Electronic components such as chip resistors, precision resistors, network resistors, resistors such as high-voltage resistors, temperature sensors such as resistance temperature detectors, temperature sensitive resistors, and hybrid IC and its composite module products Thin film resistors using resistive thin films are used.

この薄膜抵抗器においては、多くの場合、抵抗薄膜材料としてTa金属、TaN化合物、Ni−Cr合金が用いられており、中でもNi−Cr合金が最も一般的に用いられている。   In this thin film resistor, Ta metal, TaN compound, and Ni—Cr alloy are often used as the resistive thin film material, and Ni—Cr alloy is most commonly used among them.

薄膜抵抗材料を含むすべての抵抗材料では、その使用にあたって、高温(155℃程度)において抵抗変化率が小さく非常に安定であること、すなわち、高温安定性と抵抗温度係数(TCR)とが重要な特性となる。一般に、NiおよびCrのみからなる2元系合金の場合は、Ni/Crの比を変え、高温安定性と抵抗温度係数(TCR)の制御を行う。しかし、高温において抵抗値が安定であることと抵抗温度係数(TCR)がほぼ0であることを同時に実現することは困難である。そのため、特許第2542504号公報、特開平6−20803号公報に記載されるように、Ni−Cr−Al−Si合金とすることにより特性の改善が検討されてきた。   In all resistive materials including thin film resistive materials, the resistance change rate is small and very stable at high temperature (about 155 ° C.), that is, high temperature stability and resistance temperature coefficient (TCR) are important. It becomes a characteristic. In general, in the case of a binary alloy composed only of Ni and Cr, the Ni / Cr ratio is changed to control the high temperature stability and the resistance temperature coefficient (TCR). However, it is difficult to simultaneously realize that the resistance value is stable at a high temperature and that the temperature coefficient of resistance (TCR) is almost zero. Therefore, as described in Japanese Patent No. 2542504 and Japanese Patent Laid-Open No. 6-20803, improvement of characteristics has been studied by using a Ni—Cr—Al—Si alloy.

しかしながら、近年、自動車などに搭載される薄膜抵抗器では、使用環境温度の上昇に伴い、抵抗特性、特に高温安定性に対する要求がさらにレベルアップしてきている。従来よりさらに使用温度が高い175℃程度において抵抗変化率が小さく、同時に抵抗温度係数(TCR)がほぼ0であることが要求されるようになってきたが、前述の薄膜抵抗材料でも、このように厳格な要求に応えることができていない。   However, in recent years, with respect to thin film resistors mounted on automobiles and the like, the requirement for resistance characteristics, particularly high-temperature stability, has further increased as the operating environment temperature rises. It has been demanded that the rate of change in resistance is small at a temperature of about 175 ° C., which is higher than the conventional temperature, and at the same time the temperature coefficient of resistance (TCR) is almost zero. To meet strict requirements.

特許第2542504号公報Japanese Patent No. 25542504

特開平6−20803号公報Japanese Patent Laid-Open No. 6-20803

本発明は、これまでのNi−Cr系合金の中でも優れた高温安定性を有するとされていたNi−Cr−Al−Si系合金よりもさらに優れた高温安定性を得ることと、抵抗温度係数(TCR)をほぼ0とすることとを、同時に実現する抵抗薄膜材料を提供することを目的とする。   The present invention has a higher temperature stability than the Ni-Cr-Al-Si alloy, which has been considered to have excellent high temperature stability among the conventional Ni-Cr alloys, and has a resistance temperature coefficient. An object of the present invention is to provide a resistance thin film material that simultaneously realizes that (TCR) is substantially zero.

また、かかる抵抗薄膜材料を用いた抵抗薄膜形成用のスパッタリングターゲット、このスパッタリングターゲットを用いた抵抗薄膜およびその製造方法を提供する。   Moreover, the sputtering target for resistance thin film formation using this resistance thin film material, the resistance thin film using this sputtering target, and its manufacturing method are provided.

本発明の抵抗薄膜材料は、Al:1〜15質量%、希土類元素:0.01〜0.5質量%を含み、残部が実質的にCr/Ni比が質量で0.15〜1.1となるCrおよびNiからなることを特徴とする。本発明における希土類元素としては、Yおよびランタノイド(典型的にはランタン、セリウム)があげられるが、これらの中から1種または2種以上を選び、添加することができる。また、セリウム族希土類元素の混合物であるミッシュメタルを使用することもできる。   The resistance thin film material of the present invention contains Al: 1 to 15% by mass, rare earth element: 0.01 to 0.5% by mass, and the balance is substantially 0.15 to 1.1 by mass in Cr / Ni ratio. It consists of Cr and Ni which become. Examples of the rare earth element in the present invention include Y and lanthanoids (typically lanthanum and cerium), and one or more of them can be selected and added. Misch metal which is a mixture of cerium group rare earth elements can also be used.

上記の抵抗薄膜材料から薄膜抵抗器用の抵抗薄膜を得るには、Ni−Cr−Al−希土類元素合金スパッタリングターゲットを使用する。その組成は、前記抵抗薄膜材料と実質的に同じである。   In order to obtain a resistance thin film for a thin film resistor from the above resistance thin film material, a Ni—Cr—Al—rare earth element alloy sputtering target is used. Its composition is substantially the same as that of the resistive thin film material.

かかるスパッタリングターゲットを用いて、スパッタ法により、絶縁材料基板上に、Ni−Cr−Al−希土類元素合金からなる抵抗薄膜を生成させる。なお、その組成は、前記抵抗薄膜材料と実質的に同じである。その後、該抵抗薄膜が形成された基板を、大気中において、温度200℃〜500℃で、1〜10時間、熱処理を行うことにより抵抗薄膜を完成する。かかる抵抗薄膜を用いることで、高温での抵抗変化率が小さく、同時に抵抗温度係数(TCR)がほぼ0である薄膜抵抗器を得ることができる。   Using such a sputtering target, a resistance thin film made of a Ni—Cr—Al—rare earth element alloy is formed on an insulating material substrate by sputtering. The composition is substantially the same as that of the resistive thin film material. Thereafter, the substrate on which the resistance thin film is formed is heat-treated at a temperature of 200 ° C. to 500 ° C. for 1 to 10 hours in the air to complete the resistance thin film. By using such a resistance thin film, it is possible to obtain a thin film resistor having a small resistance change rate at a high temperature and simultaneously having a resistance temperature coefficient (TCR) of almost zero.

本発明の組成範囲において真空中で成膜されたままの抵抗薄膜は、抵抗温度係数が負に大きく、また高温における抵抗安定性が不十分である。しかしながら、本発明に係る熱処理を行うことにより、当該抵抗薄膜の抵抗温度係数を安定的に±10ppm以内とすることができる。また、薄膜表面に緻密な酸化膜が形成され、高温で安定な抵抗薄膜が得られる。かかる抵抗薄膜を用いた薄膜抵抗器は、従来のNi−Cr−Al−Si系合金でも実現することができなかった抵抗特性が得られ、その結果、厳しい高温環境下で使用される電子部品に適するという顕著な効果が得られる。   The resistive thin film as it is deposited in a vacuum in the composition range of the present invention has a negative resistance temperature coefficient that is negatively large and has insufficient resistance stability at high temperatures. However, by performing the heat treatment according to the present invention, the resistance temperature coefficient of the resistance thin film can be stably within ± 10 ppm. In addition, a dense oxide film is formed on the surface of the thin film, and a resistive thin film that is stable at high temperatures can be obtained. A thin film resistor using such a resistance thin film has a resistance characteristic that could not be realized even with a conventional Ni-Cr-Al-Si alloy, and as a result, it can be used as an electronic component used in a severe high temperature environment. The remarkable effect of being suitable is obtained.

本発明の抵抗薄膜材料は、Cr/Ni比が質量で0.15〜1.1であるNi−Cr合金に、Alを1〜15質量%、希土類元素を0.01〜0.5質量%、それぞれ添加したものである。   The resistance thin film material of the present invention is a Ni-Cr alloy having a Cr / Ni ratio of 0.15 to 1.1 by mass, Al of 1 to 15 mass%, and a rare earth element of 0.01 to 0.5 mass%. , Respectively.

Cr/Ni比が質量で0.15未満であると、抵抗温度係数が大きくなってしまう。一方、1.1を超えると、175℃における抵抗変化率が高くなり、高温安定性を損なってしまう。   If the Cr / Ni ratio is less than 0.15 by mass, the temperature coefficient of resistance increases. On the other hand, if it exceeds 1.1, the rate of change in resistance at 175 ° C. becomes high, and high-temperature stability is impaired.

Alは、主として抵抗温度係数(TCR)を改善するために添加する。その添加量が1質量%未満であるか、または15質量%を超えると、抵抗温度係数(TCR)は負に大きくなってしまい、高温安定性も悪化してしまう。   Al is mainly added to improve the temperature coefficient of resistance (TCR). When the addition amount is less than 1% by mass or exceeds 15% by mass, the temperature coefficient of resistance (TCR) becomes negatively large and the high temperature stability is also deteriorated.

希土類元素は、本明細書では、Yとランタノイドを意味し、主として高温安定性を改善するために添加する。その添加量が0.01質量%未満であると、高温安定性の改善に寄与しない。一方、0.5質量%を超えても、高温安定性に格別の効果増大が期待できず、コストアップとなるので、好ましくない。   In the present specification, the rare earth element means Y and a lanthanoid, and is added mainly to improve high-temperature stability. If the addition amount is less than 0.01% by mass, it does not contribute to the improvement of high temperature stability. On the other hand, if it exceeds 0.5% by mass, it cannot be expected that a significant effect on high-temperature stability will be increased, resulting in an increase in cost.

本発明に係る抵抗薄膜は、次のようにして製造する。Ni−Cr−Al−希土類元素を特定の組成範囲内で調整して作製したスパッタリングターゲットを用いて、スパッタ法により、絶縁材料基板上に抵抗薄膜を成膜し、その後、この基板を大気中において、温度200℃〜500℃で、1〜10時間、熱処理を行う。   The resistive thin film according to the present invention is manufactured as follows. Using a sputtering target prepared by adjusting Ni-Cr-Al-rare earth elements within a specific composition range, a resistive thin film was formed on an insulating material substrate by sputtering, and then the substrate was placed in the atmosphere. The heat treatment is performed at a temperature of 200 ° C. to 500 ° C. for 1 to 10 hours.

熱処理温度が、200℃未満であると、抵抗温度係数(TCR)が安定しない。一方、500℃を超えると、抵抗温度係数(TCR)が大きくなってしまう。   When the heat treatment temperature is less than 200 ° C., the temperature coefficient of resistance (TCR) is not stable. On the other hand, when it exceeds 500 ° C., the temperature coefficient of resistance (TCR) becomes large.

また、熱処理時間が、1時間未満であると、抵抗温度係数(TCR)が安定しない。一方、10時間を超えても、抵抗安定性に対する効果の増大はみられず、コストアップとなり好ましくない。   Further, if the heat treatment time is less than 1 hour, the temperature coefficient of resistance (TCR) is not stable. On the other hand, even if it exceeds 10 hours, the increase in the effect on the resistance stability is not seen, and the cost increases, which is not preferable.

(実施例1〜24、比較例1〜13)
まず、電気ニッケル、電解クロム、アルミニウムメタルショット、Yメタル(試薬)、Laメタル(試薬)、Ceメタル(試薬)、ミッシュメタル(試薬)、金属シリコン塊(試薬)を原料とし、表1および表2に示す組成となるようにそれぞれ秤量して、真空溶解炉により、約2kgのNi−Cr−Al−希土類合金およびNi−Cr−Al−Si合金のインゴットを作製した。
(Examples 1-24, Comparative Examples 1-13)
First, using nickel, electrolytic chromium, aluminum metal shot, Y metal (reagent), La metal (reagent), Ce metal (reagent), misch metal (reagent), and metal silicon lump (reagent), Table 1 and Table Each was weighed so as to have the composition shown in FIG. 2, and ingots of about 2 kg of Ni—Cr—Al—rare earth alloy and Ni—Cr—Al—Si alloy were prepared in a vacuum melting furnace.

次に、抵抗薄膜を製造するために、それぞれのインゴットを、均質化処理の後、ワイヤカットで厚さ5mm、直径150mmの丸板を切り出し、上下面を研削してターゲットとした。   Next, in order to manufacture a resistance thin film, each ingot was homogenized, and then a round plate having a thickness of 5 mm and a diameter of 150 mm was cut by wire cutting, and the upper and lower surfaces were ground to obtain targets.

成膜工程は、カソードスパッタ法によって、以下のように行った。真空室にアルミナ基板を装入し、1×10-4Paに排気した後、純度99.9995%のアルゴンガスを導入して0.3Paの圧力に保ち、スパッタパワー0.3kWで、膜厚が500Åとなるように前記基板上に成膜を行った。 The film forming process was performed by cathode sputtering as follows. An alumina substrate was charged into the vacuum chamber and evacuated to 1 × 10 −4 Pa. Then, argon gas having a purity of 99.9995% was introduced and maintained at a pressure of 0.3 Pa, and the sputtering power was 0.3 kW. The film was formed on the substrate so as to be 500 mm.

得られた抵抗薄膜の両側に、膜厚5000ÅのAu電極を、同様にカソードスパッタ法により成膜し、アルミナ基板上に抵抗薄膜およびAu電極が形成された薄膜抵抗器を得た。その後、大気中、300℃で、3時間の熱処理を行うことにより、それぞれの薄膜抵抗器を完成した。   An Au electrode having a film thickness of 5000 mm was similarly formed on both sides of the obtained resistance thin film by the cathode sputtering method to obtain a thin film resistor having a resistance thin film and an Au electrode formed on an alumina substrate. Then, each thin film resistor was completed by performing the heat processing for 3 hours at 300 degreeC in air | atmosphere.

なお、成膜法としては、カソードスパッタ法の他に、電子ビームや抵抗加熱式蒸着法などを用いることもできる。   In addition to the cathode sputtering method, an electron beam, a resistance heating vapor deposition method, or the like can be used as the film forming method.

このようにして作製した実施例1〜24および比較例1〜13の薄膜抵抗器について、抵抗温度係数(TCR)を評価するため、恒温槽で昇温しながら抵抗測定を行い、25℃と125℃における抵抗温度係数(TCR)を測定した。また、高温安定性は、次のように評価した。それぞれの薄膜抵抗器を、175℃の恒温槽内に、2000時間保持し、その保持の前後で抵抗値を測定し、抵抗変化率を測定した。その結果を表1および表2に示す。   In order to evaluate the resistance temperature coefficient (TCR) of the thin film resistors of Examples 1 to 24 and Comparative Examples 1 to 13 manufactured in this way, resistance measurement was performed while raising the temperature in a thermostatic bath. The temperature coefficient of resistance (TCR) at 0 ° C. was measured. The high temperature stability was evaluated as follows. Each thin film resistor was held in a thermostatic bath at 175 ° C. for 2000 hours, the resistance value was measured before and after the holding, and the resistance change rate was measured. The results are shown in Tables 1 and 2.

実施例1〜24の薄膜抵抗器は、いずれも抵抗温度係数(TCR)ほぼ0で、±25ppm/℃の範囲にあり、良好な抵抗温度係数(TCR)を示した。また、実施例1〜24の薄膜抵抗器は、いずれも175℃における抵抗変化率が0.10%未満であり、主な従来技術のNi−Cr−Al−Si合金である比較例13と比較しても、きわめて高い高温安定性を示した。   The thin film resistors of Examples 1 to 24 all had a temperature coefficient of resistance (TCR) of almost 0 and were in a range of ± 25 ppm / ° C., and exhibited a good temperature coefficient of resistance (TCR). Further, the thin film resistors of Examples 1 to 24 all have a resistance change rate at 175 ° C. of less than 0.10%, and are compared with Comparative Example 13 which is a Ni—Cr—Al—Si alloy of the main prior art. Even so, it showed very high temperature stability.

図1に、実施例5、比較例3、5、13の抵抗薄膜から製造した薄膜抵抗器の抵抗変化率の推移を、図2に、実施例17および比較例13の抵抗薄膜から製造した薄膜抵抗器の抵抗変化率の推移をグラフで示した。   FIG. 1 shows the change in resistance change rate of the thin film resistors manufactured from the resistive thin films of Example 5 and Comparative Examples 3, 5, and 13. FIG. 2 shows the thin film manufactured from the resistive thin films of Example 17 and Comparative Example 13. The transition of the resistance change rate of the resistor is shown in a graph.

Figure 0003852446
Figure 0003852446

Figure 0003852446
Figure 0003852446

実施例5、比較例3、5、13の抵抗薄膜から製造した薄膜抵抗器の抵抗変化率の推移を示したグラフである。It is the graph which showed transition of the resistance change rate of the thin film resistor manufactured from the resistance thin film of Example 5, Comparative Examples 3, 5, and 13. 実施例17および比較例13の抵抗薄膜から製造した薄膜抵抗器の抵抗変化率の推移を示したグラフである。It is the graph which showed transition of the resistance change rate of the thin film resistor manufactured from the resistive thin film of Example 17 and Comparative Example 13.

Claims (4)

Al:1〜15質量%、希土類元素:0.01〜0.5質量%を含み、残部がCr/Niが質量で0.15〜1.1となるCrおよびNiからなるNi−Cr−Al−希土類元素合金抵抗薄膜材料。 Ni: Cr—Ni containing Al: 1-15% by mass, rare earth element: 0.01-0.5% by mass, and the balance of Cr / Ni being 0.15-1.1 by mass and Ni—Cr— Al-rare earth element resistance thin film material. Al:1〜15質量%、希土類元素:0.01〜0.5質量%を含み、残部がCr/Niが質量で0.15〜1.1となるCrおよびNiからなり、請求項1に記載の抵抗薄膜材料から抵抗薄膜を得るためのNi−Cr−Al−希土類元素合金スパッタリングターゲット。 2. Al: 1 to 15% by mass; Rare earth element: 0.01 to 0.5% by mass, with the balance being Cr and Ni with Cr / Ni being 0.15 to 1.1 by mass, A Ni-Cr-Al-rare earth element sputtering target for obtaining a resistive thin film from the resistive thin film material described in 1. Al:1〜15質量%、希土類元素:0.01〜0.5質量%を含み、残部がCr/Niが質量で0.15〜1.1となるCrおよびNiからなり、かつ、大気中において、温度200℃〜500℃で、1〜10時間、熱処理されたことを特徴とするNi−Cr−Al−希土類元素合金抵抗薄膜。 Al: 1 to 15% by mass, rare earth element: 0.01 to 0.5% by mass, the balance being Cr / Ni with Cr / Ni being 0.15 to 1.1 by mass, and the atmosphere A Ni—Cr—Al—rare earth element resistive thin film, which is heat-treated at a temperature of 200 ° C. to 500 ° C. for 1 to 10 hours. 請求項2に記載のスパッタリングターゲットを用いて、スパッタ法により、絶縁材料基板上に、Ni−Cr−Al−希土類合金からなる薄膜を生成させ、その後、該抵抗薄膜が形成された基板を、大気中において、温度200℃〜500℃で、1〜10時間、熱処理を行うことを特徴とする抵抗薄膜の製造方法。
A thin film made of a Ni—Cr—Al—rare earth alloy is formed on an insulating material substrate by a sputtering method using the sputtering target according to claim 2, and then the substrate on which the resistive thin film is formed is exposed to the atmosphere. A method for producing a resistance thin film, wherein heat treatment is performed at a temperature of 200 ° C. to 500 ° C. for 1 to 10 hours.
JP2004006981A 2003-11-04 2004-01-14 Resistance thin film material and method of manufacturing resistance thin film using the same Expired - Lifetime JP3852446B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004006981A JP3852446B2 (en) 2003-11-04 2004-01-14 Resistance thin film material and method of manufacturing resistance thin film using the same
CNB2004100900571A CN1321206C (en) 2003-11-04 2004-11-01 Metal resistor material, sputtering target material, resistor film and their manufactures
TW93133312A TWI250218B (en) 2003-11-04 2004-11-02 Metallic resistance material, sputtering target, resistance thin film, and method for making the resistance thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003374063 2003-11-04
JP2004006981A JP3852446B2 (en) 2003-11-04 2004-01-14 Resistance thin film material and method of manufacturing resistance thin film using the same

Publications (2)

Publication Number Publication Date
JP2005154884A JP2005154884A (en) 2005-06-16
JP3852446B2 true JP3852446B2 (en) 2006-11-29

Family

ID=34741341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006981A Expired - Lifetime JP3852446B2 (en) 2003-11-04 2004-01-14 Resistance thin film material and method of manufacturing resistance thin film using the same

Country Status (1)

Country Link
JP (1) JP3852446B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622522B2 (en) * 2005-01-07 2011-02-02 住友金属鉱山株式会社 Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof
JP2014241451A (en) * 2014-09-18 2014-12-25 住友金属鉱山株式会社 Resistance thin film element with copper conductor layer
KR101848764B1 (en) 2016-04-15 2018-04-19 한국에너지기술연구원 Micro temperature sensor and fabrication method of the same

Also Published As

Publication number Publication date
JP2005154884A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP2004319737A (en) Material for thermistor, and method for manufacturing the same
JP2003073810A5 (en)
JPH10270201A (en) Cr-n-based strained resistance film, manufacture therefor and strain sensor
JP6783528B2 (en) Ceramic structure, its manufacturing method and members for semiconductor manufacturing equipment
JP4622522B2 (en) Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JP5045804B2 (en) Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof
JP4380586B2 (en) Thin film resistor and manufacturing method thereof
JP3852446B2 (en) Resistance thin film material and method of manufacturing resistance thin film using the same
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JP4775140B2 (en) Sputtering target
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
JP2008248278A (en) SnO2-BASE SPUTTERING TARGET AND SPUTTER FILM
CN1321206C (en) Metal resistor material, sputtering target material, resistor film and their manufactures
JP2005294612A5 (en)
JP7087741B2 (en) A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film.
JP2021075749A (en) Sputtering target
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
WO2024075547A1 (en) Ni alloy film and sputtering target material for formation of ni alloy film
WO2022210428A1 (en) Cr-si film
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JPS59157282A (en) Target of high silicon nichrome for sputtering
KR20110047145A (en) Material for a resistor, a sputtering target for forming resistance thin film, a resistance thin film, a thin film resistor, and manufacturing method thereof
JP7097913B2 (en) Manufacturing method of NTCR sensor
WO2019167564A1 (en) Cu-Ni ALLOY SPUTTERING TARGET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Ref document number: 3852446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

EXPY Cancellation because of completion of term