WO2024075547A1 - Ni alloy film and sputtering target material for formation of ni alloy film - Google Patents
Ni alloy film and sputtering target material for formation of ni alloy film Download PDFInfo
- Publication number
- WO2024075547A1 WO2024075547A1 PCT/JP2023/034499 JP2023034499W WO2024075547A1 WO 2024075547 A1 WO2024075547 A1 WO 2024075547A1 JP 2023034499 W JP2023034499 W JP 2023034499W WO 2024075547 A1 WO2024075547 A1 WO 2024075547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy film
- atomic
- alloy
- sputtering target
- film
- Prior art date
Links
- 229910000990 Ni alloy Inorganic materials 0.000 title claims abstract description 88
- 238000005477 sputtering target Methods 0.000 title claims abstract description 34
- 239000013077 target material Substances 0.000 title claims abstract description 34
- 230000015572 biosynthetic process Effects 0.000 title description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 230000003647 oxidation Effects 0.000 abstract description 51
- 238000007254 oxidation reaction Methods 0.000 abstract description 51
- 239000000203 mixture Substances 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 106
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 229910052804 chromium Inorganic materials 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000010409 thin film Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010301 surface-oxidation reaction Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910003310 Ni-Al Inorganic materials 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019589 Cr—Fe Inorganic materials 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
Definitions
- the present invention relates to Ni alloy films with high-temperature oxidation resistance that are used in applications where oxidation resistance at high temperatures is required, such as protective films for internal electrodes of electronic components and oxidation prevention films for equipment components used in semiconductor manufacturing equipment and baking furnaces, and to sputtering target materials for forming such films.
- Ni, Cu, and their alloys have been used in thin films used for internal electrodes of electronic components that require small size and weight reduction, and there is a demand for thin films that can maintain oxidation resistance even in a film formation process that involves high-temperature heating of 600°C or higher in the atmosphere.
- Cr films, Ni films, and Ni-Cr alloy films in which Cr is added to Ni have been known as thin films with high oxidation resistance.
- These thin films are formed by plating or PVD (Physical Vapor Deposition) methods such as vacuum deposition and sputtering.
- a CVD (Chemical Vapor Deposition) method in order to obtain an insulating protective film made of an oxide, nitride, or the like formed by a CVD (Chemical Vapor Deposition) method, corrosive gases, etc., may be used as the raw material gas, and the components constituting the chamber and device in which the gas is decomposed and deposited in plasma are also required to have oxidation resistance at high temperatures. Furthermore, oxidation resistance at high temperatures is also required for components such as chambers, adhesion protection plates, and trays in sintering furnaces used in sintering ionic active substances in an oxygen atmosphere, which affect the performance of large-capacity batteries that are essential for mobile products.
- CVD Chemical Vapor Deposition
- Patent Document 1 proposes a Ni-based alloy that contains, by mass%, 3.6-4.4% Al, 0.1-2.5% Si, 0.8-4.0% Cr, and one or more of 0.1-1.5% Mn, with the remainder being Ni and unavoidable impurities.
- Patent Document 2 also proposes a Ni-based alloy that contains, by mass%, Al: 0.05-2.5%, Si: 0.3-2.5%, Cr: 0.5-3.0%, Mn: 0.5-1.8%, with Si/Cr ⁇ 1.1 or less, and the remainder being Ni and unavoidable impurities, and has excellent heat resistance and corrosion resistance.
- Patent Document 3 also proposes a component in which a Ni-Al alloy layer is formed by calorizing the surface of a substrate made of pure Ni or a Ni-Cr-Fe alloy.
- Patent No. 3814822 Japanese Patent Application Laid-Open No. 2-163336 JP 2012-219369 A
- the object of the present invention is to provide a Ni alloy film that has high oxidation resistance at high temperatures even without containing Cr, and a sputtering target material for forming the film.
- the inventors conducted extensive research into new alloys that would provide high oxidation resistance at high temperatures. As a result, they discovered that high oxidation resistance at high temperatures could be achieved by incorporating a specified amount of Al and V into Ni, and thus arrived at the present invention.
- the present invention relates to a Ni alloy film containing 9.0 to 25.0 atomic % of Al, 1.0 to 8.0 atomic % of V, and the remainder being Ni and unavoidable impurities.
- the Ni alloy film of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
- the Ni alloy film of the present invention preferably contains 10.0 to 18.0 atomic % of Al. More preferably, the Ni alloy film of the present invention contains 11.0 to 16.0 atomic % of Al and 2.5 to 3.5 atomic % of V.
- the present invention also relates to a sputtering target material for forming a Ni alloy film having a Curie point at or below room temperature, the Ni alloy film containing 9.0 to 25.0 atomic % Al, 1.0 to 8.0 atomic % V, and the remainder being Ni and unavoidable impurities.
- the sputtering target material for forming a Ni alloy film of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
- the sputtering target material for forming a Ni alloy film preferably contains 10.0 to 18.0 atomic % of Al.
- the sputtering target material for forming a Ni alloy film of the present invention more preferably contains 11.0 to 16.0 atomic % of Al and 2.5 to 3.5 atomic % of V.
- the present invention can provide a Ni alloy film that suppresses surface and internal oxidation of the Ni alloy film itself and exhibits excellent oxidation resistance at high temperatures, even when it does not contain Cr and undergoes a high-temperature heating process of 600°C or more in air. Therefore, the present invention can contribute to the miniaturization and weight reduction of various electronic components, the high integration, and the large capacity of batteries, as well as reducing the environmental impact at the time of disposal.
- FIG. 1 is a schematic cross-sectional view of a Ni alloy film according to the present invention.
- the Ni alloy film 2 of the present invention is formed, for example, on the surface of a substrate 1.
- the Ni alloy film of the present invention is characterized in that it has a thin film thickness and achieves oxidation resistance at high temperatures without containing Cr, which has been an essential additive element in conventional oxidation-resistant alloys.
- the "oxidation resistance” can be confirmed by the discoloration of the Ni alloy film caused by surface oxidation when heated in an oxygen-containing atmosphere, and can be quantitatively evaluated, for example, by reflectance.
- the "internal oxidation” means that oxidation progresses from the surface to the inside of the Ni alloy film.
- the electrical resistance value may increase in the case of the internal electrode, and the strength of the device member may decrease.
- the adhesion of the Ni alloy film may decrease and the film may fall off, resulting in the loss of the oxidation prevention function. For this reason, even if the Ni alloy film is thin, it is necessary to prevent oxidation from progressing to the interface with the internal electrode or the device member, i.e., to suppress internal oxidation.
- the "internal oxidation" of the Ni alloy film can be confirmed, for example, by forming a Ni alloy film on a transparent glass substrate and heating it in the atmosphere, and by observing discoloration or loss of metallic color when the Ni alloy film is viewed from the glass surface side, and can also be quantitatively evaluated by reflectance.
- the Ni alloy film of the present invention contains 9.0 to 25.0 atomic % of Al, 1.0 to 8.0 atomic % of V, and the remainder being Ni and unavoidable impurities.
- Both Al and V are elements that are more easily oxidized than Ni.
- Al is the element that is most easily oxidized and is most easily diffused in Ni. When heated in the air, Al diffuses into the surface layer of the thin film to form an oxide layer.
- V is an element that is less susceptible to oxidation than Al and diffuses slower in Ni than Al. When V is added alone to Ni, it has the effect of improving the oxidation resistance more than Al at temperatures of 300° C.
- Ni alloy film of the present invention When the Ni alloy film of the present invention is heated in the atmosphere, Al, which diffuses quickly and is easily oxidized, forms an oxide layer at the surface, and a V layer, which diffuses slowly and is less likely to oxidize than Al, is formed underneath the oxide layer, thereby suppressing the diffusion of oxygen from the surface.
- the Al content is set to 9.0 atomic % or more in order to stably generate an Al oxide layer on the surface layer and suppress internal oxidation.
- the Al content in order to ensure adhesion to the substrate glass, Si wafer, metal foil, and various metal members, the Al content must be 9.0 atomic % or more.
- the Al content of the Ni alloy film of the present invention is set to 25.0 atomic % or less.
- the Al content of the Ni alloy film of the present invention is preferably set to 23.0 atomic % or less.
- the V content is set to 1.0 atomic % or more in order to obtain the effect of suppressing internal oxidation by generating V between the Al oxide layer and the Ni alloy matrix during heating.
- the V content exceeds 8.0 atomic %, the oxidation of V itself is promoted, and the oxidation resistance may decrease.
- the V content of the Ni alloy film of the present invention is set to 8.0 atomic % or less.
- the Ni alloy film according to the embodiment of the present invention can fully suppress internal oxidation by making the total content of Al and V 11.0 atomic % or more.
- the Ni alloy film of the present invention contains a total of 11.0 to 30.0 atomic % of Al and V.
- the Ni alloy film of the present invention contains a total of 11.0 to 28.0 atomic % of Al and V.
- the Al content is set to 10.0 atomic % or more or 18.0 atomic % or less, so that discoloration due to surface oxidation of the Ni alloy film itself can be suppressed. Therefore, the Ni alloy film of the present invention preferably contains Al at 10.0 to 18.0 atomic %.
- the content of Al in order to suppress the surface oxidation of the Ni alloy film itself at high temperatures, it is more preferable that the content of Al is 11.0 to 16.0 atomic % and the content of V is 2.5 to 3.5 atomic %.
- the content of Al is preferably made larger than the content of V, and is preferably made 1.5 times or more the content of V.
- the Ni alloy film of the present invention is composed of Ni and unavoidable impurities, with the remainder being other than Al and V.
- the content of unavoidable impurities is small, and unavoidable impurities such as gas components oxygen, nitrogen and carbon, and transition metals Cr, Fe, Cu, etc. may be included within a range that does not impair the action of the present invention.
- the gas components oxygen and nitrogen are each 1000 mass ppm or less
- carbon is 200 mass ppm or less
- Cr, Fe, Cu are each 200 mass ppm or less
- the purity excluding gas components is 99.9 mass% or more.
- a sputtering method using a sputtering target material is suitable.
- a method of forming the film using a sputtering target having the same composition as the composition of the Ni alloy film, or a method of forming the film by co-sputtering using a sputtering target material consisting of a Ni-Al alloy and a Ni-V alloy can be applied. From the viewpoint of ease of setting sputtering conditions and ease of obtaining a Ni alloy film of a desired composition, it is optimal to form the film by sputtering using a sputtering target having the same composition as the composition of the Ni alloy film.
- the sputtering target material of the present invention contains 9.0 to 25.0 atomic % Al, 1.0 to 8.0 atomic % V, and the remainder is composed of Ni and unavoidable impurities.
- the sputtering target material according to the embodiment of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
- the sputtering target material according to the embodiment of the present invention preferably contains 10.0 to 18.0 atomic % of Al.
- the sputtering target material according to the embodiment of the present invention more preferably contains 11.0 to 16.0 atomic % Al and 2.5 to 3.5 atomic % V.
- the sputtering target material for forming a Ni alloy film of the present invention is composed of Ni and inevitable impurities, except for Al and V.
- the content of inevitable impurities is small, and inevitable impurities such as oxygen, nitrogen, and carbon, which are gas components, and Cr, Fe, and Cu, which are transition metals, may be contained within a range that does not impair the action of the present invention.
- the gas components oxygen and nitrogen are each 1000 mass ppm or less, carbon is 200 mass ppm or less, and Cr, Fe, and Cu are each 200 mass ppm or less, and the purity excluding gas components is 99.9 mass% or more.
- the sputtering target material of the present invention has a Curie point below room temperature.
- the sputtering target material In order to efficiently form a Ni alloy film in a magnetron sputtering method, the sputtering target material must be nonmagnetic at room temperature, that is, have a Curie point below room temperature.
- room temperature here refers to the range of 5 to 35°C as specified in JIS Z 8703.
- Ni which is the main constituent element of the Ni alloy film of the present invention, is a magnetic material, and in order to set the Curie point below room temperature, it is important to alloy Ni with Al and V, which are non-magnetic elements that make up the composition of the Ni alloy film of the present invention.
- This sputtering target material can be produced, for example, by a method of machining an ingot produced by melting raw materials adjusted to a predetermined composition, or by a powder sintering method.
- a powder sintering method it is possible to produce alloy powder by a gas atomizing method and use it as the raw material powder, or to use a mixed powder in which multiple alloy powders or pure metal powders are mixed to achieve the final composition of the present invention as the raw material powder.
- a sputtering target material was prepared. After weighing the raw materials to obtain a non-magnetic binary composition of Ni-13.0 atomic % Al, Ni-7.0 atomic % V, Ni-10.0 atomic % V, Ni-10.0 atomic % Cr, and Ni-10.0 atomic % Si, and a ternary composition of Ni-14.0 atomic % Al-3.5 atomic % V, ingots were produced by melting and casting in a vacuum melting furnace.
- the sputtering target material of Ni-50.0 atomic % Al was obtained by producing an ingot by sintering alloy powder of the same composition.
- Each of the above ingots was processed into a plate shape by hot plastic working, and after heat treatment for removing distortion, it was machined to produce a disk-shaped sputtering target material having a diameter of 100 mm and a thickness of 5 mm.
- a SmCo magnet was brought close to each of the sputtering target materials obtained above, the magnet was not attracted, and it was confirmed that the sputtering target materials were non-magnetic at room temperature.
- Each sputtering target material was brazed to a copper backing plate with In, and then attached to a sputtering device (model number: CS-200) manufactured by ULVAC, Inc.
- a sputtering test was carried out under conditions of an Ar atmosphere, a pressure of 0.5 Pa, and a power of 500 W. It was found that all of the sputtering target materials were able to be sputtered.
- the sputtering target materials obtained above were combined and various Ni alloy films were formed on a glass substrate (Corning Eagle-XG) with a thickness of 500 nm by a co-sputtering method for simultaneous film formation.
- the Ni alloy films formed on polyimide films under the same conditions as above were dissolved in a dissolving solution containing hydrofluoric acid, and the component composition was analyzed by ICP emission spectrometry.
- the reflectance of each of the Ni alloy films prepared above was measured after heat treatment in the atmosphere at 600° C. and 700° C.
- the reflectance was measured using a spectrophotometric colorimeter CM-2500d manufactured by Konica Minolta.
- the internal oxidation was evaluated by the reflectance and color when the Ni alloy film was viewed from the transparent glass side after heating at 700°C. If the film had a metallic color, the internal oxidation was suppressed, and if the film was discolored, the entire film was oxidized, and it was judged that internal oxidation had occurred.
- the measurement results are shown in Table 1.
- Ni alloy films of Samples No. 1 to No. 10 which are examples of the present invention and contain a predetermined amount of Al and V, were observed from the glass surface side after heating at 700°C. It was confirmed that the Ni alloy films maintained their metallic color, had a high reflectance of 50% or more, and had suppressed internal oxidation.
- sample No. 11 which is a comparative example containing Cr, also had a metallic color on the glass surface side after heating at 700° C.
- the reflectance of the Ni alloy film surface side at the time of film formation was 54 to 58% in all cases.
- the Ni alloy film of sample No. 11 containing Cr as a comparative example had a reflectance lowered to less than 20% after heating at 600°C and 700°C, and it was confirmed that the oxidation resistance of the Ni alloy film surface was low.
- Sample No. 1 to Sample No. 10 which contain Ni with Al and V within the range of the present invention, have a high reflectance exceeding 25% even after heating at 700°C, and that the oxidation resistance of the Ni alloy film surface is also high.
- the Ni alloy films of Samples No. 3, 4, 6, 7, and 8, which are examples of the present invention have a high reflectance of 55% or more even after heating at 700°C, and further have excellent high-temperature oxidation resistance.
- Example 2 Using the Ni-14.0 atomic % Al-3.5 atomic % V and Ni-10.0 atomic % Cr target materials prepared in Example 1, an Ni alloy film having a film thickness of 100 to 500 nm was formed on a glass substrate in an Ar atmosphere under a pressure of 0.5 Pa and a power of 500 W by adjusting the film formation time in the same manner as in Example 1.
- a pure Ni target material was prepared and formed on a glass substrate to obtain a pure Ni film as a comparative example.
- Each of the Ni alloy films and the pure Ni film obtained above was subjected to a heat treatment at 700° C. in the atmosphere, and then the reflectance was measured in the same manner as in Example 1. The results are shown in Table 2.
- the reflectance of the pure Ni film could not be measured because the entire film was oxidized and peeled off.
- the reflectance on the glass surface side was high at 50% or more when the film thickness was 150 nm or more, suppressing internal oxidation, but the reflectance on the Ni alloy film surface side dropped to 30% or less when the film thickness was in the range of 100 to 500 nm after heating at 700°C, confirming that the oxidation resistance was poor.
- the Ni-14.0 atomic % Al-3.5 atomic % V example of the present invention like Ni-10.0 atomic % Cr, has a reflectance on the glass surface side that exceeds 50% at a film thickness of 150 nm or more, suppressing internal oxidation, while the reflectance on the Ni alloy film surface side exceeds 30% at a film thickness of 150 nm or more, with the reflectance increasing as the film thickness increases, and it has been confirmed that it has better oxidation resistance than Ni-10.0 atomic % Cr.
- the Ni alloy of the present invention does not contain Cr, it can suppress internal oxidation in the same manner as Ni-10 atomic % Cr, and has a high reflectance even on the Ni alloy film side, confirming that it is a Ni alloy film with high oxidation resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Provided are: a Ni alloy film that has high oxidation resistance at high temperature even without containing Cr; and a sputtering target material for forming the Ni alloy film. This Ni alloy film comprises 9.0-25.0 atom% of Al and 1.0-8.0 atom% of V, the balance being Ni and incidental impurities. The total contained amount of Al and V is preferably 11.0-30.0 atom%. The contained amount of Al is preferably 10.0-18.0 atom%. The Ni alloy film can be formed from a sputtering target material having the same composition and having a Curie point that is not higher than room temperature.
Description
本発明は、高温での耐酸化性が要求される、例えば、電子部品の内部電極の保護膜、半導体製造装置や焼成炉等に使用される装置部材の酸化防止膜等に用いられる高温耐酸化性を備えたNi合金膜およびそれを形成するためのスパッタリングターゲット材に関するものである。
The present invention relates to Ni alloy films with high-temperature oxidation resistance that are used in applications where oxidation resistance at high temperatures is required, such as protective films for internal electrodes of electronic components and oxidation prevention films for equipment components used in semiconductor manufacturing equipment and baking furnaces, and to sputtering target materials for forming such films.
近年、小型軽量化を要求される電子部品の内部電極等に用いられる薄膜には、NiやCu、およびそれらの合金が用いられており、大気中で600℃以上という高温の加熱を伴う成膜プロセスでも耐酸化性を維持できる薄膜が求められている。従来から、耐酸化性の高い薄膜としては、Cr膜やNi膜、さらにNiにCrを添加したNi-Cr合金膜が知られている。これらの薄膜は、メッキ法やPVD(Physical Vaper Deposition)法である真空蒸着法やスパッタリング法で形成されている。
また、半導体素子の製造において、CVD(Chemical Vaper Deposition)法で形成する酸化物や窒化物等からなる絶縁保護膜を得るには、原料ガスに腐食性ガス等を用いることがあり、プラズマ中でガスを分解、堆積させるチャンバーや装置を構成する装置部材にも、高温での耐酸化性が要求されている。
さらに、モバイル製品に不可欠な大容量電池の性能に影響するイオン活性物質を酸素雰囲気で焼成する際に用いる焼成炉のチャンバーや防着板、トレイ等の部材にも、高温での耐酸化性が要求されている。 In recent years, Ni, Cu, and their alloys have been used in thin films used for internal electrodes of electronic components that require small size and weight reduction, and there is a demand for thin films that can maintain oxidation resistance even in a film formation process that involves high-temperature heating of 600°C or higher in the atmosphere. Conventionally, Cr films, Ni films, and Ni-Cr alloy films in which Cr is added to Ni have been known as thin films with high oxidation resistance. These thin films are formed by plating or PVD (Physical Vapor Deposition) methods such as vacuum deposition and sputtering.
Furthermore, in the manufacture of semiconductor elements, in order to obtain an insulating protective film made of an oxide, nitride, or the like formed by a CVD (Chemical Vapor Deposition) method, corrosive gases, etc., may be used as the raw material gas, and the components constituting the chamber and device in which the gas is decomposed and deposited in plasma are also required to have oxidation resistance at high temperatures.
Furthermore, oxidation resistance at high temperatures is also required for components such as chambers, adhesion protection plates, and trays in sintering furnaces used in sintering ionic active substances in an oxygen atmosphere, which affect the performance of large-capacity batteries that are essential for mobile products.
また、半導体素子の製造において、CVD(Chemical Vaper Deposition)法で形成する酸化物や窒化物等からなる絶縁保護膜を得るには、原料ガスに腐食性ガス等を用いることがあり、プラズマ中でガスを分解、堆積させるチャンバーや装置を構成する装置部材にも、高温での耐酸化性が要求されている。
さらに、モバイル製品に不可欠な大容量電池の性能に影響するイオン活性物質を酸素雰囲気で焼成する際に用いる焼成炉のチャンバーや防着板、トレイ等の部材にも、高温での耐酸化性が要求されている。 In recent years, Ni, Cu, and their alloys have been used in thin films used for internal electrodes of electronic components that require small size and weight reduction, and there is a demand for thin films that can maintain oxidation resistance even in a film formation process that involves high-temperature heating of 600°C or higher in the atmosphere. Conventionally, Cr films, Ni films, and Ni-Cr alloy films in which Cr is added to Ni have been known as thin films with high oxidation resistance. These thin films are formed by plating or PVD (Physical Vapor Deposition) methods such as vacuum deposition and sputtering.
Furthermore, in the manufacture of semiconductor elements, in order to obtain an insulating protective film made of an oxide, nitride, or the like formed by a CVD (Chemical Vapor Deposition) method, corrosive gases, etc., may be used as the raw material gas, and the components constituting the chamber and device in which the gas is decomposed and deposited in plasma are also required to have oxidation resistance at high temperatures.
Furthermore, oxidation resistance at high temperatures is also required for components such as chambers, adhesion protection plates, and trays in sintering furnaces used in sintering ionic active substances in an oxygen atmosphere, which affect the performance of large-capacity batteries that are essential for mobile products.
現在、CVD装置や焼成炉に用いられる装置部材は、高温での耐酸化性と必要な強度を有するためにNi基合金が用いられている。例えば、特許文献1では、質量%で、Al:3.6~4.4%を含有し、Si:0.1~2.5%、Cr:0.8~4.0%、Mn:0.1~1.5%の内の1種または2種以上を含有し、残部がNiおよび不可避不純物からなるNi基合金が提案されている。
Currently, Ni-based alloys are used for equipment components used in CVD equipment and sintering furnaces because they have oxidation resistance at high temperatures and the necessary strength. For example, Patent Document 1 proposes a Ni-based alloy that contains, by mass%, 3.6-4.4% Al, 0.1-2.5% Si, 0.8-4.0% Cr, and one or more of 0.1-1.5% Mn, with the remainder being Ni and unavoidable impurities.
また、特許文献2では、質量%で、Al:0.05~2.5%、Si:0.3~2.5%、Cr:0.5~3.0%、Mn:0.5~1.8%を含有し、かつ、Si/Cr<1.1以下とし、残部がNiおよび不可避不純物からなり、耐熱性と耐食性に優れたNi基合金が提案されている。
Patent Document 2 also proposes a Ni-based alloy that contains, by mass%, Al: 0.05-2.5%, Si: 0.3-2.5%, Cr: 0.5-3.0%, Mn: 0.5-1.8%, with Si/Cr < 1.1 or less, and the remainder being Ni and unavoidable impurities, and has excellent heat resistance and corrosion resistance.
また、特許文献3では、純NiまたはNi-Cr-Fe合金からなる基材の表面に、カロライジング処理によりNi-Al合金層を形成した部材が提案されている。
Patent Document 3 also proposes a component in which a Ni-Al alloy layer is formed by calorizing the surface of a substrate made of pure Ni or a Ni-Cr-Fe alloy.
上述したように、耐酸化性に優れる材質の代表であるCr膜やNi-Cr合金膜等のCrを含有する薄膜は、電子部品でのフォトエッチングした際に、イオン化したCrが六価Crになる可能性や電子部品を廃棄する際の環境影響を考慮して、Crを含有する薄膜の使用を止める動きがある。
一方、純Niからなる薄膜は、耐湿性等に優れる反面、Crを含有する薄膜よりも耐酸化性が劣り、400℃で表層に酸化層が生成して変色するとともに、電子部品の機能膜に拡散して特性を劣化させる課題がある。
さらに純Niは、磁性体であるため、一般的な薄膜形成手法であるマグネトロンスパッタリング法を適用する際には、スパッタリングターゲット材の厚みを薄くする必要があり、高効率での薄膜形成が行ない難いという課題がある。 As described above, there is a movement to stop using Cr-containing thin films such as Cr films and Ni-Cr alloy films, which are representative of materials with excellent oxidation resistance, because of the possibility that ionized Cr becomes hexavalent Cr when photoetching electronic components and the environmental impact when discarding electronic components.
On the other hand, a thin film made of pure Ni has excellent moisture resistance, etc., but on the other hand, it has inferior oxidation resistance to a thin film containing Cr. At 400°C, an oxide layer forms on the surface, causing discoloration, and the oxide diffuses into the functional films of electronic components, degrading their characteristics.
Furthermore, since pure Ni is a magnetic material, when magnetron sputtering, a common thin film formation method, is applied, the thickness of the sputtering target material must be thin, which poses the problem that it is difficult to form thin films with high efficiency.
一方、純Niからなる薄膜は、耐湿性等に優れる反面、Crを含有する薄膜よりも耐酸化性が劣り、400℃で表層に酸化層が生成して変色するとともに、電子部品の機能膜に拡散して特性を劣化させる課題がある。
さらに純Niは、磁性体であるため、一般的な薄膜形成手法であるマグネトロンスパッタリング法を適用する際には、スパッタリングターゲット材の厚みを薄くする必要があり、高効率での薄膜形成が行ない難いという課題がある。 As described above, there is a movement to stop using Cr-containing thin films such as Cr films and Ni-Cr alloy films, which are representative of materials with excellent oxidation resistance, because of the possibility that ionized Cr becomes hexavalent Cr when photoetching electronic components and the environmental impact when discarding electronic components.
On the other hand, a thin film made of pure Ni has excellent moisture resistance, etc., but on the other hand, it has inferior oxidation resistance to a thin film containing Cr. At 400°C, an oxide layer forms on the surface, causing discoloration, and the oxide diffuses into the functional films of electronic components, degrading their characteristics.
Furthermore, since pure Ni is a magnetic material, when magnetron sputtering, a common thin film formation method, is applied, the thickness of the sputtering target material must be thin, which poses the problem that it is difficult to form thin films with high efficiency.
また、近年、大容量電池においても、イオン活性物質の特性向上が求められており、その製造に用いるCVD装置や焼成炉の内部部材が含有するCrが活性種に含まれることにより、特性を劣化させる懸念がある。
また、上述したカロライジング処理は、合金粉末や調合剤を用いて密閉容器中において1000℃前後で加熱する必要があり、処理に時間を要する。また、その皮膜の厚さが10μm以上も必要であり、精度の高い部材とするには、その表面を研磨等で削る必要があり、工数が多く掛かってしまうという課題がある。 Moreover, in recent years, there has been a demand for improved characteristics of ionic active materials even in large-capacity batteries, and there is concern that Cr contained in the internal components of the CVD equipment and sintering furnaces used in the production of such batteries may be included in the active species, thereby degrading the characteristics.
Furthermore, the above-mentioned calorizing process requires heating the alloy powder and preparations in a sealed container at around 1000° C., which takes time. In addition, the thickness of the coating must be 10 μm or more, and in order to produce a highly accurate component, the surface must be polished or otherwise removed, which is problematic as it requires a large number of steps.
また、上述したカロライジング処理は、合金粉末や調合剤を用いて密閉容器中において1000℃前後で加熱する必要があり、処理に時間を要する。また、その皮膜の厚さが10μm以上も必要であり、精度の高い部材とするには、その表面を研磨等で削る必要があり、工数が多く掛かってしまうという課題がある。 Moreover, in recent years, there has been a demand for improved characteristics of ionic active materials even in large-capacity batteries, and there is concern that Cr contained in the internal components of the CVD equipment and sintering furnaces used in the production of such batteries may be included in the active species, thereby degrading the characteristics.
Furthermore, the above-mentioned calorizing process requires heating the alloy powder and preparations in a sealed container at around 1000° C., which takes time. In addition, the thickness of the coating must be 10 μm or more, and in order to produce a highly accurate component, the surface must be polished or otherwise removed, which is problematic as it requires a large number of steps.
本発明の目的は、Crを含有させなくとも、高温での高い耐酸化性を備えるNi合金膜、およびこれを形成するためのスパッタリングターゲット材を提供することにある。
The object of the present invention is to provide a Ni alloy film that has high oxidation resistance at high temperatures even without containing Cr, and a sputtering target material for forming the film.
本発明者は、高温での高い耐酸化性が得られる新たな合金について鋭意検討を行なった。その結果、NiにAlとVを所定量含有させることで、高温での高い耐酸化性が得られることを見出し、本発明に到達した。
The inventors conducted extensive research into new alloys that would provide high oxidation resistance at high temperatures. As a result, they discovered that high oxidation resistance at high temperatures could be achieved by incorporating a specified amount of Al and V into Ni, and thus arrived at the present invention.
すなわち、本発明は、Alを9.0~25.0原子%、Vを1.0~8.0原子%含有し、残部がNiおよび不可避的不純物からなるNi合金膜の発明である。
本発明のNi合金膜は、AlとVを合計で11.0~30.0原子%含有することが好ましい。
また、本発明のNi合金膜は、Alを10.0~18.0原子%含有することが好ましい。
また、本発明のNi合金膜は、Alを11.0~16.0原子%、Vを2.5~3.5原子%含有することがより好ましい。 That is, the present invention relates to a Ni alloy film containing 9.0 to 25.0 atomic % of Al, 1.0 to 8.0 atomic % of V, and the remainder being Ni and unavoidable impurities.
The Ni alloy film of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
Moreover, the Ni alloy film of the present invention preferably contains 10.0 to 18.0 atomic % of Al.
More preferably, the Ni alloy film of the present invention contains 11.0 to 16.0 atomic % of Al and 2.5 to 3.5 atomic % of V.
本発明のNi合金膜は、AlとVを合計で11.0~30.0原子%含有することが好ましい。
また、本発明のNi合金膜は、Alを10.0~18.0原子%含有することが好ましい。
また、本発明のNi合金膜は、Alを11.0~16.0原子%、Vを2.5~3.5原子%含有することがより好ましい。 That is, the present invention relates to a Ni alloy film containing 9.0 to 25.0 atomic % of Al, 1.0 to 8.0 atomic % of V, and the remainder being Ni and unavoidable impurities.
The Ni alloy film of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
Moreover, the Ni alloy film of the present invention preferably contains 10.0 to 18.0 atomic % of Al.
More preferably, the Ni alloy film of the present invention contains 11.0 to 16.0 atomic % of Al and 2.5 to 3.5 atomic % of V.
また、本発明は、Alを9.0~25.0原子%、Vを1.0~8.0原子%含有し、残部がNiおよび不可避的不純物からなり、キュリー点が常温以下であるNi合金膜を形成するためのスパッタリングターゲット材の発明である。
本発明のNi合金膜形成用スパッタリングターゲット材は、AlとVを合計で11.0~30.0原子%含有することが好ましい。
また、Ni合金膜形成用スパッタリングターゲット材は、Alを10.0~18.0原子%含有することが好ましい。
また、本発明のNi合金膜形成用スパッタリングターゲット材は、Alを11.0~16.0原子%、Vを2.5~3.5原子%含有することがより好ましい。 The present invention also relates to a sputtering target material for forming a Ni alloy film having a Curie point at or below room temperature, the Ni alloy film containing 9.0 to 25.0 atomic % Al, 1.0 to 8.0 atomic % V, and the remainder being Ni and unavoidable impurities.
The sputtering target material for forming a Ni alloy film of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
Moreover, the sputtering target material for forming a Ni alloy film preferably contains 10.0 to 18.0 atomic % of Al.
Moreover, the sputtering target material for forming a Ni alloy film of the present invention more preferably contains 11.0 to 16.0 atomic % of Al and 2.5 to 3.5 atomic % of V.
本発明のNi合金膜形成用スパッタリングターゲット材は、AlとVを合計で11.0~30.0原子%含有することが好ましい。
また、Ni合金膜形成用スパッタリングターゲット材は、Alを10.0~18.0原子%含有することが好ましい。
また、本発明のNi合金膜形成用スパッタリングターゲット材は、Alを11.0~16.0原子%、Vを2.5~3.5原子%含有することがより好ましい。 The present invention also relates to a sputtering target material for forming a Ni alloy film having a Curie point at or below room temperature, the Ni alloy film containing 9.0 to 25.0 atomic % Al, 1.0 to 8.0 atomic % V, and the remainder being Ni and unavoidable impurities.
The sputtering target material for forming a Ni alloy film of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
Moreover, the sputtering target material for forming a Ni alloy film preferably contains 10.0 to 18.0 atomic % of Al.
Moreover, the sputtering target material for forming a Ni alloy film of the present invention more preferably contains 11.0 to 16.0 atomic % of Al and 2.5 to 3.5 atomic % of V.
本発明は、Crを含有させなくとも、大気中で600℃以上という高温の加熱工程を経ても、Ni合金膜自体の表面酸化および内部酸化を抑制し、高温で優れた耐酸化性を発揮可能なNi合金膜を提供できる。このため、本発明は、種々の電子部品の小型軽量化、高集積化、電池の大容量化に加え、廃棄時の環境影響の低減に貢献できる。
The present invention can provide a Ni alloy film that suppresses surface and internal oxidation of the Ni alloy film itself and exhibits excellent oxidation resistance at high temperatures, even when it does not contain Cr and undergoes a high-temperature heating process of 600°C or more in air. Therefore, the present invention can contribute to the miniaturization and weight reduction of various electronic components, the high integration, and the large capacity of batteries, as well as reducing the environmental impact at the time of disposal.
本発明のNi合金膜の断面模式図の一例を図1に示す。本発明のNi合金膜2は、例えば、基材1の表面に形成される。そして、本発明のNi合金膜は、薄い膜厚で、従来からある耐酸化性合金において必須の添加元素であったCrを含有させなくとも、高温での耐酸化性を実現したことに特徴を有する。
なお、「耐酸化性」とは、酸素を含有する雰囲気で加熱した際の、表面酸化に伴うNi合金膜の変色により確認でき、例えば、反射率によって定量的に評価することができる。また、「内部酸化」は、Ni合金膜の表面から内部まで酸化が進行することを意味する。
電子部品の内部電極や装置部材の表面に形成したNi合金膜の酸化が進行して、電子部品の内部電極や装置部材との界面まで達すると、内部電極の場合は電気抵抗値の増加、装置部材の場合は強度が低下する場合があることに加え、Ni合金膜の密着性が低下して脱落することで、酸化防止の機能が失われてしまう。このため、Ni合金膜は、薄い膜厚であっても、内部電極や装置部材との界面まで酸化が進行しない、すなわち内部酸化を抑制する必要がある。
ここで、Ni合金膜の「内部酸化」の確認は、例えば、透明なガラス基板上にNi合金膜を形成して、大気中で加熱したときの、ガラス面側からNi合金膜を見た際の変色や金属色の喪失により確認できるとともに、反射率によって定量的に評価することができる。 An example of a schematic cross-sectional view of the Ni alloy film of the present invention is shown in Fig. 1. The Nialloy film 2 of the present invention is formed, for example, on the surface of a substrate 1. The Ni alloy film of the present invention is characterized in that it has a thin film thickness and achieves oxidation resistance at high temperatures without containing Cr, which has been an essential additive element in conventional oxidation-resistant alloys.
The "oxidation resistance" can be confirmed by the discoloration of the Ni alloy film caused by surface oxidation when heated in an oxygen-containing atmosphere, and can be quantitatively evaluated, for example, by reflectance. The "internal oxidation" means that oxidation progresses from the surface to the inside of the Ni alloy film.
When the oxidation of the Ni alloy film formed on the surface of the internal electrode of an electronic component or on the surface of a device member progresses and reaches the interface with the internal electrode of the electronic component or the device member, the electrical resistance value may increase in the case of the internal electrode, and the strength of the device member may decrease. In addition, the adhesion of the Ni alloy film may decrease and the film may fall off, resulting in the loss of the oxidation prevention function. For this reason, even if the Ni alloy film is thin, it is necessary to prevent oxidation from progressing to the interface with the internal electrode or the device member, i.e., to suppress internal oxidation.
Here, the "internal oxidation" of the Ni alloy film can be confirmed, for example, by forming a Ni alloy film on a transparent glass substrate and heating it in the atmosphere, and by observing discoloration or loss of metallic color when the Ni alloy film is viewed from the glass surface side, and can also be quantitatively evaluated by reflectance.
なお、「耐酸化性」とは、酸素を含有する雰囲気で加熱した際の、表面酸化に伴うNi合金膜の変色により確認でき、例えば、反射率によって定量的に評価することができる。また、「内部酸化」は、Ni合金膜の表面から内部まで酸化が進行することを意味する。
電子部品の内部電極や装置部材の表面に形成したNi合金膜の酸化が進行して、電子部品の内部電極や装置部材との界面まで達すると、内部電極の場合は電気抵抗値の増加、装置部材の場合は強度が低下する場合があることに加え、Ni合金膜の密着性が低下して脱落することで、酸化防止の機能が失われてしまう。このため、Ni合金膜は、薄い膜厚であっても、内部電極や装置部材との界面まで酸化が進行しない、すなわち内部酸化を抑制する必要がある。
ここで、Ni合金膜の「内部酸化」の確認は、例えば、透明なガラス基板上にNi合金膜を形成して、大気中で加熱したときの、ガラス面側からNi合金膜を見た際の変色や金属色の喪失により確認できるとともに、反射率によって定量的に評価することができる。 An example of a schematic cross-sectional view of the Ni alloy film of the present invention is shown in Fig. 1. The Ni
The "oxidation resistance" can be confirmed by the discoloration of the Ni alloy film caused by surface oxidation when heated in an oxygen-containing atmosphere, and can be quantitatively evaluated, for example, by reflectance. The "internal oxidation" means that oxidation progresses from the surface to the inside of the Ni alloy film.
When the oxidation of the Ni alloy film formed on the surface of the internal electrode of an electronic component or on the surface of a device member progresses and reaches the interface with the internal electrode of the electronic component or the device member, the electrical resistance value may increase in the case of the internal electrode, and the strength of the device member may decrease. In addition, the adhesion of the Ni alloy film may decrease and the film may fall off, resulting in the loss of the oxidation prevention function. For this reason, even if the Ni alloy film is thin, it is necessary to prevent oxidation from progressing to the interface with the internal electrode or the device member, i.e., to suppress internal oxidation.
Here, the "internal oxidation" of the Ni alloy film can be confirmed, for example, by forming a Ni alloy film on a transparent glass substrate and heating it in the atmosphere, and by observing discoloration or loss of metallic color when the Ni alloy film is viewed from the glass surface side, and can also be quantitatively evaluated by reflectance.
本発明のNi合金膜は、Alを9.0~25.0原子%、Vを1.0~8.0原子%含有し、残部がNiおよび不可避的不純物からなる。
AlおよびVは、いずれもNiより酸化しやすい元素である。本発明のNi合金膜を構成する元素のなかでも、Alは最も酸化しやすく、Ni中で拡散しやすい元素であり、大気中で加熱すると、薄膜の表層にAlが拡散して酸化層を生成する。
一方、Vは、Alよりも酸化し難く、Ni中での拡散はAlより遅い元素である。Niに単独でVを含有させた際は、300℃以下の温度で、Alより耐酸化性を向上させる効果を有するが、温度の上昇に伴い内部酸化を進行させてしまう。
本発明のNi合金膜は、大気中で加熱した際に、拡散が早く、酸化しやすいAlが表層で酸化層を形成し、その下に拡散が遅く、Alよりも酸化し難いV層が形成されることにより、表層からの酸素の拡散を抑えることができる。 The Ni alloy film of the present invention contains 9.0 to 25.0 atomic % of Al, 1.0 to 8.0 atomic % of V, and the remainder being Ni and unavoidable impurities.
Both Al and V are elements that are more easily oxidized than Ni. Among the elements constituting the Ni alloy film of the present invention, Al is the element that is most easily oxidized and is most easily diffused in Ni. When heated in the air, Al diffuses into the surface layer of the thin film to form an oxide layer.
On the other hand, V is an element that is less susceptible to oxidation than Al and diffuses slower in Ni than Al. When V is added alone to Ni, it has the effect of improving the oxidation resistance more than Al at temperatures of 300° C. or less, but it causes internal oxidation to progress as the temperature rises.
When the Ni alloy film of the present invention is heated in the atmosphere, Al, which diffuses quickly and is easily oxidized, forms an oxide layer at the surface, and a V layer, which diffuses slowly and is less likely to oxidize than Al, is formed underneath the oxide layer, thereby suppressing the diffusion of oxygen from the surface.
AlおよびVは、いずれもNiより酸化しやすい元素である。本発明のNi合金膜を構成する元素のなかでも、Alは最も酸化しやすく、Ni中で拡散しやすい元素であり、大気中で加熱すると、薄膜の表層にAlが拡散して酸化層を生成する。
一方、Vは、Alよりも酸化し難く、Ni中での拡散はAlより遅い元素である。Niに単独でVを含有させた際は、300℃以下の温度で、Alより耐酸化性を向上させる効果を有するが、温度の上昇に伴い内部酸化を進行させてしまう。
本発明のNi合金膜は、大気中で加熱した際に、拡散が早く、酸化しやすいAlが表層で酸化層を形成し、その下に拡散が遅く、Alよりも酸化し難いV層が形成されることにより、表層からの酸素の拡散を抑えることができる。 The Ni alloy film of the present invention contains 9.0 to 25.0 atomic % of Al, 1.0 to 8.0 atomic % of V, and the remainder being Ni and unavoidable impurities.
Both Al and V are elements that are more easily oxidized than Ni. Among the elements constituting the Ni alloy film of the present invention, Al is the element that is most easily oxidized and is most easily diffused in Ni. When heated in the air, Al diffuses into the surface layer of the thin film to form an oxide layer.
On the other hand, V is an element that is less susceptible to oxidation than Al and diffuses slower in Ni than Al. When V is added alone to Ni, it has the effect of improving the oxidation resistance more than Al at temperatures of 300° C. or less, but it causes internal oxidation to progress as the temperature rises.
When the Ni alloy film of the present invention is heated in the atmosphere, Al, which diffuses quickly and is easily oxidized, forms an oxide layer at the surface, and a V layer, which diffuses slowly and is less likely to oxidize than Al, is formed underneath the oxide layer, thereby suppressing the diffusion of oxygen from the surface.
本発明のNi合金膜は、その表層にAlの酸化層を安定的に生成させ、内部酸化を抑制するために、Alの含有量を9.0原子%以上とする。また、基材となるガラス、Siウェハーや金属箔、各種の金属部材との密着性を確保するためにも、Alは9.0原子%以上必要である。
ただし、Alの含有量が25.0原子%を越えると、内部酸化を抑制する効果が低下する。このため、本発明のNi合金膜は、Alの含有量を25.0原子%以下とする。また、上記と同様の理由から、本発明のNi合金膜は、Alの含有量を23.0原子%以下にすることが好ましい。 In the Ni alloy film of the present invention, the Al content is set to 9.0 atomic % or more in order to stably generate an Al oxide layer on the surface layer and suppress internal oxidation. In addition, in order to ensure adhesion to the substrate glass, Si wafer, metal foil, and various metal members, the Al content must be 9.0 atomic % or more.
However, if the Al content exceeds 25.0 atomic %, the effect of suppressing internal oxidation decreases. Therefore, the Al content of the Ni alloy film of the present invention is set to 25.0 atomic % or less. For the same reason as above, the Al content of the Ni alloy film of the present invention is preferably set to 23.0 atomic % or less.
ただし、Alの含有量が25.0原子%を越えると、内部酸化を抑制する効果が低下する。このため、本発明のNi合金膜は、Alの含有量を25.0原子%以下とする。また、上記と同様の理由から、本発明のNi合金膜は、Alの含有量を23.0原子%以下にすることが好ましい。 In the Ni alloy film of the present invention, the Al content is set to 9.0 atomic % or more in order to stably generate an Al oxide layer on the surface layer and suppress internal oxidation. In addition, in order to ensure adhesion to the substrate glass, Si wafer, metal foil, and various metal members, the Al content must be 9.0 atomic % or more.
However, if the Al content exceeds 25.0 atomic %, the effect of suppressing internal oxidation decreases. Therefore, the Al content of the Ni alloy film of the present invention is set to 25.0 atomic % or less. For the same reason as above, the Al content of the Ni alloy film of the present invention is preferably set to 23.0 atomic % or less.
本発明のNi合金膜は、加熱時に、Al酸化層とNi合金のマトリックスの中間にVを生成させて、内部酸化を抑制する効果を得るために、Vの含有量を1.0原子%以上とする。
ただし、Vの含有量が8.0原子%を越えると、V自身の酸化が促進されてしまい、耐酸化性が低下する場合がある。このため、本発明のNi合金膜は、Vの含有量を8.0原子%以下とする。 In the Ni alloy film of the present invention, the V content is set to 1.0 atomic % or more in order to obtain the effect of suppressing internal oxidation by generating V between the Al oxide layer and the Ni alloy matrix during heating.
However, if the V content exceeds 8.0 atomic %, the oxidation of V itself is promoted, and the oxidation resistance may decrease. For this reason, the V content of the Ni alloy film of the present invention is set to 8.0 atomic % or less.
ただし、Vの含有量が8.0原子%を越えると、V自身の酸化が促進されてしまい、耐酸化性が低下する場合がある。このため、本発明のNi合金膜は、Vの含有量を8.0原子%以下とする。 In the Ni alloy film of the present invention, the V content is set to 1.0 atomic % or more in order to obtain the effect of suppressing internal oxidation by generating V between the Al oxide layer and the Ni alloy matrix during heating.
However, if the V content exceeds 8.0 atomic %, the oxidation of V itself is promoted, and the oxidation resistance may decrease. For this reason, the V content of the Ni alloy film of the present invention is set to 8.0 atomic % or less.
本発明の実施形態にかかるNi合金膜は、AlとVの合計含有量を11.0原子%以上にすることで、内部酸化を抑制する効果を十分に得ることができる。一方、AlとVの合計含有量を30.0原子%にすることで、耐酸化性を確保するとともに、形成したNi合金膜が脆くなることを抑制できる。このため、本発明のNi合金膜は、AlとVを合計で11.0~30.0原子%含有することが好ましい。また、上記と同様の理由から、本発明のNi合金膜は、AlとVを合計で11.0~28.0原子%含有することがより好ましい。
The Ni alloy film according to the embodiment of the present invention can fully suppress internal oxidation by making the total content of Al and V 11.0 atomic % or more. On the other hand, by making the total content of Al and V 30.0 atomic %, oxidation resistance is ensured and the formed Ni alloy film can be prevented from becoming brittle. For this reason, it is preferable that the Ni alloy film of the present invention contains a total of 11.0 to 30.0 atomic % of Al and V. Also, for the same reasons as above, it is more preferable that the Ni alloy film of the present invention contains a total of 11.0 to 28.0 atomic % of Al and V.
本発明の実施形態にかかるNi合金膜は、Alの含有量を10.0原子%以上または18.0原子%以下にすることで、Ni合金膜自体の表面酸化による変色を抑制することができる。このため、本発明のNi合金膜は、Alを10.0~18.0原子%含有することが好ましい。
なお、本発明の実施形態にかかるNi合金膜において、高温でのNi合金膜自体の表面酸化を抑制するには、Alは11.0~16.0原子%、Vは2.5~3.5原子%含有することがより好ましい。そして、、上述した高温での耐酸化性効果を得るには、Alの含有量をVの含有量よりも多くすることが好ましく、Vの含有量の1.5倍以上とすることが好ましい。 In the Ni alloy film according to the embodiment of the present invention, the Al content is set to 10.0 atomic % or more or 18.0 atomic % or less, so that discoloration due to surface oxidation of the Ni alloy film itself can be suppressed. Therefore, the Ni alloy film of the present invention preferably contains Al at 10.0 to 18.0 atomic %.
In the Ni alloy film according to the embodiment of the present invention, in order to suppress the surface oxidation of the Ni alloy film itself at high temperatures, it is more preferable that the content of Al is 11.0 to 16.0 atomic % and the content of V is 2.5 to 3.5 atomic %. In order to obtain the above-mentioned oxidation resistance effect at high temperatures, the content of Al is preferably made larger than the content of V, and is preferably made 1.5 times or more the content of V.
なお、本発明の実施形態にかかるNi合金膜において、高温でのNi合金膜自体の表面酸化を抑制するには、Alは11.0~16.0原子%、Vは2.5~3.5原子%含有することがより好ましい。そして、、上述した高温での耐酸化性効果を得るには、Alの含有量をVの含有量よりも多くすることが好ましく、Vの含有量の1.5倍以上とすることが好ましい。 In the Ni alloy film according to the embodiment of the present invention, the Al content is set to 10.0 atomic % or more or 18.0 atomic % or less, so that discoloration due to surface oxidation of the Ni alloy film itself can be suppressed. Therefore, the Ni alloy film of the present invention preferably contains Al at 10.0 to 18.0 atomic %.
In the Ni alloy film according to the embodiment of the present invention, in order to suppress the surface oxidation of the Ni alloy film itself at high temperatures, it is more preferable that the content of Al is 11.0 to 16.0 atomic % and the content of V is 2.5 to 3.5 atomic %. In order to obtain the above-mentioned oxidation resistance effect at high temperatures, the content of Al is preferably made larger than the content of V, and is preferably made 1.5 times or more the content of V.
本発明のNi合金膜は、上述した各特性を確保するために、AlおよびV以外の残部はNiおよび不可避的不純物で構成される。ここで、不可避的不純物の含有量は少ないことが好ましく、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素や炭素、遷移金属であるCr、Fe、Cu等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素は各々1000質量ppm以下、炭素は200質量ppm以下、Cr、Fe、Cuはそれぞれ200質量ppm以下であり、ガス成分を除いた純度として99.9質量%以上であることが好ましい。
In order to ensure the above-mentioned characteristics, the Ni alloy film of the present invention is composed of Ni and unavoidable impurities, with the remainder being other than Al and V. Here, it is preferable that the content of unavoidable impurities is small, and unavoidable impurities such as gas components oxygen, nitrogen and carbon, and transition metals Cr, Fe, Cu, etc. may be included within a range that does not impair the action of the present invention. For example, it is preferable that the gas components oxygen and nitrogen are each 1000 mass ppm or less, carbon is 200 mass ppm or less, and Cr, Fe, Cu are each 200 mass ppm or less, and the purity excluding gas components is 99.9 mass% or more.
本発明のNi合金膜を形成するには、スパッタリングターゲット材を用いたスパッタリング法が好適である。Ni合金膜を形成する際には、例えば、Ni合金膜の組成と同一組成のスパッタリングターゲットを使用して成膜する方法や、Ni-Al合金およびNi-V合金からなるスパッタリングターゲット材を使用したコスパッタリングによって成膜する方法等が適用できる。スパッタリングの条件設定の簡易さや、所望組成のNi合金膜を得やすいという点からは、Ni合金膜の組成と同一組成のスパッタリングターゲットを使用してスパッタリング成膜することが最適である。このため、本発明のスパッタリングターゲット材は、Alを9.0~25.0原子%、Vを1.0~8.0原子%含有し、残部がNiおよび不可避的不純物からなる。
そして、本発明の実施形態にかかるスパッタリングターゲット材は、上記と同様の理由から、AlとVを合計で11.0~30.0原子%含有することが好ましい。
また、本発明の実施形態にかかるスパッタリングターゲット材は、上記と同様の理由から、Alを10.0~18.0原子%含有することが好ましい。
また、本発明の実施形態にかかるスパッタリングターゲット材は、上記と同様の理由から、Alを11.0~16.0原子%、Vを2.5~3.5原子%含有することがより好ましい。
本発明のNi合金膜形成用スパッタリングターゲット材は、上述した各特性を確保するために、AlおよびV以外の残部はNiおよび不可避的不純物で構成される。ここで、不可避的不純物の含有量は少ないことが好ましく、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素や炭素、遷移金属であるCr、Fe、Cu等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素は各々1000質量ppm以下、炭素は200質量ppm以下、Cr、Fe、Cuはそれぞれ200質量ppm以下であり、ガス成分を除いた純度として99.9質量%以上であることが好ましい。 In order to form the Ni alloy film of the present invention, a sputtering method using a sputtering target material is suitable. When forming the Ni alloy film, for example, a method of forming the film using a sputtering target having the same composition as the composition of the Ni alloy film, or a method of forming the film by co-sputtering using a sputtering target material consisting of a Ni-Al alloy and a Ni-V alloy can be applied. From the viewpoint of ease of setting sputtering conditions and ease of obtaining a Ni alloy film of a desired composition, it is optimal to form the film by sputtering using a sputtering target having the same composition as the composition of the Ni alloy film. For this reason, the sputtering target material of the present invention contains 9.0 to 25.0 atomic % Al, 1.0 to 8.0 atomic % V, and the remainder is composed of Ni and unavoidable impurities.
For the same reasons as above, the sputtering target material according to the embodiment of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
Furthermore, for the same reasons as above, the sputtering target material according to the embodiment of the present invention preferably contains 10.0 to 18.0 atomic % of Al.
Furthermore, for the same reasons as above, the sputtering target material according to the embodiment of the present invention more preferably contains 11.0 to 16.0 atomic % Al and 2.5 to 3.5 atomic % V.
In order to ensure the above-mentioned characteristics, the sputtering target material for forming a Ni alloy film of the present invention is composed of Ni and inevitable impurities, except for Al and V. Here, it is preferable that the content of inevitable impurities is small, and inevitable impurities such as oxygen, nitrogen, and carbon, which are gas components, and Cr, Fe, and Cu, which are transition metals, may be contained within a range that does not impair the action of the present invention. For example, it is preferable that the gas components oxygen and nitrogen are each 1000 mass ppm or less, carbon is 200 mass ppm or less, and Cr, Fe, and Cu are each 200 mass ppm or less, and the purity excluding gas components is 99.9 mass% or more.
そして、本発明の実施形態にかかるスパッタリングターゲット材は、上記と同様の理由から、AlとVを合計で11.0~30.0原子%含有することが好ましい。
また、本発明の実施形態にかかるスパッタリングターゲット材は、上記と同様の理由から、Alを10.0~18.0原子%含有することが好ましい。
また、本発明の実施形態にかかるスパッタリングターゲット材は、上記と同様の理由から、Alを11.0~16.0原子%、Vを2.5~3.5原子%含有することがより好ましい。
本発明のNi合金膜形成用スパッタリングターゲット材は、上述した各特性を確保するために、AlおよびV以外の残部はNiおよび不可避的不純物で構成される。ここで、不可避的不純物の含有量は少ないことが好ましく、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素や炭素、遷移金属であるCr、Fe、Cu等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素は各々1000質量ppm以下、炭素は200質量ppm以下、Cr、Fe、Cuはそれぞれ200質量ppm以下であり、ガス成分を除いた純度として99.9質量%以上であることが好ましい。 In order to form the Ni alloy film of the present invention, a sputtering method using a sputtering target material is suitable. When forming the Ni alloy film, for example, a method of forming the film using a sputtering target having the same composition as the composition of the Ni alloy film, or a method of forming the film by co-sputtering using a sputtering target material consisting of a Ni-Al alloy and a Ni-V alloy can be applied. From the viewpoint of ease of setting sputtering conditions and ease of obtaining a Ni alloy film of a desired composition, it is optimal to form the film by sputtering using a sputtering target having the same composition as the composition of the Ni alloy film. For this reason, the sputtering target material of the present invention contains 9.0 to 25.0 atomic % Al, 1.0 to 8.0 atomic % V, and the remainder is composed of Ni and unavoidable impurities.
For the same reasons as above, the sputtering target material according to the embodiment of the present invention preferably contains Al and V in a total amount of 11.0 to 30.0 atomic %.
Furthermore, for the same reasons as above, the sputtering target material according to the embodiment of the present invention preferably contains 10.0 to 18.0 atomic % of Al.
Furthermore, for the same reasons as above, the sputtering target material according to the embodiment of the present invention more preferably contains 11.0 to 16.0 atomic % Al and 2.5 to 3.5 atomic % V.
In order to ensure the above-mentioned characteristics, the sputtering target material for forming a Ni alloy film of the present invention is composed of Ni and inevitable impurities, except for Al and V. Here, it is preferable that the content of inevitable impurities is small, and inevitable impurities such as oxygen, nitrogen, and carbon, which are gas components, and Cr, Fe, and Cu, which are transition metals, may be contained within a range that does not impair the action of the present invention. For example, it is preferable that the gas components oxygen and nitrogen are each 1000 mass ppm or less, carbon is 200 mass ppm or less, and Cr, Fe, and Cu are each 200 mass ppm or less, and the purity excluding gas components is 99.9 mass% or more.
また、本発明のスパッタリングターゲット材は、キュリー点が常温以下である。マグネトロンスパッタ法において、効率のよいNi合金膜の形成を行なうためには、スパッタリングターゲット材は常温で非磁性であること、すなわちキュリー点を常温以下とする。なお、ここでいう「常温」とは、JIS Z 8703で規定されている5~35℃の範囲を指す。
本発明のNi合金膜の主要構成元素であるNiは、磁性体であり、キュリー点を常温以下とするためには、本発明のNi合金膜の組成を構成する、非磁性元素であるAl、Vにより、Niを合金化することが重要である。
そして、このスパッタリングターゲット材は、例えば、所定の組成に調整した原料を溶解して作製したインゴットに機械加工を施して製造する方法や粉末焼結法が適用可能である。粉末焼結法では、ガスアトマイズ法で合金粉末を製造して原料粉末とすることや、複数の合金粉末や純金属粉末を本発明の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。 The sputtering target material of the present invention has a Curie point below room temperature. In order to efficiently form a Ni alloy film in a magnetron sputtering method, the sputtering target material must be nonmagnetic at room temperature, that is, have a Curie point below room temperature. Note that "room temperature" here refers to the range of 5 to 35°C as specified in JIS Z 8703.
Ni, which is the main constituent element of the Ni alloy film of the present invention, is a magnetic material, and in order to set the Curie point below room temperature, it is important to alloy Ni with Al and V, which are non-magnetic elements that make up the composition of the Ni alloy film of the present invention.
This sputtering target material can be produced, for example, by a method of machining an ingot produced by melting raw materials adjusted to a predetermined composition, or by a powder sintering method. In the powder sintering method, it is possible to produce alloy powder by a gas atomizing method and use it as the raw material powder, or to use a mixed powder in which multiple alloy powders or pure metal powders are mixed to achieve the final composition of the present invention as the raw material powder.
本発明のNi合金膜の主要構成元素であるNiは、磁性体であり、キュリー点を常温以下とするためには、本発明のNi合金膜の組成を構成する、非磁性元素であるAl、Vにより、Niを合金化することが重要である。
そして、このスパッタリングターゲット材は、例えば、所定の組成に調整した原料を溶解して作製したインゴットに機械加工を施して製造する方法や粉末焼結法が適用可能である。粉末焼結法では、ガスアトマイズ法で合金粉末を製造して原料粉末とすることや、複数の合金粉末や純金属粉末を本発明の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。 The sputtering target material of the present invention has a Curie point below room temperature. In order to efficiently form a Ni alloy film in a magnetron sputtering method, the sputtering target material must be nonmagnetic at room temperature, that is, have a Curie point below room temperature. Note that "room temperature" here refers to the range of 5 to 35°C as specified in JIS Z 8703.
Ni, which is the main constituent element of the Ni alloy film of the present invention, is a magnetic material, and in order to set the Curie point below room temperature, it is important to alloy Ni with Al and V, which are non-magnetic elements that make up the composition of the Ni alloy film of the present invention.
This sputtering target material can be produced, for example, by a method of machining an ingot produced by melting raw materials adjusted to a predetermined composition, or by a powder sintering method. In the powder sintering method, it is possible to produce alloy powder by a gas atomizing method and use it as the raw material powder, or to use a mixed powder in which multiple alloy powders or pure metal powders are mixed to achieve the final composition of the present invention as the raw material powder.
Ni合金膜を得るために、スパッタリングターゲット材を作製した。
非磁性となるNi-13.0原子%Al、Ni-7.0原子%V、Ni-10.0原子%V、Ni-10.0原子%Cr、Ni-10.0原子%Siの2元系組成と、Ni-14.0原子%Al-3.5原子%Vの3元系組成となるように原料を秤量した後に、真空溶解炉にて溶解鋳造法によりインゴットを作製した。なお、Ni-50.0原子%Alのスパッタリングターゲット材は、同一組成の合金粉末を焼結したインゴットを作製して得た。
上記の各インゴットを熱間塑性加工により板状に加工し、歪を除去する熱処理を行なった後に、機械加工により直径100mm、厚み5mmの円盤状のスパッタリングターゲット材を作製した。
上記で得た各スパッタリングターゲット材に、SmCo磁石を近づけたところ、磁石は吸着せず、常温において非磁性であることを確認した。 In order to obtain a Ni alloy film, a sputtering target material was prepared.
After weighing the raw materials to obtain a non-magnetic binary composition of Ni-13.0 atomic % Al, Ni-7.0 atomic % V, Ni-10.0 atomic % V, Ni-10.0 atomic % Cr, and Ni-10.0 atomic % Si, and a ternary composition of Ni-14.0 atomic % Al-3.5 atomic % V, ingots were produced by melting and casting in a vacuum melting furnace. The sputtering target material of Ni-50.0 atomic % Al was obtained by producing an ingot by sintering alloy powder of the same composition.
Each of the above ingots was processed into a plate shape by hot plastic working, and after heat treatment for removing distortion, it was machined to produce a disk-shaped sputtering target material having a diameter of 100 mm and a thickness of 5 mm.
When a SmCo magnet was brought close to each of the sputtering target materials obtained above, the magnet was not attracted, and it was confirmed that the sputtering target materials were non-magnetic at room temperature.
非磁性となるNi-13.0原子%Al、Ni-7.0原子%V、Ni-10.0原子%V、Ni-10.0原子%Cr、Ni-10.0原子%Siの2元系組成と、Ni-14.0原子%Al-3.5原子%Vの3元系組成となるように原料を秤量した後に、真空溶解炉にて溶解鋳造法によりインゴットを作製した。なお、Ni-50.0原子%Alのスパッタリングターゲット材は、同一組成の合金粉末を焼結したインゴットを作製して得た。
上記の各インゴットを熱間塑性加工により板状に加工し、歪を除去する熱処理を行なった後に、機械加工により直径100mm、厚み5mmの円盤状のスパッタリングターゲット材を作製した。
上記で得た各スパッタリングターゲット材に、SmCo磁石を近づけたところ、磁石は吸着せず、常温において非磁性であることを確認した。 In order to obtain a Ni alloy film, a sputtering target material was prepared.
After weighing the raw materials to obtain a non-magnetic binary composition of Ni-13.0 atomic % Al, Ni-7.0 atomic % V, Ni-10.0 atomic % V, Ni-10.0 atomic % Cr, and Ni-10.0 atomic % Si, and a ternary composition of Ni-14.0 atomic % Al-3.5 atomic % V, ingots were produced by melting and casting in a vacuum melting furnace. The sputtering target material of Ni-50.0 atomic % Al was obtained by producing an ingot by sintering alloy powder of the same composition.
Each of the above ingots was processed into a plate shape by hot plastic working, and after heat treatment for removing distortion, it was machined to produce a disk-shaped sputtering target material having a diameter of 100 mm and a thickness of 5 mm.
When a SmCo magnet was brought close to each of the sputtering target materials obtained above, the magnet was not attracted, and it was confirmed that the sputtering target materials were non-magnetic at room temperature.
各スパッタリングターゲット材を銅製のバッキングプレートにInでろう付けした後、アルバック株式会社製のスパッタ装置(型式番号:CS-200)に取り付け、Ar雰囲気、圧力0.5Pa、電力500Wの条件でスパッタテストを実施したところ、いずれのスパッタリングターゲット材もスパッタリングすることが可能であった。
上記で得た各スパッタリングターゲット材を組み合わせて、同時成膜するコスパッタ法により、ガラス基板(コーニング製 Eagle-XG)上に、種々のNi合金膜を500nm形成した。また、上記と同条件でポリイミドフィルム上に形成したNi合金膜については、フッ酸を含有する溶解液で溶かし、ICP発光分光分析法により成分組成を分析した。 Each sputtering target material was brazed to a copper backing plate with In, and then attached to a sputtering device (model number: CS-200) manufactured by ULVAC, Inc. A sputtering test was carried out under conditions of an Ar atmosphere, a pressure of 0.5 Pa, and a power of 500 W. It was found that all of the sputtering target materials were able to be sputtered.
The sputtering target materials obtained above were combined and various Ni alloy films were formed on a glass substrate (Corning Eagle-XG) with a thickness of 500 nm by a co-sputtering method for simultaneous film formation. The Ni alloy films formed on polyimide films under the same conditions as above were dissolved in a dissolving solution containing hydrofluoric acid, and the component composition was analyzed by ICP emission spectrometry.
上記で得た各スパッタリングターゲット材を組み合わせて、同時成膜するコスパッタ法により、ガラス基板(コーニング製 Eagle-XG)上に、種々のNi合金膜を500nm形成した。また、上記と同条件でポリイミドフィルム上に形成したNi合金膜については、フッ酸を含有する溶解液で溶かし、ICP発光分光分析法により成分組成を分析した。 Each sputtering target material was brazed to a copper backing plate with In, and then attached to a sputtering device (model number: CS-200) manufactured by ULVAC, Inc. A sputtering test was carried out under conditions of an Ar atmosphere, a pressure of 0.5 Pa, and a power of 500 W. It was found that all of the sputtering target materials were able to be sputtered.
The sputtering target materials obtained above were combined and various Ni alloy films were formed on a glass substrate (Corning Eagle-XG) with a thickness of 500 nm by a co-sputtering method for simultaneous film formation. The Ni alloy films formed on polyimide films under the same conditions as above were dissolved in a dissolving solution containing hydrofluoric acid, and the component composition was analyzed by ICP emission spectrometry.
上記で作製した各Ni合金膜について、大気中で600℃、700℃の加熱処理を行なった後に、反射率を測定した。反射率の測定には、コニカミノルタ製の分光測色系CM-2500dを用いた。
内部酸化の評価は、700℃加熱後に、透明なガラス面側からNi合金膜を見た際の反射率と色合いで評価を行なった。金属色を有している場合は内部酸化が抑制されており、変色している場合は膜全体が酸化し、内部酸化していると判断した。測定結果を表1に示す。 The reflectance of each of the Ni alloy films prepared above was measured after heat treatment in the atmosphere at 600° C. and 700° C. The reflectance was measured using a spectrophotometric colorimeter CM-2500d manufactured by Konica Minolta.
The internal oxidation was evaluated by the reflectance and color when the Ni alloy film was viewed from the transparent glass side after heating at 700°C. If the film had a metallic color, the internal oxidation was suppressed, and if the film was discolored, the entire film was oxidized, and it was judged that internal oxidation had occurred. The measurement results are shown in Table 1.
内部酸化の評価は、700℃加熱後に、透明なガラス面側からNi合金膜を見た際の反射率と色合いで評価を行なった。金属色を有している場合は内部酸化が抑制されており、変色している場合は膜全体が酸化し、内部酸化していると判断した。測定結果を表1に示す。 The reflectance of each of the Ni alloy films prepared above was measured after heat treatment in the atmosphere at 600° C. and 700° C. The reflectance was measured using a spectrophotometric colorimeter CM-2500d manufactured by Konica Minolta.
The internal oxidation was evaluated by the reflectance and color when the Ni alloy film was viewed from the transparent glass side after heating at 700°C. If the film had a metallic color, the internal oxidation was suppressed, and if the film was discolored, the entire film was oxidized, and it was judged that internal oxidation had occurred. The measurement results are shown in Table 1.
本発明例となる所定量のAl、Vを含有した試料No.1~No.10のNi合金膜は、700℃加熱後のガラス面側からNi合金膜を観察したところ、金属色を維持し、その反射率は50%以上と高く、内部酸化が抑制されていることが確認できた。
また、Crを含有する比較例となる試料No.11も、700℃加熱後に、ガラス面側で金属色を有していた。また、Crを含有しない試料No.12、Al含有量の少ない試料No.13および試料No.14のガラス面側からのNi合金膜は、金属色がなく変色してしまい、その反射率も大きく低下し、内部酸化により膜全体が酸化していることが確認された。 The Ni alloy films of Samples No. 1 to No. 10, which are examples of the present invention and contain a predetermined amount of Al and V, were observed from the glass surface side after heating at 700°C. It was confirmed that the Ni alloy films maintained their metallic color, had a high reflectance of 50% or more, and had suppressed internal oxidation.
In addition, sample No. 11, which is a comparative example containing Cr, also had a metallic color on the glass surface side after heating at 700° C. In addition, the Ni alloy film on the glass surface side of sample No. 12, which does not contain Cr, sample No. 13, which has a low Al content, and sample No. 14, was discolored without a metallic color, and the reflectance was also greatly reduced, and it was confirmed that the entire film was oxidized due to internal oxidation.
また、Crを含有する比較例となる試料No.11も、700℃加熱後に、ガラス面側で金属色を有していた。また、Crを含有しない試料No.12、Al含有量の少ない試料No.13および試料No.14のガラス面側からのNi合金膜は、金属色がなく変色してしまい、その反射率も大きく低下し、内部酸化により膜全体が酸化していることが確認された。 The Ni alloy films of Samples No. 1 to No. 10, which are examples of the present invention and contain a predetermined amount of Al and V, were observed from the glass surface side after heating at 700°C. It was confirmed that the Ni alloy films maintained their metallic color, had a high reflectance of 50% or more, and had suppressed internal oxidation.
In addition, sample No. 11, which is a comparative example containing Cr, also had a metallic color on the glass surface side after heating at 700° C. In addition, the Ni alloy film on the glass surface side of sample No. 12, which does not contain Cr, sample No. 13, which has a low Al content, and sample No. 14, was discolored without a metallic color, and the reflectance was also greatly reduced, and it was confirmed that the entire film was oxidized due to internal oxidation.
成膜時のNi合金膜面側における反射率は、いずれも54~58%であった。また、比較例となるCrを含有した試料No.11のNi合金膜は、600℃および700℃加熱後の反射率が20%未満に低下してしまい、Ni合金膜表面の耐酸化性が低いことが確認された。
これに対して、NiにAlとVを本発明の範囲で含有した試料No.1~試料No.10は、700℃加熱後でも、25%を超える高い反射率を有し、Ni合金膜表面の耐酸化性も高いことが確認できた。中でも、本発明例となる試料No.3、4、6、7、8のNi合金膜は、700℃加熱後でも、55%以上の高い反射率を有しており、さらに高温耐酸化性に優れることが確認できた。 The reflectance of the Ni alloy film surface side at the time of film formation was 54 to 58% in all cases. In addition, the Ni alloy film of sample No. 11 containing Cr as a comparative example had a reflectance lowered to less than 20% after heating at 600°C and 700°C, and it was confirmed that the oxidation resistance of the Ni alloy film surface was low.
In contrast, it was confirmed that Sample No. 1 to Sample No. 10, which contain Ni with Al and V within the range of the present invention, have a high reflectance exceeding 25% even after heating at 700°C, and that the oxidation resistance of the Ni alloy film surface is also high. Among them, it was confirmed that the Ni alloy films of Samples No. 3, 4, 6, 7, and 8, which are examples of the present invention, have a high reflectance of 55% or more even after heating at 700°C, and further have excellent high-temperature oxidation resistance.
これに対して、NiにAlとVを本発明の範囲で含有した試料No.1~試料No.10は、700℃加熱後でも、25%を超える高い反射率を有し、Ni合金膜表面の耐酸化性も高いことが確認できた。中でも、本発明例となる試料No.3、4、6、7、8のNi合金膜は、700℃加熱後でも、55%以上の高い反射率を有しており、さらに高温耐酸化性に優れることが確認できた。 The reflectance of the Ni alloy film surface side at the time of film formation was 54 to 58% in all cases. In addition, the Ni alloy film of sample No. 11 containing Cr as a comparative example had a reflectance lowered to less than 20% after heating at 600°C and 700°C, and it was confirmed that the oxidation resistance of the Ni alloy film surface was low.
In contrast, it was confirmed that Sample No. 1 to Sample No. 10, which contain Ni with Al and V within the range of the present invention, have a high reflectance exceeding 25% even after heating at 700°C, and that the oxidation resistance of the Ni alloy film surface is also high. Among them, it was confirmed that the Ni alloy films of Samples No. 3, 4, 6, 7, and 8, which are examples of the present invention, have a high reflectance of 55% or more even after heating at 700°C, and further have excellent high-temperature oxidation resistance.
実施例1で作製したNi-14.0原子%Al-3.5原子%VとNi-10.0原子%Crのターゲット材を用いて、Ar雰囲気、圧力0.5Pa、電力500Wとし、膜形成時間を調整して、膜厚が100~500nmのNi合金膜を実施例1と同様に、ガラス基板上に形成した。また、純Niのターゲット材を準備し、ガラス基板上に形成して、比較例となる純Ni膜を得た。
上記で得た各Ni合金膜、純Ni膜について、大気中で700℃の加熱処理を行なった後に、実施例1同様に反射率を測定した。その結果を表2に示す。 Using the Ni-14.0 atomic % Al-3.5 atomic % V and Ni-10.0 atomic % Cr target materials prepared in Example 1, an Ni alloy film having a film thickness of 100 to 500 nm was formed on a glass substrate in an Ar atmosphere under a pressure of 0.5 Pa and a power of 500 W by adjusting the film formation time in the same manner as in Example 1. In addition, a pure Ni target material was prepared and formed on a glass substrate to obtain a pure Ni film as a comparative example.
Each of the Ni alloy films and the pure Ni film obtained above was subjected to a heat treatment at 700° C. in the atmosphere, and then the reflectance was measured in the same manner as in Example 1. The results are shown in Table 2.
上記で得た各Ni合金膜、純Ni膜について、大気中で700℃の加熱処理を行なった後に、実施例1同様に反射率を測定した。その結果を表2に示す。 Using the Ni-14.0 atomic % Al-3.5 atomic % V and Ni-10.0 atomic % Cr target materials prepared in Example 1, an Ni alloy film having a film thickness of 100 to 500 nm was formed on a glass substrate in an Ar atmosphere under a pressure of 0.5 Pa and a power of 500 W by adjusting the film formation time in the same manner as in Example 1. In addition, a pure Ni target material was prepared and formed on a glass substrate to obtain a pure Ni film as a comparative example.
Each of the Ni alloy films and the pure Ni film obtained above was subjected to a heat treatment at 700° C. in the atmosphere, and then the reflectance was measured in the same manner as in Example 1. The results are shown in Table 2.
表2に示すように、比較例となる純Ni膜は、膜全体が酸化し剥がれたため、反射率の測定ができなかった。また、比較例となるCrを含有するNi-10.0原子%Crも、ガラス面側の反射は、膜厚が150nm以上で、50%以上と高く内部酸化を抑制しているが、Ni合金膜面側の反射率は、700℃の加熱後では、膜厚が100~500nmの範囲で30%以下に低下してしまい、耐酸化性が劣ることを確認した。
これに対して、本発明例となるNi-14.0原子%Al-3.5原子%Vは、Ni-10.0原子%Cr同様に、ガラス面側の反射率が膜厚150nm以上で50%を越え、内部酸化を抑制するとともに、Ni合金膜面側の反射率が膜厚150nm以上で30%を越え、膜厚の増加に伴い反射率は高くなり、Ni-10.0原子%Crよりも耐酸化性に優れることが確認できた。
以上のように、本発明のNi合金は、Crを含有していないにもかかわらず、Ni-10原子%Crと同様に内部酸化を抑制できるとともに、Ni合金膜面側でも高い反射率を有しており、耐酸化性が高いNi合金膜であることが確認できた。 As shown in Table 2, the reflectance of the pure Ni film, which is a comparative example, could not be measured because the entire film was oxidized and peeled off. Also, in the case of the Ni-10.0 atomic % Cr film containing Cr, which is a comparative example, the reflectance on the glass surface side was high at 50% or more when the film thickness was 150 nm or more, suppressing internal oxidation, but the reflectance on the Ni alloy film surface side dropped to 30% or less when the film thickness was in the range of 100 to 500 nm after heating at 700°C, confirming that the oxidation resistance was poor.
In contrast, the Ni-14.0 atomic % Al-3.5 atomic % V example of the present invention, like Ni-10.0 atomic % Cr, has a reflectance on the glass surface side that exceeds 50% at a film thickness of 150 nm or more, suppressing internal oxidation, while the reflectance on the Ni alloy film surface side exceeds 30% at a film thickness of 150 nm or more, with the reflectance increasing as the film thickness increases, and it has been confirmed that it has better oxidation resistance than Ni-10.0 atomic % Cr.
As described above, although the Ni alloy of the present invention does not contain Cr, it can suppress internal oxidation in the same manner as Ni-10 atomic % Cr, and has a high reflectance even on the Ni alloy film side, confirming that it is a Ni alloy film with high oxidation resistance.
これに対して、本発明例となるNi-14.0原子%Al-3.5原子%Vは、Ni-10.0原子%Cr同様に、ガラス面側の反射率が膜厚150nm以上で50%を越え、内部酸化を抑制するとともに、Ni合金膜面側の反射率が膜厚150nm以上で30%を越え、膜厚の増加に伴い反射率は高くなり、Ni-10.0原子%Crよりも耐酸化性に優れることが確認できた。
以上のように、本発明のNi合金は、Crを含有していないにもかかわらず、Ni-10原子%Crと同様に内部酸化を抑制できるとともに、Ni合金膜面側でも高い反射率を有しており、耐酸化性が高いNi合金膜であることが確認できた。 As shown in Table 2, the reflectance of the pure Ni film, which is a comparative example, could not be measured because the entire film was oxidized and peeled off. Also, in the case of the Ni-10.0 atomic % Cr film containing Cr, which is a comparative example, the reflectance on the glass surface side was high at 50% or more when the film thickness was 150 nm or more, suppressing internal oxidation, but the reflectance on the Ni alloy film surface side dropped to 30% or less when the film thickness was in the range of 100 to 500 nm after heating at 700°C, confirming that the oxidation resistance was poor.
In contrast, the Ni-14.0 atomic % Al-3.5 atomic % V example of the present invention, like Ni-10.0 atomic % Cr, has a reflectance on the glass surface side that exceeds 50% at a film thickness of 150 nm or more, suppressing internal oxidation, while the reflectance on the Ni alloy film surface side exceeds 30% at a film thickness of 150 nm or more, with the reflectance increasing as the film thickness increases, and it has been confirmed that it has better oxidation resistance than Ni-10.0 atomic % Cr.
As described above, although the Ni alloy of the present invention does not contain Cr, it can suppress internal oxidation in the same manner as Ni-10 atomic % Cr, and has a high reflectance even on the Ni alloy film side, confirming that it is a Ni alloy film with high oxidation resistance.
1 基材
2 Ni合金膜
1Substrate 2 Ni alloy film
2 Ni合金膜
1
Claims (8)
- Alを9.0~25.0原子%、Vを1.0~8.0原子%含有し、残部がNiおよび不可避的不純物からなるNi合金膜。 A Ni alloy film containing 9.0-25.0 atomic % Al, 1.0-8.0 atomic % V, and the remainder Ni and unavoidable impurities.
- AlとVを合計で11.0~30.0原子%含有する請求項1に記載のNi合金膜。 The Ni alloy film according to claim 1, containing a total of 11.0 to 30.0 atomic percent Al and V.
- Alを10.0~18.0原子%含有する請求項1または請求項2に記載のNi合金膜。 The Ni alloy film according to claim 1 or claim 2, containing 10.0 to 18.0 atomic percent Al.
- Alを11.0~16.0原子%、Vを2.5~3.5原子%含有する請求項1に記載のNi合金膜。 The Ni alloy film according to claim 1, containing 11.0 to 16.0 atomic % Al and 2.5 to 3.5 atomic % V.
- Alを9.0~25.0原子%、Vを1.0~8.0原子%含有し、残部がNiおよび不可避的不純物からなり、キュリー点が常温以下であるNi合金膜形成用スパッタリングターゲット材。 A sputtering target material for forming Ni alloy films that contains 9.0-25.0 atomic % Al, 1.0-8.0 atomic % V, with the remainder being Ni and unavoidable impurities, and has a Curie point below room temperature.
- AlとVを合計で11.0~30.0原子%含有する請求項5に記載のNi合金膜形成用スパッタリングターゲット材。 The sputtering target material for forming Ni alloy films according to claim 5, containing a total of 11.0 to 30.0 atomic % of Al and V.
- Alを10.0~18.0原子%含有する請求項5または請求項6に記載のNi合金膜形成用スパッタリングターゲット材。 The sputtering target material for forming Ni alloy films according to claim 5 or 6, containing 10.0 to 18.0 atomic % Al.
- Alを11.0~16.0原子%、Vを2.5~3.5原子%含有する請求項5に記載のNi合金膜形成用スパッタリングターゲット材。
6. The sputtering target material for forming a Ni alloy film according to claim 5, containing 11.0 to 16.0 atomic % of Al and 2.5 to 3.5 atomic % of V.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-162054 | 2022-10-07 | ||
JP2022162054 | 2022-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024075547A1 true WO2024075547A1 (en) | 2024-04-11 |
Family
ID=90608237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/034499 WO2024075547A1 (en) | 2022-10-07 | 2023-09-22 | Ni alloy film and sputtering target material for formation of ni alloy film |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024075547A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008158479A (en) * | 2006-11-30 | 2008-07-10 | Sumitomo Metal Mining Co Ltd | Heat-resistant and light-shielding film, manufacturing method thereof and diaphragm or light quantity adjusting device using the film |
JP2010054543A (en) * | 2008-08-26 | 2010-03-11 | Sumitomo Metal Mining Co Ltd | Absorption-type multilayer film nd filter |
JP2018009233A (en) * | 2016-07-15 | 2018-01-18 | 三菱マテリアル株式会社 | Ni-V alloy sputtering target |
JP2021075749A (en) * | 2019-11-07 | 2021-05-20 | 三井金属鉱業株式会社 | Sputtering target |
CN114318255A (en) * | 2021-12-09 | 2022-04-12 | 贵研铂业股份有限公司 | High-density NiV alloy sputtering target material prepared by easily-oxidized metal coating protection and preparation method thereof |
-
2023
- 2023-09-22 WO PCT/JP2023/034499 patent/WO2024075547A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008158479A (en) * | 2006-11-30 | 2008-07-10 | Sumitomo Metal Mining Co Ltd | Heat-resistant and light-shielding film, manufacturing method thereof and diaphragm or light quantity adjusting device using the film |
JP2010054543A (en) * | 2008-08-26 | 2010-03-11 | Sumitomo Metal Mining Co Ltd | Absorption-type multilayer film nd filter |
JP2018009233A (en) * | 2016-07-15 | 2018-01-18 | 三菱マテリアル株式会社 | Ni-V alloy sputtering target |
JP2021075749A (en) * | 2019-11-07 | 2021-05-20 | 三井金属鉱業株式会社 | Sputtering target |
CN114318255A (en) * | 2021-12-09 | 2022-04-12 | 贵研铂业股份有限公司 | High-density NiV alloy sputtering target material prepared by easily-oxidized metal coating protection and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100568392B1 (en) | Silver alloy sputtering target and process for producing the same | |
JP5329726B2 (en) | High purity copper manganese alloy sputtering target | |
TWI626316B (en) | Sb-Te-based alloy sintered body sputtering target | |
TWI426142B (en) | Sintered body and sintered body | |
CN107109633B (en) | Copper alloy sputtering target and method for producing same | |
WO2013038962A1 (en) | High-purity copper-manganese-alloy sputtering target | |
WO2021046927A1 (en) | Nickel-rhenium alloy rotary tubular target material containing trace rare earth elements and preparation method therefor | |
TWI550117B (en) | Sputtering target and method for producing sputtering target | |
WO2019221257A1 (en) | Multilayer film and ag alloy sputtering target | |
CN111587300A (en) | Ag alloy sputtering target and method for producing Ag alloy sputtering target | |
JP2019203194A (en) | MULTILAYER FILM AND Ag ALLOY SPUTTERING TARGET | |
US20180305805A1 (en) | Ti-Ta ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR | |
EP2634287A1 (en) | Titanium target for sputtering | |
KR20180086189A (en) | Lt; RTI ID = 0.0 &gt; alloy-based sputtering target | |
WO2024075547A1 (en) | Ni alloy film and sputtering target material for formation of ni alloy film | |
CN115976478B (en) | Silver sulfide resistant alloy target and preparation method thereof | |
JP2018176493A (en) | LAMINATED FILM AND Ag ALLOY SPUTTERING TARGET | |
JP4743645B2 (en) | Metal thin film wiring | |
JP6380837B2 (en) | Sputtering target material for forming coating layer and method for producing the same | |
US20190115196A1 (en) | Ti-Nb ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF | |
JP2019131850A (en) | Laminated film and Ag alloy sputtering target | |
JP2021075749A (en) | Sputtering target | |
JP3852446B2 (en) | Resistance thin film material and method of manufacturing resistance thin film using the same | |
JP2024066629A (en) | Copper alloy sputtering film, copper alloy sputtering target, method for producing copper alloy sputtering film, and method for producing copper alloy sputtering target | |
WO2022210428A1 (en) | Cr-si film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23874676 Country of ref document: EP Kind code of ref document: A1 |