JPH10270201A - Cr-n-based strained resistance film, manufacture therefor and strain sensor - Google Patents

Cr-n-based strained resistance film, manufacture therefor and strain sensor

Info

Publication number
JPH10270201A
JPH10270201A JP9108039A JP10803997A JPH10270201A JP H10270201 A JPH10270201 A JP H10270201A JP 9108039 A JP9108039 A JP 9108039A JP 10803997 A JP10803997 A JP 10803997A JP H10270201 A JPH10270201 A JP H10270201A
Authority
JP
Japan
Prior art keywords
resistance
temperature
film
strain
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9108039A
Other languages
Japanese (ja)
Other versions
JP3642449B2 (en
Inventor
Eiji Niwa
英二 丹羽
Sachihiro Sasaki
祥弘 佐々木
Takeshi Masumoto
剛 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP10803997A priority Critical patent/JP3642449B2/en
Publication of JPH10270201A publication Critical patent/JPH10270201A/en
Application granted granted Critical
Publication of JP3642449B2 publication Critical patent/JP3642449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly stable high-sensitivity thin film for strain sensor by reducing the absolute value of the resistance-temperature coefficient of a Cr thin film, while maintaining the gage factor of the Cr thin film as much as possible. SOLUTION: This resistance film is set to be composed of a thin film, a having a composition expressed by a general formula Cr100-x-y Nx My , where M represents one or two or more kinds of elements selected form among Ti, V, Nb, Ta, Ni, Zr, Hf, Si, Ge, C, O, P, Se, Te, Zn, Cu, Bi, Fe, Mo, W, As, Sn, Sb, Pb, B, Ga, In, Tl, Ru, Rh, Re, Os, Ir, Pt, Pd, Ag, Au, Co, Be, Mg, Ca, Sr, Ba, Mn, Al, and rare-earth elements and x and y are atomic percentages specified satisfying relations of 0.0001<=x<=30 and 0<=y<=30, and 0.0001<=x+y<=500, a crystal structure composed mainly of the bcc structure or a mixed structure of the bcc structure and A15-type structure, a gage factor of >=2, and temperature coefficient of an electric-resistance -4×10<-4> to 4×10<-4> / deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Cr(クロム)および
N(窒素)を主成分とし、副成分としてTi(チタ
ン)、V(バナジウム)、Nb(ニオブ)、Ta(タン
タル)、Ni(ニッケル)、Zr(ジルコニウム)、H
f(ハフニウム)、Si(ケイ素)、Ge(ゲルマニウ
ム)、C(炭素)、O(酸素)、P(リン)、Se(セ
レン)、Te(テルル)、Zn(亜鉛)、Cu(銅)、
Bi(ビスマス)、Fe(鉄)、Mo(モリブデン)、
W(タングステン)、As(ヒ素)、Sn(スズ)、S
b(アンチモン)、Pb(鉛)、B(ホウ素)、Ga
(ガリウム)、In(インジウム)、Tl(タリウ
ム)、Ru(ルテニウム)、Rh(ロジウム)、Re
(レニウム)、Os(オスミウム)、Ir(イリジウ
ム)、pt(白金)、Pd(パラジウム)、Ag
(銀)、Au(金)、Co(コバルト)、Be(ベリリ
ウム)、Mg(マグネシウム)、Ca(カルシウム)、
Sr(ストロンチウム)、Ba(バリウム)、Mn(マ
ンガン)、Al(アルミニウム)および希土類元素のう
ち1元素または2元素以上の合計0.0001〜50%
とからなるCrN基歪(ひずみ)抵抗膜およびその製
造法ならびにこの抵抗膜を使用した歪センサ(ストレイ
ンゲージとも呼ばれる)に関するもので、その目的とす
るところはゲージ率(抵抗歪感度)が2以上で、且つ抵
抗温度係数が(4〜4)×10−4/℃以内である歪
抵抗膜を提供するにある。また、前記歪抵抗膜よりなる
歪センサを提供するにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Cr (chromium) and N (nitrogen) as main components and Ti (titanium), V (vanadium), Nb (niobium), Ta (tantalum), Ni ( Nickel), Zr (zirconium), H
f (hafnium), Si (silicon), Ge (germanium), C (carbon), O (oxygen), P (phosphorus), Se (selenium), Te (tellurium), Zn (zinc), Cu (copper),
Bi (bismuth), Fe (iron), Mo (molybdenum),
W (tungsten), As (arsenic), Sn (tin), S
b (antimony), Pb (lead), B (boron), Ga
(Gallium), In (indium), Tl (thallium), Ru (ruthenium), Rh (rhodium), Re
(Rhenium), Os (osmium), Ir (iridium), pt (platinum), Pd (palladium), Ag
(Silver), Au (gold), Co (cobalt), Be (beryllium), Mg (magnesium), Ca (calcium),
Sr (strontium), Ba (barium), Mn (manganese), Al (aluminum) and one or more of rare earth elements in total 0.0001 to 50%
The present invention relates to a Cr N-based strain (strain) resistive film, a method for manufacturing the same, and a strain sensor (also referred to as a strain gauge) using the resistive film. 2 or more, and the temperature coefficient of resistance (- 4 to 4) to provide a strain resistance film is within × 10 -4 / ℃. Another object of the present invention is to provide a strain sensor including the strain resistance film.

【0002】[0002]

【従来の技術】歪センサは、一般に弾性否によって細線
または箔形状のセンサ材の電気抵抗が変化する現象を利
用するものであるが、逆に抵抗変化を測定することによ
り、歪や応力の計測ならびに変換に用いられる。例え
ば、生産工業における歪計、重量計、加速度計、トルク
計、流量計および各種力学量−電気量変換器、土木工業
における土圧計、建築業・エネルギー関連業における圧
力計、流量計および撓み量計、航空・宇宙・鉄道・船舶
関連業における加速度計、トルク計、流量計および各種
応力・歪計等に広く利用されており、さらに民生用とし
ての商用秤およびセキュリティ機器等にも多く利用され
ている。
2. Description of the Related Art A strain sensor generally utilizes a phenomenon in which the electrical resistance of a thin wire or foil-shaped sensor material changes depending on elasticity. However, a strain sensor measures a change in resistance to measure strain or stress. And used for conversion. For example, strain gauges, weigh scales, accelerometers, torque meters, flow meters and various mechanical-electricity converters in the production industry, earth pressure gauges in the civil engineering industry, pressure gauges, flow meters and deflections in the construction and energy related industries Meters, accelerometers, torque meters, flow meters, and various stress / strain meters in the aviation, space, railway, and ship-related industries, and are also widely used in commercial scales and security equipment for consumer use. ing.

【0003】歪センサは、その構造が金属細線(10〜
30μm)または金属箔(3〜5μm)をグリッド状あ
るいはロゼット状に配置してなり、またその使用法とし
ては前記センサ材を被測定物に接着剤で貼り付けし、被
測定物に生じた歪をセンサの抵抗変化から間接的に測定
するものである。歪センサの感度は、ゲージ率Kによっ
て決まり、Kの値は一般に次の式で与えられる。
The strain sensor has a thin metal wire (10 to 10).
30 μm) or a metal foil (3 to 5 μm) is arranged in a grid or rosette shape. The sensor material is attached to an object to be measured with an adhesive, and a strain generated in the object to be measured is obtained. Is indirectly measured from a change in resistance of the sensor. The sensitivity of the strain sensor is determined by the gauge factor K, and the value of K is generally given by the following equation.

【0004】[0004]

【数1】 (Equation 1)

【0005】ここで、R、σ、ρおよびlはそれぞれセ
ンサ材である細線または箔の全抵抗、ポアソン比、比電
気抵抗および全長である。一般に、金属・合金における
σはほぼ0.3であるから、前記の式における右辺第1
項と第2項の合計は約1.6でほぼ一定の値となる。し
たがってゲージ率を大きくするためには、前記の式にお
ける第3項が大きいことが必須条件である。すなわち、
材料に引っ張り変形を与えたとき材料の長さ方向の電子
構造が大幅に変化し、比電気抵抗の変化量Δρ/ρが増
加することによる。
[0005] Here, R, σ, ρ and l are the total resistance, Poisson's ratio, specific electrical resistance and total length of the thin wire or foil as the sensor material, respectively. In general, since σ in a metal or alloy is approximately 0.3,
The sum of the term and the second term is approximately 1.6, which is a substantially constant value. Therefore, in order to increase the gauge factor, it is an essential condition that the third term in the above equation is large. That is,
This is because when the material is subjected to tensile deformation, the electronic structure in the longitudinal direction of the material changes significantly, and the variation Δρ / ρ in the specific electrical resistance increases.

【0006】ゲージ率が大きな材料には半導体の炭素、
ケイ素およびゲルマニウム等が知られている。しかしこ
れら半導体の場合、ゲージ率は10〜170と非常に大
きいが、その値の異方性および温度による変動が大きく
安定性にも欠け、さらに機械的強度が劣る等の欠点を有
することから、特殊な小型圧力変換機器に応用されるに
とどまっている。歪センサ用材料として現在最も多く使
用されている材料は、CuNi合金である。この合金
は抵抗温度係数がきわめて小さいため、温度変化に対す
る特性の変動が小さいという特徴を有しているが、その
反面、ゲージ率は2と小さく、さらに高感度な歪センサ
用材料としては適していない。
[0006] Materials having a large gauge factor include semiconductor carbon,
Silicon and germanium are known. However, in the case of these semiconductors, the gauge factor is as large as 10 to 170, but the anisotropy of the value and the fluctuation due to temperature are large and lack stability, and furthermore, there are drawbacks such as poor mechanical strength. It is only applied to special small pressure transducers. The most frequently used material for the strain sensor at present is a Cu - Ni alloy. Since this alloy has a very small temperature coefficient of resistance, it has the characteristic that the characteristics change with temperature change is small, but on the other hand, the gauge factor is as small as 2 and it is suitable as a material for high-sensitivity strain sensors. Absent.

【0007】合金バルク(塊状)材料を用いた歪センサ
は、上で述べたように細線もしくは箔の形で使用され
る。しかし、細線形状の歪センサは、グリッド形成時の
残留歪の影響および加工した細線材と基板を密着させる
ために用いる接着剤の影響等により特性にばらつきが大
きく、しかもグリッドの形成や細線材と基板の接着とい
った特殊技術が必要なため、生産効率が悪くコスト高の
原因となっている。また、箔形状の歪センサは、加工時
の歪の影響はないが、接着剤の影響については細線材と
同様であり、これも問題となっている。
[0007] Strain sensors using alloy bulk materials are used in the form of fine wires or foils as described above. However, thin wire strain sensors have large variations in characteristics due to the effects of residual strain during grid formation and the effect of an adhesive used to adhere the processed thin wire to the substrate. Since special techniques such as bonding of substrates are required, the production efficiency is low, which causes high costs. The foil-shaped strain sensor is not affected by strain during processing, but the effect of the adhesive is the same as that of the thin wire, which is also a problem.

【0008】[0008]

【発明が解決しようとする課題】歪センサの応用領域
は、近年のマイクロコンピューターの進歩に伴ってます
ます拡大し、小型化および高性能化に向かっている。
「従来の技術」の中で述べた用途のいずれにも当てはま
るが、特に、高感度で安定性を必要とする圧力変換器や
ロードセルの他、ロボットの接触センサや滑りセンサ等
に使用可能な歪センサの要求が高まってきた。これらの
各種センサに使用する歪センサに関して、高感度で良好
な安定性を有する素材の開発ならびに製造工程の改良が
緊急に求められている。
The area of application of strain sensors has been expanding with the recent advances in microcomputers, and has been directed toward miniaturization and higher performance.
This applies to any of the applications described in the “Prior Art” section, but in particular, strain transducers that can be used for pressure sensors and load cells that require high sensitivity and stability, as well as robot contact sensors and slip sensors, etc. The demand for sensors has increased. With respect to strain sensors used for these various sensors, there is an urgent need to develop a material having high sensitivity and good stability and to improve the manufacturing process.

【0009】本発明が解決しようとする課題は、既に市
販されている歪センサのゲージ率2を上回り、且つ実用
上(4〜4)×10−4/℃以内が望ましいとされて
いる抵抗温度係数の小さい薄膜材料とその製造法を開発
するにある。本発明においては、高感度で良好な安定性
を有する素材として構造上安定な金属材料に対象を絞
り、その中からゲージ率の高い素材としてCrに着目し
た。
It is an object of the present invention is to solve is already greater than the gauge factor 2 of strain sensors that are commercially available, and practical (- 4~4) × 10 -4 / ℃ are within desirable resistance The aim is to develop a thin film material with a small temperature coefficient and a manufacturing method thereof. In the present invention, the object is narrowed down to a structurally stable metal material as a material having high sensitivity and good stability, and Cr is focused on as a material having a high gauge factor.

【0010】Crのバルク(塊状)の抵抗ひずみ感度は
26〜28と非常に大きいことが知られている。しか
し、Crは加工が非常に困難であることから、これまで
細線および箔形状の歪センサに用いることはできなかっ
た。そこで加工を必要としない薄膜化によって、Crを
歪センサに応用することが考えられる。Cr薄膜のゲー
ジ率はバルクほどではないが約15と大きい。また材料
を直接基板につけてしまうので、合金バルク材料を用い
た歪センサの場合に生じる接着剤の影響の問題も解消さ
れる。一方、歪センサは歪以外の物理量に対して敏感で
あってはならず、特に温度に対する電気抵抗の変化量は
小さくなくてはならない。しかし通常の蒸着装置やスパ
ッタリング装置を用いて作製したCr薄膜の抵抗の温度
依存性は、図1に示すとおり、通常使用される室温近傍
において温度に対する抵抗(ここでは0℃のときの抵抗
値で規格化した抵抗値R/R0℃縦軸に用いている)の
変化が大きく、そのTCRは負の大きな値(6×10
−4/℃)を示し、このままでは安定性の点で歪センサ
に適していない。
It is known that the bulk (lumped) resistance strain sensitivity of Cr is as large as 26 to 28. However, since Cr is extremely difficult to process, it has not been possible to use it for thin wire and foil-shaped strain sensors. Therefore, it is conceivable to apply Cr to a strain sensor by thinning without requiring processing. The gauge factor of the Cr thin film is as large as about 15, though not as large as the bulk. Further, since the material is directly applied to the substrate, the problem of the influence of the adhesive which occurs in the case of the strain sensor using the alloy bulk material is also solved. On the other hand, the strain sensor must not be sensitive to physical quantities other than strain, and in particular, the amount of change in electrical resistance with respect to temperature must be small. However, as shown in FIG. 1, the temperature dependence of the resistance of a Cr thin film produced using a normal vapor deposition apparatus or a sputtering apparatus indicates that the resistance to temperature near a normally used room temperature (here, the resistance value at 0 ° C. big change of which) using the resistance value R / R 0 ° C. the vertical axis normalized is, a large value that the TCR negative (- 6 × 10
−4 / ° C.), which is not suitable for a strain sensor in terms of stability.

【0011】そこで本発明は、Cr薄膜の高いゲージ率
をできるだけ保持しながら、抵抗温度係数の絶対値を小
さくすることによって、高感度で高安定な歪センサ用薄
膜を得ることを目的としてなされたものである。
The present invention has been made to provide a highly sensitive and stable thin film for a strain sensor by reducing the absolute value of the temperature coefficient of resistance while maintaining a high gauge factor of a Cr thin film as much as possible. Things.

【0012】[0012]

【発明が解決するための手段】Cr薄膜作製についての
幾多の実験の結果、約30×10−4/℃のバルクCr
のTCRが薄膜化によって約6×10−4/℃になる
原因として、薄膜作製直前における成膜室内の真空度が
関係することが明らかになった。すなわち、通常の蒸着
装置やスパッタリング装置の成膜室内背景真空度はおよ
そ107オーダーであるが、その真空度において非常
に僅かに存在する空気の量の変化によってTCRが正か
ら負に変化するのである。空気の主成分は窒素であるこ
とから、それを意図的にCr薄膜中に添加した結果、T
CRが負の値をとることが可能となり、窒素濃度によっ
てTCRの値が異なることを見出した。図2は、窒素濃
度とTCRとの関係を示す。窒素を20%以下添加した
膜の結晶構造を調べた結果、それらはCrのbcc構造
もしくはA15型構造(参考文献)もしくはそれら両者
の混合組織からなっていた。窒素濃度が小さい場合は、
結晶構造はbcc構造となりTCRは正の値を示し、一
方大きい場合は、結晶構造はA15型構造となりTCR
は負の値を示した。
As a result of a number of experiments on the preparation of a Cr thin film, a bulk Cr of about 30 × 10 −4 / ° C. was obtained.
TCR is about the thinning of - a cause of a 6 × 10 -4 / ℃, vacuum degree in the deposition chamber in the thin film produced immediately before it was revealed that relate. That is, the film forming chamber background vacuum degree conventional deposition apparatus or a sputtering apparatus is about 10 - is a 7 order, TCR changes from positive to negative by changing the amount of air very slightly present in the vacuum It is. Since the main component of air is nitrogen, as a result of intentionally adding it to the Cr thin film,
It has been found that CR can take a negative value, and that the value of TCR differs depending on the nitrogen concentration. FIG. 2 shows the relationship between nitrogen concentration and TCR. As a result of examining the crystal structure of the film to which 20% or less of nitrogen was added, they were found to have a bcc structure of Cr or an A15 type structure (reference document) or a mixed structure of both. If the nitrogen concentration is low,
The crystal structure becomes a bcc structure and the TCR shows a positive value. On the other hand, if the crystal structure is large, the crystal structure becomes an A15 type structure and the TCR becomes
Indicates a negative value.

【0013】また、図3に示すCr96歪抵抗膜の
場合のように、これらの薄膜のTCRは熱処理温度の増
加に伴って増大し、熱処理温度で決まることを見出し
た。すなわち、成膜時に負のTCRを示す薄膜を適当な
温度で熱処理することによってTCR約0×10−4
℃の特性を示す薄膜が得られるのである。このとき膜の
結晶構造は、図4に示すCr96歪抵抗膜の場合の
ように、A15型構造から熱処理温度の増加に伴ってb
cc構造へと変化していくが、この過程において、bc
c構造とA15型構造が共存する組織からbcc構造単
独の組織に変化する熱処理温度領域において、TCRは
ゼロ近傍の値が得られる。これらの製造法によって、一
般式Cr100−xで表され、組成比xは原子%で
0.0001≦x≦30なる関係を有し、結晶構造力住
としてbcc構造もしくは主としてbcc構造とA15
型構造との混合組織からなり、ゲージ率が2以上で、且
つ電気抵抗の温度係数が(4)×10−4/℃以
内であることを特徴とするCrN基歪抵抗膜が得ら
れ、高感度歪センサ用材料として適していることを見い
出したのである。
Further, as in the case of the Cr 96 N 4 strain resistance film shown in FIG. 3, it has been found that the TCR of these thin films increases as the heat treatment temperature increases and is determined by the heat treatment temperature. That is, a thin film exhibiting a negative TCR is heat-treated at an appropriate temperature during film formation, so that a TCR of about 0 × 10 −4 /
Thus, a thin film having a characteristic of ° C. can be obtained. At this time, as in the case of the Cr 96 N 4 strain resistance film shown in FIG.
It changes to a cc structure, but in this process, bc
In a heat treatment temperature region where the structure in which the c structure and the A15 type structure coexist is changed to the structure of the bcc structure alone, a value near zero is obtained as the TCR. According to these production methods, the composition is represented by the general formula Cr 100-x N x , and the composition ratio x has a relation of 0.0001 ≦ x ≦ 30 in atomic%, and the crystal structure has a bcc structure or mainly a bcc structure. A15
It consists mixed structure of the mold structure, a gauge index of at least 2, and the temperature coefficient of electrical resistance (- 4 ~ 4) Cr, characterized in that within × 10 -4 / ℃ - N Motoibitsu resistive film Was obtained and found to be suitable as a material for a high-sensitivity strain sensor.

【0014】CrN歪抵抗材料を用いることによっ
て、約0×10−4/℃のTCRを得ることが可能とな
ったが、そのTCRが約0×10−4/℃を示す温度領
域が使用温度範囲と一致するとは限らない。そこで、そ
れらを一致させるために、副成分の添加が有効と考え
た。バルクのCrのネール点の温度(ネール温度)は特
定の元素を添加することによって、低温側または高温側
に移動することが知られている。したがって、抵抗値の
温度依存性を示す抵抗温度曲線は、ネール点と緊密な関
連があるものと考えられ、CrNに副成分として種々
の元素を添加し、その添加量と抵抗温度曲線の移動幅と
の関係について調べる実験を鋭意行った。その結果、適
当な量の副成分元素をCrNに添加することによっ
て、抵抗温度曲線を温度軸に沿って移動させることが可
能となり、これによって抵抗温度曲線の変化量の小さい
部分を使用温度範囲内に移動させ得ることが明らかとな
った。
By using a Cr N strain-resistant material, a TCR of about 0 × 10 −4 / ° C. can be obtained, but the temperature range where the TCR shows about 0 × 10 −4 / ° C. It does not always match the operating temperature range. Therefore, it was considered that the addition of an auxiliary component was effective in making them match. It is known that the temperature of the Neel point (Neel temperature) of bulk Cr shifts to a lower temperature side or a higher temperature side by adding a specific element. Therefore, the resistance temperature curve showing the temperature dependence of the resistance value is considered to be closely related to the Neel point, and various elements are added to Cr - N as subcomponents, and the added amount and the resistance temperature curve are compared. An experiment for investigating the relationship with the movement width was conducted enthusiastically. As a result, it is possible to move the resistance temperature curve along the temperature axis by adding an appropriate amount of the subcomponent element to Cr - N, thereby reducing the portion of the resistance temperature curve where the variation is small to the operating temperature. It has been found that it can be moved within the range.

【0015】また、室温以外の温度で歪センサを使用す
る場合にも、CrNに加える元素の種類と添加量を適
当に選択することによって、所望の温度領域において抵
抗温度係数が小さい歪抵抗膜が得られ、これを用いた歪
センサを提供することが可能であることが判明した。
Further, even when the strain sensor is used at a temperature other than room temperature, the strain resistance having a small temperature coefficient of resistance in a desired temperature range can be obtained by appropriately selecting the type and amount of the element added to Cr - N. A film was obtained, and it was found that it was possible to provide a strain sensor using the film.

【0016】これらの知見のもとに、さらに幾多の実験
を行った結果、一般式Cr100−x−yで表
され、MはTi、V、Nb、Ta、Ni、Zr、Hf、
Si、Ge、C、O、P、Se、Te、Zn、Cu、B
i、Fe、Mo、W、As、Sn、Sb、Pb、B、G
a、In、Tl、Ru、Rh、Re、Os、Ir、P
t、Pd、Ag、Au、Co、Be、Mg、Ca、S
r、Ba、Mn、Alおよび希土類元素から選択される
1種または2種以上の元素であり、組成比x、yは原子
%で0.0001≦x≦30、0≦y≦30、0.00
01≦x+y≦50なる関係を有し、結晶構造が主とし
てbcc構造もしくは主としてbcc構造とA15型構
造との混合組織からなり、ゲージ率が2以上で、且つ電
気抵抗の温度係数が(4)×10−4/℃以内で
あるCrN基歪抵抗膜が得られ、高感度歪センサ用材
料として適していることを見い出したのである。
[0016] Based on these findings, further result of numerous experiments, is represented by the general formula Cr 100-x-y N x M y, M is Ti, V, Nb, Ta, Ni, Zr, Hf,
Si, Ge, C, O, P, Se, Te, Zn, Cu, B
i, Fe, Mo, W, As, Sn, Sb, Pb, B, G
a, In, Tl, Ru, Rh, Re, Os, Ir, P
t, Pd, Ag, Au, Co, Be, Mg, Ca, S
r, Ba, Mn, Al and one or more elements selected from rare earth elements, and the composition ratios x and y are 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, 0. 00
Has 01 ≦ x + y ≦ 50 the relationship, the crystal structure is mainly bcc structure or mainly mixed structure of bcc structure and the A15 type structure, a gauge index of at least 2, and the temperature coefficient of electrical resistance (- 4 ~ 4) It was found that a Cr N-based strain resistance film having a temperature within × 10 −4 / ° C. was obtained and was suitable as a material for a high-sensitivity strain sensor.

【0017】本発明を製造するには、上記組成の合金を
原料とした蒸着法、または上記組成の薄膜の形成が可能
な合金ターゲット、複合ターゲットまたは多元ターゲッ
トを用いたスパッタリング法、上記副成分元素ガスを含
む成膜雰囲気を用いた反応性スパッタリング法、もしく
は上記組成の薄膜の形成が可能な原料を用いた気相輸送
法等により、絶縁性基板上に、または導電性基板表面に
絶縁体膜を形成した上にマスク法などを用いて所望の形
状および厚さの薄膜を形成する。または適当な形状の薄
膜を形成した後、ドライエッチング(プラズマエッチン
グ、スパッタエッチング等)、化学エッチング(腐食
法)、リフトオフ法、レーザトリミング法などのエッチ
ングまたはトリミング加工などを施すことにより所望の
形状に加工し、素子となす。また必要ならば温度補償と
して、前記素子と直角に配置した素子を同一価内に構築
したゲージパターンを形成する。さらにこのままで使用
するか、または必要ならばこれに電極を構築し、さらに
必要ならばこれらの薄膜を大気中、非酸化性ガス中、還
元性ガス中または真空中の200℃以上1000℃以下
の温度で、適当な時間、好ましくは1秒間以上100時
間以下加熱後、適度な速度で、好ましくは1℃/時以上
100℃/分以下の速度で冷却することによって、抵抗
ひずみ感度(ゲージ率)が2以上で、且つ抵抗温度係数
が(4〜4)×10−4/℃以内の値を有する歪セン
サ用CrN基薄膜が得られる。
In order to manufacture the present invention, a vapor deposition method using an alloy having the above composition as a raw material, a sputtering method using an alloy target, a composite target or a multi-target capable of forming a thin film having the above composition, An insulator film is formed on an insulating substrate or a conductive substrate surface by a reactive sputtering method using a film formation atmosphere containing a gas, or a vapor phase transport method using a material capable of forming a thin film having the above composition. Then, a thin film having a desired shape and thickness is formed by using a mask method or the like. Alternatively, after forming a thin film of an appropriate shape, dry etching (plasma etching, sputter etching, etc.), chemical etching (corrosion method), lift-off method, etching such as laser trimming or trimming is performed to obtain a desired shape. Process to form an element. If necessary, as a temperature compensation, a gauge pattern in which elements arranged at right angles to the above elements are constructed within the same value is formed. Further, the electrode may be used as it is, or an electrode may be formed on the electrode if necessary, and if necessary, these thin films may be formed in the air, in a non-oxidizing gas, in a reducing gas or in a vacuum at a temperature of 200 ° C. After heating at a temperature for an appropriate time, preferably from 1 second to 100 hours, and then cooling at an appropriate rate, preferably from 1 ° C./hour to 100 ° C./minute, the resistance strain sensitivity (gauge rate) There at least two, and temperature coefficient of resistance (- 4~4) × 10 -4 / strain sensor Cr has a value of less ° C. - N group thin film is obtained.

【0018】第1発明 Se、Te、Zn、Cu、Bi、Fe、Mo、W、A
s、Sn、Sb、Pb、B、Ga、In、Tl、Ru、
Rh、Re、Os、Ir、Pt、Pd、Ag、Au、C
o、Be、Mg、Ca、Sr、Ba、Mn、Alおよび
希土類元素から選択される1種または2種以上の元素で
あり、組成比x、yは原子%で0.0001≦x≦3
0、0≦y≦30、0.0001≦x+y≦50なる関
係を有し、結晶構造が主としてbcc構造もしくは主と
してbcc構造とA15型構造との混合組織からなり、
ゲージ率が2以上で、且つ電気抵抗の温度係数が(
4)×10−410/℃以内であることを特徴とする
CrN基歪抵抗膜。
First Invention Se, Te, Zn, Cu, Bi, Fe, Mo, W, A
s, Sn, Sb, Pb, B, Ga, In, Tl, Ru,
Rh, Re, Os, Ir, Pt, Pd, Ag, Au, C
o, Be, Mg, Ca, Sr, Ba, Mn, Al and one or more elements selected from rare earth elements, and the composition ratio x, y is 0.0001 ≦ x ≦ 3 in atomic%.
0, 0 ≦ y ≦ 30, 0.0001 ≦ x + y ≦ 50, and the crystal structure is mainly a bcc structure or a mixed structure of mainly a bcc structure and an A15 type structure,
A gauge factor of 2 or more, and the temperature coefficient of electrical resistance (- 4
N Motoibitsu Resistive - Cr, characterized in that 1-4) is within × 10 -4 10 / ℃.

【0019】第2発明 窒素を含むガス雰囲気中で、蒸着法またはスパッタリン
グ法により、一般式Cr100−x−yで表さ
れ、MはTi、V、Nb、Ta、Ni、Zr、Hf、S
i、Ge、C、O、P、Se、Te、Zn、Cu、B
i、Fe、Mo、W、As、Sn、Sb、Pb、B、G
a、In、Tl、Ru、Rh、Re、Os、Ir、P
t、Pd、Ag、Au、Co、Be、Mg、Ca、S
r、Ba、Mn、Alおよび希土類から選択される1種
または2種以上の元素であり、組成比x、yは原子%で
0.0001≦x≦30、0≦y≦30、0.0001
≦x+y≦50なる関係を有し、結晶構造が主としてb
cc構造もしくは主としてbcc構造とAl5型構造と
の混合組織からなるCrN基歪抵抗膜を、絶縁性基板
上に成膜するか、または導電性基盤板上に絶縁体膜を形
成した上に成膜し、ついで該歪抵抗膜を200℃以上1
000℃以下の温度で熱処理することを特徴とするCr
N基歪抵抗膜の製造法。
[0019] in a gas atmosphere containing a second invention of nitrogen, by vapor deposition or sputtering, is represented by the general formula Cr 100-x-y N x M y, M is Ti, V, Nb, Ta, Ni, Zr , Hf, S
i, Ge, C, O, P, Se, Te, Zn, Cu, B
i, Fe, Mo, W, As, Sn, Sb, Pb, B, G
a, In, Tl, Ru, Rh, Re, Os, Ir, P
t, Pd, Ag, Au, Co, Be, Mg, Ca, S
r, Ba, Mn, Al and one or more elements selected from rare earth elements, and the composition ratio x, y is 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, 0.0001 in atomic%.
≦ x + y ≦ 50, and the crystal structure is mainly b
A Cr N-based strain resistive film having a cc structure or a mixed structure of mainly a bcc structure and an Al5 type structure is formed on an insulating substrate, or an insulating film is formed on a conductive base plate. Then, the strain resistance film is formed at a temperature of 200 ° C. or higher for 1
Cr heat-treated at a temperature of 000 ° C. or less
- preparation of N Motoibitsu resistive film.

【0020】第3発明 第1発明に記載のCrN基歪抵抗膜を用いたことを特
徴とする歪センサ。
Third invention A strain sensor using the Cr N based strain resistance film according to the first invention.

【0021】[0021]

【作用】CrN薄膜は窒素濃度によってTCRの値が
異なり、窒素濃度が小さい場合は、結晶構造はbcc構
造となりTCRは正の値を示し、大きい場合は、結晶構
造は主としてA15型構造となりTCRは負の値を示し
た。また、図3に示すように、これらの薄膜のTCRは
熱処理温度の増加に伴って増大し、熱処理温度に強く依
存することを見出した。したがって、適量の窒素を含む
雰囲気ガス中で成膜した負TCRを示す薄膜を、適当な
温度で熱処理することによって、TCRがゼロの特性を
示す優れたCrN歪抵抗膜が得られると考えられる。
このときの膜の結晶構造は、図4に示すように、A15
型構造から熱処理温度の上昇に伴ってbcc構造へと変
化していくが、この過程において、bcc構造とA15
型構造が共存する組織からbcc構造単独の組織に変化
する温度領域においてTCRはゼロ近傍の値をとる。
The TCR value of the Cr - N thin film differs depending on the nitrogen concentration. When the nitrogen concentration is low, the crystal structure becomes a bcc structure and the TCR shows a positive value. When the nitrogen concentration is high, the crystal structure becomes mainly an A15 type structure. TCR showed a negative value. Further, as shown in FIG. 3, it has been found that the TCR of these thin films increases with an increase in the heat treatment temperature and strongly depends on the heat treatment temperature. Therefore, it is considered that an excellent Cr - N strain resistance film having zero TCR characteristics can be obtained by heat-treating a thin film having a negative TCR formed in an atmosphere gas containing an appropriate amount of nitrogen at an appropriate temperature. Can be
The crystal structure of the film at this time is, as shown in FIG.
The structure changes from a mold structure to a bcc structure with an increase in heat treatment temperature. In this process, the bcc structure and A15
The TCR takes a value near zero in a temperature region where the structure in which the type structure coexists is changed to the structure of the bcc structure alone.

【0022】窒素濃度が約15%よりも大きい場合は、
Cr窒化物(CrNおよびCrN等)の微結晶もしく
はアモルファス状態のCrNが、bcc構造のCrも
しくはbcc構造とA15型構造が共存するCrの膜中
に生じ、結晶構造が判別しにくくなることがある。この
ような場合もTCRは負の値を示すが、熱処理によって
TCRの制御が可能であり、小さくすることができる。
しかし、これらCr窒化物の微結晶もしくはアモルファ
ス状態のCrNの占める割合が多くなるにつれてTC
Rは増大し、30%を超えるとほぼ膜全体がCr窒化物
になりTCRは4×10−4/℃を超えてしまうため好
ましくない。したがって、窒素濃度は30%以下に限定
した。
If the nitrogen concentration is greater than about 15%,
Cr nitride microcrystal or amorphous state of (Cr 2 N and CrN, etc.) CrN is generated in the film of Cr to Cr or bcc structure and A15 type structure of bcc structure coexist, crystal structure is hard to determine May be. In such a case as well, the TCR shows a negative value, but the TCR can be controlled by heat treatment and can be reduced.
However, as the proportion of Cr - N in the microcrystalline or amorphous state of these Cr nitrides increases, TC
R increases, and if it exceeds 30%, almost the entire film becomes Cr nitride and the TCR exceeds 4 × 10 −4 / ° C., which is not preferable. Therefore, the nitrogen concentration was limited to 30% or less.

【0023】図5の実線は、500℃で熱処理したCr
96歪抵抗膜の抵抗温度曲線を示す。約80℃か
ら+150℃の温度範囲で曲線の傾きが小さく、すなわ
ち温度変化が小さいので、この温度範囲で用いる歪セン
サとして非常に優れた特性を示している。実際、この曲
線の傾きから計算したTCRは±1×10−4/℃以内
と小さい値であった。ここで、使用したい温度範囲がも
う少し高温である場合、このTCRが小さい約80℃
から+150℃の温度範囲をその所望の温度範囲まで移
動させる必要がある。そのための手段として、適当な量
の副成分元素をCrNに加えることが有効と考えられ
る。図5の破線点線および一点鎖線は、Cr96
Mnをそれぞれ1%、2%および3%添加したCr
96−yMn(y=1、2および3)薄膜の抵抗
温度曲線を示す。図から、Mn量の増加と伴に、抵抗温
度曲線が高温側に移動していくことがわかる。このよう
に副成分元素の添加によって、抵抗温度曲線を温度軸に
沿って移動させることができ、抵抗温度曲線の変化の小
さい領域を使用温度範囲内に移動させることが可能とな
る。このとき抵抗温度曲線を低温側に移動させる働きを
もつ元素および高温側に移動させる働きをもつ元素を使
い分ける必要がある。
The solid line in FIG. 5 represents Cr heat-treated at 500 ° C.
4 shows a resistance temperature curve of a 96 N 4 strain resistance film. About - 80 in a temperature range of + 150 ℃ from ° C. the slope of the curve is small, that is, the temperature change is small, shows excellent properties as a strain sensor used in this temperature range. In fact, the TCR calculated from the slope of this curve was a small value within ± 1 × 10 −4 / ° C. Here, if the temperature range to be used is little hot, approximately the TCR is small - 80 ° C.
To + 150 ° C. to its desired temperature range. As a means for achieving this, it is considered effective to add an appropriate amount of subcomponent elements to Cr - N. The dashed dotted line and the dashed line in FIG. 5 indicate Cr 96 N 4 to which Mn was added at 1%, 2% and 3%, respectively.
96-y N 4 Mn y ( y = 1,2 and 3) showing the resistance-temperature curve of the thin film. From the figure, it can be seen that the resistance temperature curve shifts to the higher temperature side as the Mn content increases. As described above, by adding the subcomponent element, the resistance temperature curve can be moved along the temperature axis, and the region where the change in the resistance temperature curve is small can be moved to the operating temperature range. At this time, it is necessary to selectively use an element having a function of moving the resistance temperature curve to a low temperature side and an element having a function of moving the resistance temperature curve to a high temperature side.

【0024】図6〜13には、高周波スパッタリング装
置を用いてガラス基板上に成膜したCr100−x−y
試料について、各副成分元素Mの添加量yと、
0〜50℃における抵抗温度係数および室温(約20
℃)におけるゲージ率との関係を示す。これらの図から
わかるように、Ti、V、Nb、Ta、Ni、Zr、H
f、Si、Ge、C、O、P、Se、Te、Zn、C
u、Bi、Fe、Mo、W、As、Sn、Sb、Pb、
B、Ga、In、Tl、Ru、Rh、Re、Os、I
r、Pt、Pd、Ag、Au、Co、Be、Mg、C
a、Sr、Ba、Mn、Alおよび希土類元素のそれぞ
れ30%以下のうち1元素または2元素以上、および窒
素を加えた合計0.0001〜50%、好ましくは0.
1〜40%、さらに好ましくは1〜40%および残部C
rと限定した理由は、これらの範囲ではゲージ率が2以
上の高い値が得られ、且つ抵抗温度係数が(4〜4)
×10−4/℃以内の小さい値が得られるからであり、
これらの範囲外では、これらの効果が期待できないから
である。
FIGS. 6 to 13 show Cr 100-xy formed on a glass substrate using a high frequency sputtering apparatus.
For N x M y samples, the amount y of each sub-component element M,
Temperature coefficient of resistance at 0-50 ° C and room temperature (about 20
C)). As can be seen from these figures, Ti, V, Nb, Ta, Ni, Zr, H
f, Si, Ge, C, O, P, Se, Te, Zn, C
u, Bi, Fe, Mo, W, As, Sn, Sb, Pb,
B, Ga, In, Tl, Ru, Rh, Re, Os, I
r, Pt, Pd, Ag, Au, Co, Be, Mg, C
a, Sr, Ba, Mn, Al and one or more of the rare earth elements of 30% or less, respectively, and a total of 0.0001 to 50%, preferably 0.1 to 50%, including nitrogen.
1 to 40%, more preferably 1 to 40% and the balance C
reason for limiting the r is the gauge factor in these ranges is more than one higher value is obtained, and the temperature coefficient of resistance (- 4 to 4)
This is because a small value within × 10 −4 / ° C. is obtained,
Outside of these ranges, these effects cannot be expected.

【0025】上記副成分のうち、Hf、Zr、P、A
s、Sb、Mg、Ca、CoおよびPdは、限定の範囲
を超えても抵抗温度係数が(4〜4)×10−4/℃
以内を示すが、30%を越えると、ゲージ率が2よりも
小さくなってしまうので、ストレインゲージに適用する
ことができず、したがって、これらの元素に対して上記
限定をもうけた。
Of the above subcomponents, Hf, Zr, P, A
s, Sb, Mg, Ca, Co and Pd are also beyond the scope of limiting the resistance temperature coefficient (- 4~4) × 10 -4 /
However, if it exceeds 30%, the gauge factor becomes smaller than 2, so that it cannot be applied to a strain gauge, and therefore, the above-mentioned limitation is applied to these elements.

【0026】図2〜7から、ゲージ率は副成分の添加量
の増加に伴って減少することがわかるが、C、Si、G
e、AlおよびGaは、副成分の添加量の増加に対しゲ
ージ率の減少が小さく、また、Ni、NbおよびTi
は、それら副成分を少量添加するだけで極小点が室温付
近に移動するので、高いゲージ率を得ることができる。
これらの高いゲージ率を得ることができる元素を複数加
えた場合は高いゲージ率が得られ、また、本発明の副成
分のうちから2元素以上を加えた場合、すべて2より大
きなゲージ率の値が得られた。
From FIGS. 2 to 7, it can be seen that the gauge factor decreases with an increase in the added amount of the auxiliary component.
e, Al and Ga show a small decrease in the gauge factor with an increase in the addition amount of the subcomponent, and also show Ni, Nb and Ti
Since the minimum point moves to around room temperature only by adding a small amount of these subcomponents, a high gauge factor can be obtained.
A high gage factor is obtained when a plurality of elements capable of obtaining these high gage factors are added, and a gage factor value larger than 2 is obtained when two or more of the subcomponents of the present invention are added. was gotten.

【0027】なお、希土類元素はSc、Yおよびランタ
ン系元素(La、Ce、Pr、Nd、Pm、Sm、E
u、Gd、Tb、Dy、Ho、Er、Tm、Ybおよび
Lu)からなるが、その効果は均等であり、いずれも同
効成分である。
The rare earth elements are Sc, Y and lanthanum elements (La, Ce, Pr, Nd, Pm, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), but their effects are equal and all are the same active ingredients.

【0028】図14は、加熱温度と本発明合金(試料番
号:13)の抵抗温度係数、比抵抗およびゲージ率との
関係を示す。図に見られるように、本発明合金を200
℃以上1000℃以下の温度範囲において、1分間以上
100時間以下加熱し、ついで1℃/時以上1000℃
/分以下の速度で冷却することにより、所望のゲージ特
性が得られる。熱処理の条件において、200℃以上1
000℃以下の温度範囲において、好ましくは1分間以
上100時間以下加熱するように限定した理由は、この
処理条件内ではゲージ率が2以上で、且つ抵抗温度係数
が(4〜4)×10−4/℃以内になって好ましいか
らである。200℃以下では安定なTCRが得られず好
ましくない。また1000℃以上では、所望のTCRが
得られず好ましくない。
FIG. 14 shows the relationship between the heating temperature and the temperature coefficient of resistance, the specific resistance and the gauge factor of the alloy of the present invention (Sample No. 13). As can be seen, the alloy of the present invention was
In a temperature range of not less than 1000 ° C. and not more than 1 minute and not more than 100 hours, and then not less than 1 ° C./hour and not more than 1000 ° C.
By cooling at a rate of not more than / min, desired gauge characteristics can be obtained. 200 ° C or higher 1 under heat treatment conditions
In 000 ° C. below the temperature range, preferably reason for limiting to heat to 100 hours or more per minute, a gauge rate in this process condition 2 or more and the temperature coefficient of resistance (- 4~4) × 10 -4 / ° C. If the temperature is lower than 200 ° C., a stable TCR cannot be obtained, which is not preferable. If the temperature is higher than 1000 ° C., a desired TCR cannot be obtained, which is not preferable.

【0029】[0029]

【実施例】本発明の実施例について説明する。 実施例1 試料番号1(組成:Cr4%N)の合金薄
膜の製造と評価 直径105mmおよび厚さ3mmのCrの円盤(純度9
9.9%)を銅製電極にボンディングし、スパッタ用タ
ーゲットとする。成膜雰囲気としてスパッタリングガス
であるるAr(アルゴン)と伴に窒素ガスを微量流し、
このターゲットからマグネトロン方式高周波スパッタリ
ング装置を用いて、下記に示したスパッタリング条件で
厚さ約0.36μmのCrN薄膜を作製する(反応性
スパッタリング)。基板には成膜前にガラス製のマスク
をかぶせておき、成膜時にパターン化した薄膜を形成で
きるようにする。 予備排気 1×10−7Torr 高周波電力 100W アルゴン流量 20.0SCCM 窒素流量 0.9SCCM 雰囲気ガス圧 1×10−2Torr 基板 ガラス(CORNING♯0211) 基板温渡 非加熱 電極間距離 50mm 成膜速度 30Å/min 作製した薄膜にハンダを用いて直径0.05mmの被服
導線を溶接して電極となし、4端子法にて抵抗温度係数
およびゲージ率の測定を行った。その結果、表1に示し
たとおり、6×10−4/℃の負の抵抗温度係数と
7.1のゲージ率が得られた。次に得られた薄膜を、各
種雰囲気中200℃〜1000℃の各種温度で適当時間
加熱後室温まで炉中冷却(冷却速度:200℃/時間)
した。表1は、それらの熱処理条件と、測定したゲージ
率、比抵抗および抵抗温度係数(TCR)を示す。いず
れの雰囲気においてもゲージ率は改善され、大きな値を
示した。熱処理温度の上昇に伴って抵抗温度係数は大き
くなり、約560℃で熱処理した試料でTCRが0.0
4×10−4/℃、ゲージ率が7.4という非常に優れ
た特性が得られた。
An embodiment of the present invention will be described. Example 1 Production and Evaluation of Alloy Thin Film of Sample No. 1 (Composition: Cr - 4% N) A Cr disk having a diameter of 105 mm and a thickness of 3 mm (purity 9)
(9.9%) to a copper electrode to form a sputtering target. A small amount of nitrogen gas flows along with Ar (argon) as a sputtering gas as a film forming atmosphere,
From this target, a Cr N thin film having a thickness of about 0.36 μm is produced using a magnetron-type high-frequency sputtering apparatus under the following sputtering conditions (reactive sputtering). The substrate is covered with a glass mask before film formation so that a patterned thin film can be formed during film formation. Preliminary evacuation 1 × 10 −7 Torr High frequency power 100 W Argon flow rate 20.0 SCCM Nitrogen flow rate 0.9 SCCM Atmospheric gas pressure 1 × 10 −2 Torr Substrate glass (CORNING # 0211) Substrate warming Non-heating Distance between electrodes 50 mm Film forming speed 30 mm A coated wire having a diameter of 0.05 mm was welded to the prepared thin film using solder to form an electrode, and the temperature coefficient of resistance and the gauge factor were measured by a four-terminal method. As a result, as shown in Table 1, - 6 × 10 -4 / ℃ negative resistance-temperature coefficient and 7.1 gauge factor was obtained. Next, the obtained thin film is heated in various atmospheres at various temperatures of 200 ° C. to 1000 ° C. for an appropriate time and then cooled in a furnace to room temperature (cooling rate: 200 ° C./hour).
did. Table 1 shows the heat treatment conditions and the measured gauge factor, specific resistance, and temperature coefficient of resistance (TCR). In any atmosphere, the gauge factor was improved and showed a large value. The temperature coefficient of resistance increases as the temperature of the heat treatment increases.
Very excellent characteristics of 4 × 10 −4 / ° C. and a gauge factor of 7.4 were obtained.

【0030】[0030]

【表1】 [Table 1]

【0031】実施例2 試料番号14(組成:Cr
%N6.0%V)の合金薄膜の製造と評価 純度9
9.9%のCrおよびVをアークメルト法によって合金
化し、直径203mmおよび厚さ5mmの合金ターゲッ
トを作製する。その合金ターゲットを銅製電極にボンデ
ィングしてスパッタ用ターゲットとする。このターゲッ
トからイオンビームスパッタリング装置を用いて、下記
に示したスパッタリング条件で厚さ0.36μmの薄膜
を作製する。基板には成膜前にガラス製のマスクをかぶ
せておき、成膜時にゲージパターンを形成できるように
し、さらにNiおよびAuの積層電極を構築する。 予備排気 2×10−8Torr 加速電圧 700V イオン電流密度 2mA/cm 窒素ガス流量 0.5SCCM 窒素ガス圧 0.5mtorr 基板 表面にSiO絶縁膜を形成したステンレス 基板温度 500℃ イオン源−ターゲット間距離 120mm 基板−ターゲット間距離 120mm 成膜速度 90Å/min 作製した薄膜の電極にAu線を溶接し、4端子法にて抵
抗温度係数およびゲージ率の測定を行った結果、それぞ
れ4.5×10−4/℃および9.4の値が得られた。
次に得られた薄膜に、各種雰囲気中200℃〜1000
℃の各種温度で適当時間加熱後、室温まで炉中冷却(冷
却速度:500℃/時間)した。表2は、それらの熱処
理条件と、測定したゲージ率、比抵抗および抵抗温度係
数(TCR)を示す。いずれの雰囲気においてもゲージ
率は温度の上昇に伴って増大した。図14は、これら熱
処理を真空中2時間の条件で施した場合の熱処理温度と
抵抗温度係数、比抵抗およびゲージ率との関係を示す。
抵抗温度係数は負から正へと増大し、比抵抗は加熱温度
の上昇とともに小さくなっていくが、ゲージ率は単調な
増加傾向を示した。450℃の温度で熱処理した試料に
おいて0.03×10−4/℃という非常に小さいTC
Rおよび10.9の大きなゲージ率が得られた。高感度
で高安定なストレインゲージを製造する上で本発明の熱
処理は有効であることが判明した。
Example 2 Sample No. 14 (Composition: Cr - 4
% N - 6.0% V) Production and evaluation of alloy thin film Purity 9
9.9% of Cr and V are alloyed by an arc melt method to produce an alloy target having a diameter of 203 mm and a thickness of 5 mm. The alloy target is bonded to a copper electrode to form a sputtering target. From this target, a thin film having a thickness of 0.36 μm is produced using an ion beam sputtering apparatus under the sputtering conditions shown below. The substrate is covered with a glass mask before film formation so that a gauge pattern can be formed at the time of film formation, and a stacked electrode of Ni and Au is constructed. Preliminary evacuation 2 × 10 −8 Torr Acceleration voltage 700 V Ion current density 2 mA / cm 2 Nitrogen gas flow 0.5 SCCM Nitrogen gas pressure 0.5 mtorr Substrate Stainless steel with SiO 2 insulating film formed on the surface Substrate temperature 500 ° C. Between ion source and target Distance 120 mm Substrate-target distance 120 mm Deposition rate 90 ° / min An Au wire was welded to the electrode of the prepared thin film, and the resistance temperature coefficient and the gauge factor were measured by a four-terminal method. A value of −4 / ° C. and 9.4 was obtained.
Next, the obtained thin film is applied at 200 ° C. to 1000
After heating at various temperatures of ° C. for an appropriate time, it was cooled in a furnace to room temperature (cooling rate: 500 ° C./hour). Table 2 shows the heat treatment conditions and the measured gauge factor, specific resistance, and temperature coefficient of resistance (TCR). In any atmosphere, the gauge factor increased with the temperature. FIG. 14 shows the relationship between the heat treatment temperature, the temperature coefficient of resistance, the specific resistance, and the gauge factor when these heat treatments are performed in vacuum for 2 hours.
The temperature coefficient of resistance increased from negative to positive, and the resistivity decreased with increasing heating temperature, but the gauge factor showed a monotonic increasing trend. Very small TC of 0.03 × 10 −4 / ° C. in the sample heat-treated at a temperature of 450 ° C.
Large gauge factors of R and 10.9 were obtained. The heat treatment of the present invention was found to be effective in producing a highly sensitive and highly stable strain gauge.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例3 試料番号53(組成:Cr
%N1.2%Al1.6%Si)の合金薄膜の製造
と評価 純度99.99%のCr、純度99.9%のA
lおよび純度99.999%のSiを、97.0%C
r、1.3%Alおよび1.7%Siの配合で高周波溶
解炉により溶解して合金化し、そのうち約1gを蒸発源
原料とする。この原料を用いて、窒素気流中真空蒸着装
置内において下記の条件のもと真空蒸着によって厚さ
1.2μmの薄膜を作製する。基板には成膜前に金属製
のマスクをかぶせておき、成膜時にゲージパターンを形
成できるようにする。 真空度 6×10−7Torr 基板 ポリイミド(厚さ0.1mm) 基板温度 200℃ 窒素ガス流量 10SCCM 窒素ガス圧 10mtorr 基板−蒸発源間距離 180mm 成膜速度 130Å/min 作製した薄膜を真空蒸着装置から取り出し、基板を覆う
マスクを交換した後再び真空蒸着装置にて電極用のCu
膜を形成し、ハンダを用いて直径0.2mmの被服導線
を溶接して4端子法にて抵抗温度係数およびゲージ率の
測定を行った結果、それぞれ5.4×10−4/℃お
よび7.9の値が得られた。次に得られた薄膜に、各種
雰囲気中200℃〜1000℃の各種温度で適当時間加
熱後、室温まで炉中冷却(冷却速度:500℃/時間)
した。表3は、それらの熱処理条件と、測定したゲージ
率、比抵抗および抵抗温度係数(TCR)を示す。実施
例1と同様、いずれの雰囲気においてもゲージ率は改善
され、大きな値を示した。また、これも同様に熱処理温
度の上昇に伴って抵抗温度係数は増大し、450℃で熱
処理した試料において0.1×10−4/℃の非常に小
さなTCRおよび8.1の大きなゲージ率を示した。す
なわち、本発明合金を使用することによって高感度・高
安定性歪センサを提供できることが明らかになった。
Example 3 Sample No. 53 (Composition: Cr - 4
% N - 1.2% Al - 1.6% Si) Production and evaluation of alloy thin film Cr having a purity of 99.99% and A having a purity of 99.9%
l and 99.999% pure Si are converted to 97.0% C
r, a mixture of 1.3% Al and 1.7% Si is melted and alloyed in a high-frequency melting furnace, and about 1 g of the alloy is used as an evaporation source material. Using this raw material, a thin film having a thickness of 1.2 μm is produced by vacuum evaporation under the following conditions in a vacuum evaporation apparatus in a nitrogen stream. The substrate is covered with a metal mask before film formation so that a gauge pattern can be formed during film formation. Degree of vacuum 6 × 10 −7 Torr Substrate Polyimide (thickness 0.1 mm) Substrate temperature 200 ° C. Nitrogen gas flow rate 10 SCCM Nitrogen gas pressure 10 mtorr Substrate-evaporation source distance 180 mm Deposition rate 130 ° / min. After taking out and replacing the mask covering the substrate, Cu for the electrode is again
Film is formed, as a result of the measurement of the temperature coefficient of resistance and gage factor in the four-terminal method by welding clothing wire diameter 0.2mm using solder, respectively - 5.4 × 10 -4 / ℃ and A value of 7.9 was obtained. Next, the obtained thin film is heated in various atmospheres at various temperatures of 200 ° C. to 1000 ° C. for an appropriate time, and then cooled in a furnace to room temperature (cooling rate: 500 ° C./hour).
did. Table 3 shows the heat treatment conditions and the measured gauge factor, specific resistance, and temperature coefficient of resistance (TCR). As in Example 1, the gauge factor was improved in any of the atmospheres, and showed a large value. Also, similarly, the temperature coefficient of resistance increases with an increase in the heat treatment temperature, and a very small TCR of 0.1 × 10 −4 / ° C. and a large gauge factor of 8.1 in the sample heat-treated at 450 ° C. Indicated. That is, it became clear that a high-sensitivity and high-stability strain sensor can be provided by using the alloy of the present invention.

【0034】[0034]

【表3】 [Table 3]

【0035】本発明にかかる多数の成膜実験を鋭意行
い、種々の成膜方法を用いて種々の基板上にCr100
−x−y薄膜を作製した。表4および表5に、
それらの中から窒素を4%含む試料における、成膜した
ままの試料の場合、もしくは種々の条件で熱処理を施し
た試料の場合について、本発明の代表的な薄膜のゲージ
率(K)、比抵抗(ρ)および抵抗温度係数(TCR)
の測定結果を、副成分の組成および熱処理条件とともに
示す。
A large number of film formation experiments according to the present invention have been intensively performed, and Cr100 has been deposited on various substrates using various film formation methods.
The -x-y N x M y thin film was fabricated. In Tables 4 and 5,
Among the samples containing as much as 4% of nitrogen, the as-deposited samples or the samples subjected to the heat treatment under various conditions, the gauge factor (K) and the ratio of the representative thin film of the present invention. Resistance (ρ) and temperature coefficient of resistance (TCR)
Are shown together with the composition of the subcomponents and the heat treatment conditions.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【発明の効果】本発明のCrN基歪抵抗膜は、広い温
度範囲にわたって抵抗温度係数が小さく、且つ従来の材
料よりもゲージ率が格段に大きい。すなわち、本発明の
CrN基歪抵抗膜は、ゲージ率が2以上で、且つ抵抗
温度係数が(4〜4)×10−4/℃以内であるの
で、これを用いた歪センサは、高感度・高安定性を発揮
する効果がある。したがって、本発明の薄膜よりなるス
トレインゲージは、ロードセル、ストレインセンサ、重
量計、加速度計、各種応力・歪計および各種セキュリテ
ィ機器等に好適である。
The Cr - N-based strain resistive film of the present invention has a low temperature coefficient of resistance over a wide temperature range, and has a significantly higher gauge factor than conventional materials. That, Cr of the present invention - N Motoibitsu resistance film, a gauge index of at least 2, and temperature coefficient of resistance - because (4-4) is within × 10 -4 / ° C., the strain sensor using the same Has the effect of exhibiting high sensitivity and high stability. Therefore, the strain gauge made of the thin film of the present invention is suitable for a load cell, a strain sensor, a weigh scale, an accelerometer, various stress / strain gauges, various security devices, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、通常の蒸着装置やスパッタリング装置
を用いて作製したCr薄膜の電気抵抗の温度依存性を示
す特性図。
FIG. 1 is a characteristic diagram showing the temperature dependence of the electrical resistance of a Cr thin film manufactured using a normal vapor deposition apparatus or sputtering apparatus.

【図2】図2は、Cr100−x歪抵抗膜における
窒素濃度とTCRとの関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between a nitrogen concentration and a TCR in a Cr 100-x N x strain resistance film.

【図3】図3は、Cr96歪抵抗膜における熱処理
温度とTCRとの関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a heat treatment temperature and a TCR in a Cr 96 N 4 strain resistance film.

【図4】図4は、各熱処理温度におけるCr96
抵抗膜のX線回折パターンを示す。
FIG. 4 shows an X-ray diffraction pattern of a Cr 96 N 4 strain resistance film at each heat treatment temperature.

【図5】図5は、Cr96−yMn(y=0、
1、2、3)歪抵抗膜の抵抗温度曲線を示す特性図。
FIG. 5 shows Cr 96-y N 4 M n y (y = 0,
1, 2, 3) Characteristic diagrams showing resistance temperature curves of strain resistance films.

【図6】図6は、副成分として加えるBe、Mg、C
a、SrおよびBaの量に対する0〜50℃における抵
抗温度係数および室温(20℃)におけるゲージ率を示
す特性図。
FIG. 6 shows Be, Mg, and C added as subcomponents.
FIG. 4 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amounts of a, Sr, and Ba.

【図7】図7は、副成分として加えるFe、Co、Mn
およびAlの量に対する0〜50℃における抵抗温度係
数および室温(20℃)におけるゲージ率を示す特性
図。
FIG. 7 shows Fe, Co, and Mn added as subcomponents.
FIG. 3 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amount of Al and Al.

【図8】図8は、副成分として加えるTi、V、Zr、
Nb、HfおよびTaの量に対する0〜50℃における
抵抗温度係数および室温(20℃)におけるゲージ率を
示す特性図。
FIG. 8 shows Ti, V, Zr,
FIG. 4 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amounts of Nb, Hf, and Ta.

【図9】図9は、副成分として加えるTi、V、Zr、
Nb、Hf、Ta、Ni、Ge、Si、C、N、P、S
eおよびTeの量に対する0〜50℃における抵抗温度
係数および室温(20℃)におけるゲージ率を示す特性
図。
FIG. 9 shows Ti, V, Zr,
Nb, Hf, Ta, Ni, Ge, Si, C, N, P, S
FIG. 4 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amounts of e and Te.

【図10】図10は、副成分として加えるRu、Rh、
Re、Os、Ir、PtおよびPdの量に対する0〜5
0℃における抵抗温度係数および室温(20℃)におけ
るゲージ率を示す特性図。
FIG. 10 shows Ru, Rh,
0-5 relative to the amount of Re, Os, Ir, Pt and Pd
FIG. 4 is a characteristic diagram showing a temperature coefficient of resistance at 0 ° C. and a gauge factor at room temperature (20 ° C.).

【図11】図11は、副成分として加えるAg、Au、
Y、LaおよびCeの量に対する0〜50℃における抵
抗温度係数および室温(20℃)におけるゲージ率を示
す特性図。
FIG. 11 shows that Ag, Au,
FIG. 4 is a characteristic diagram showing the temperature coefficient of resistance at 0 to 50 ° C. and the gauge factor at room temperature (20 ° C.) with respect to the amounts of Y, La and Ce.

【図12】図12は、副成分として加えるPb、Sn、
As、Sb、Bi、WおよびMoの量に対する0〜50
℃における抵抗温度係数および室温(約20℃)におけ
るゲージ率を示す特性図。
FIG. 12 shows Pb, Sn, and Pb added as subcomponents.
0 to 50 relative to the amount of As, Sb, Bi, W and Mo
FIG. 3 is a characteristic diagram showing a temperature coefficient of resistance at ° C. and a gauge factor at room temperature (about 20 ° C.).

【図13】図13は、副成分として加えるB、Ga、I
n、Tl、CuおよびZnの量に対する0〜50℃にお
ける抵抗温度係数および室温(約20℃)におけるゲー
ジ率を示す特性図。
FIG. 13 shows B, Ga, and I added as subcomponents.
FIG. 4 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (about 20 ° C.) with respect to the amounts of n, Tl, Cu, and Zn.

【図14】試料番号14(組成:Cr4%N6%
V)の合金薄膜に真空中2時間の熱処理を施した場合の
熱処理温度と抵抗温度係数、比抵抗およびゲージ率との
関係を示す特性図。
FIG. 14: Sample No. 14 (composition: Cr - 4% N - 6%)
FIG. 4 is a characteristic diagram showing a relationship between a heat treatment temperature and a temperature coefficient of resistance, a specific resistance, and a gauge factor when a heat treatment is performed on the alloy thin film of V) in vacuum for 2 hours.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式Cr100−x−yで表さ
れ、MはTi、V、Nb、Ta、Ni、Zr、Hf、S
i、Ge、C、O、P、Se、Te、Zn、Cu、B
i、Fe、Mo、W、As、Sn、Sb、Pb、B、G
a、In、Tl、Ru、Rh、Re、Os、Ir、P
t、Pd、Ag、Au、Co、Be、Mg、Ca、S
r、Ba、Mn、Alおよび希土類元素から選択される
1種または2種以上の元素であり、組成比x、yは原子
%で0.0001≦x≦30、0≦y≦30、0.00
01≦x+y≦50なる関係を有し、結晶構造が主とし
てbcc構造または主としてbcc構造とA15型構造
との混合組織からなり、ゲージ率が2以上で、且つ電気
抵抗の温度係数が(4)×10−4/℃以内であ
ることを特徴とするCrN基歪抵抗膜。
1. A represented by the general formula Cr 100-x-y N x M y, M is Ti, V, Nb, Ta, Ni, Zr, Hf, S
i, Ge, C, O, P, Se, Te, Zn, Cu, B
i, Fe, Mo, W, As, Sn, Sb, Pb, B, G
a, In, Tl, Ru, Rh, Re, Os, Ir, P
t, Pd, Ag, Au, Co, Be, Mg, Ca, S
r, Ba, Mn, Al and one or more elements selected from rare earth elements, and the composition ratios x and y are 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, 0. 00
It has 01 ≦ x + y ≦ 50 the relationship, the crystal structure is mainly bcc structure or predominantly mixed structure of bcc structure and the A15 type structure, a gauge index of at least 2, and the temperature coefficient of electrical resistance (- 4 ~ 4) Cr, characterized in that within × 10 -4 / ℃ - N Motoibitsu resistive film.
【請求項2】窒素を含むガス雰囲気中で、蒸着法または
スパッタリング法により、一般式cr100−x−y
で表され、MはTi、V、Nb、Ta、Ni、Z
r、Hf、Si、Ge、C、O、P、Se、Te、Z
n、Cu、Bi、Fe、Mo、W、As、Sn、Sb、
Pb、B、Ga、In、Tl、Ru、Rh、Re、O
s、Ir、Pt、Pd、Ag、Au、Co、Be、M
g、Ca、Sr、Ba、Mn、Alおよび希土類元素か
ら選択される1種または2種以上の元素であり、組成比
x、yは原子%で0.0001≦x≦30、0≦y≦3
0、0.0001≦x+y≦50なる関係を有し、結晶
構造が主としてbcc構造または主としてbcc構造と
A15型構造との混合組織からなるCrN基歪抵抗膜
を、絶縁性基板上に成膜するか、または導電性基板上に
絶縁体膜を形成した上に成膜し、ついで該歪抵抗膜を2
00℃以上1000℃以下の温度で熱処理することを特
徴とするCrN基歪抵抗膜の製造法。
2. In a gas atmosphere containing nitrogen, a general formula cr 100-xy N is formed by a vapor deposition method or a sputtering method.
x M y , where M is Ti, V, Nb, Ta, Ni, Z
r, Hf, Si, Ge, C, O, P, Se, Te, Z
n, Cu, Bi, Fe, Mo, W, As, Sn, Sb,
Pb, B, Ga, In, Tl, Ru, Rh, Re, O
s, Ir, Pt, Pd, Ag, Au, Co, Be, M
g, Ca, Sr, Ba, Mn, Al and one or more elements selected from rare earth elements, and the composition ratio x, y is 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ in atomic%. 3
0, 0.0001 ≦ x + y ≦ 50, and a Cr N-based strain resistive film having a crystal structure mainly composed of a bcc structure or a mixed structure mainly composed of a bcc structure and an A15 type structure is formed on an insulating substrate. Or a film is formed on an insulating film formed on a conductive substrate.
A method for producing a Cr - N-based strain-resistant film, comprising heat-treating at a temperature of from 00C to 1000C.
【請求項3】請求項1に記載のCrN基歪抵抗膜を用
いたことを特徴とする歪センサ。
3. A strain sensor using the Cr N-based strain resistance film according to claim 1.
JP10803997A 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor Expired - Fee Related JP3642449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10803997A JP3642449B2 (en) 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10803997A JP3642449B2 (en) 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor

Publications (2)

Publication Number Publication Date
JPH10270201A true JPH10270201A (en) 1998-10-09
JP3642449B2 JP3642449B2 (en) 2005-04-27

Family

ID=14474406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10803997A Expired - Fee Related JP3642449B2 (en) 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor

Country Status (1)

Country Link
JP (1) JP3642449B2 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048607A (en) * 2000-08-02 2002-02-15 Res Inst Electric Magnetic Alloys Thin-film tactile sensor
JP2002141201A (en) * 2000-11-02 2002-05-17 Koa Corp Thin-film resistor and its manufacturing method
JP2003139504A (en) * 2001-10-30 2003-05-14 Japan Science & Technology Corp Displacement sensor, its manufacturing method, and positioning stage
JP2004071952A (en) * 2002-08-08 2004-03-04 K-Tech Devices Corp Method for manufacturing electric element and circuit board including electric element
JP2005069685A (en) * 2003-06-24 2005-03-17 Osaka Prefecture Pressure sensor integrated with pressure receiving pipe
JP2005265274A (en) * 2004-03-18 2005-09-29 Fujitsu Ltd Method to promote eating all food, refrigerator using the method, and electronic scale
JP2014035239A (en) * 2012-08-08 2014-02-24 Research Institute For Electromagnetic Materials Strain sensor
JP2014074661A (en) * 2012-10-04 2014-04-24 Research Institute For Electromagnetic Materials Strain gage
WO2014097891A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097883A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097949A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097910A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014196488A1 (en) 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196649A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196486A1 (en) 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196583A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2015012414A1 (en) 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
WO2015012413A1 (en) 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
WO2015029915A1 (en) 2013-08-30 2015-03-05 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
WO2015029914A1 (en) 2013-08-30 2015-03-05 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
CN104425089A (en) * 2013-08-30 2015-03-18 三菱综合材料株式会社 Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP2015073076A (en) * 2013-08-12 2015-04-16 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2015073075A (en) * 2013-08-12 2015-04-16 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2016143808A (en) * 2015-02-04 2016-08-08 三菱マテリアル株式会社 Metal nitride material for thermistor, method of producing the same and thermistor sensor
JP2017022176A (en) * 2015-07-07 2017-01-26 Koa株式会社 Thin film resistor and manufacturing method of the same
JP2017174974A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2017174973A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2017201235A (en) * 2016-05-02 2017-11-09 地方独立行政法人大阪府立産業技術総合研究所 Strain-resistive thin film and sensor using the strain-resistive thin film
JP2018091705A (en) * 2016-12-02 2018-06-14 公益財団法人電磁材料研究所 Strain resistance film and strain sensor for high temperature, and manufacturing method of them
JP2019066311A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019074452A (en) * 2017-10-18 2019-05-16 公益財団法人電磁材料研究所 Thin film strain sensor material and thin film strain sensor
JP2019132791A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
JP2019204874A (en) * 2018-05-23 2019-11-28 株式会社豊田中央研究所 Film resistor for strain gauge
JP2020034536A (en) * 2018-08-28 2020-03-05 ミネベアミツミ株式会社 Battery pack
WO2020085247A1 (en) * 2018-10-23 2020-04-30 ミネベアミツミ株式会社 Accelerator pedal, steering apparatus, 6-axis sensor, engine, bumper, and the like
CN111406195A (en) * 2017-09-29 2020-07-10 美蓓亚三美株式会社 Strain gauge
CN111417831A (en) * 2017-09-29 2020-07-14 美蓓亚三美株式会社 Strain gauge
CN111527370A (en) * 2017-10-31 2020-08-11 美蓓亚三美株式会社 Strain gauge
CN111542727A (en) * 2017-10-31 2020-08-14 美蓓亚三美株式会社 Strain gauge
CN111566435A (en) * 2017-10-27 2020-08-21 美蓓亚三美株式会社 Strain gauge and sensor module
CN111587357A (en) * 2017-11-15 2020-08-25 美蓓亚三美株式会社 Strain gauge
CN111587356A (en) * 2017-11-15 2020-08-25 美蓓亚三美株式会社 Strain gauge
JP2020129013A (en) * 2020-06-05 2020-08-27 ミネベアミツミ株式会社 Strain gauge
CN111630339A (en) * 2017-10-31 2020-09-04 美蓓亚三美株式会社 Strain gauge
CN111758012A (en) * 2017-12-28 2020-10-09 美蓓亚三美株式会社 Strain gauge and sensor module
CN111902690A (en) * 2018-01-22 2020-11-06 美蓓亚三美株式会社 Sensor module
EP3690389A4 (en) * 2017-09-29 2021-07-21 Minebea Mitsumi Inc. Strain gauge
CN113481484A (en) * 2021-07-01 2021-10-08 陛通半导体设备(苏州)有限公司 Preparation method of cobalt-germanium alloy film with temperature coefficient of resistance tending to zero
US11177059B2 (en) 2017-04-21 2021-11-16 Tdk Electronics Ag Film resistor and thin-film sensor
WO2022092207A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Laminated film, and method for manufacturing strain sensor
WO2022092202A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Multilayer film, method for producing second multilayer film, and method for producing strain sensor
WO2022092205A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Laminated film, manufacturing method therefor, and strain sensor
WO2022092204A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Laminated film and strain sensor
WO2022202106A1 (en) * 2021-03-26 2022-09-29 Tdk株式会社 Strain resistance film, pressure sensor, and layered body
WO2022209963A1 (en) * 2021-03-31 2022-10-06 Tdk株式会社 Strain-resistance film and pressure sensor
US11543309B2 (en) 2017-12-22 2023-01-03 Minebea Mitsumi Inc. Strain gauge and sensor module
US11676743B2 (en) 2017-06-19 2023-06-13 Tdk Electronics Ag Film resistor and thin-film sensor with a piezoresistive layer
US11692806B2 (en) 2017-09-29 2023-07-04 Minebea Mitsumi Inc. Strain gauge with improved stability
US11747225B2 (en) 2018-04-05 2023-09-05 Minebea Mitsumi Inc. Strain gauge with improved stability and stress reduction
US11796404B2 (en) 2018-03-29 2023-10-24 Minebea Mitsumi Inc. Strain gauge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159613B2 (en) * 2013-08-05 2017-07-05 公益財団法人電磁材料研究所 Strain sensor
JP6585679B2 (en) * 2017-10-18 2019-10-02 公益財団法人電磁材料研究所 Thin film alloy for strain sensors with excellent thermal stability and high strain gauge factor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442101A (en) * 1987-08-08 1989-02-14 Toyota Central Res & Dev Thin-film resistor for strain gauge
JPH06213612A (en) * 1993-01-14 1994-08-05 Sumitomo Electric Ind Ltd Distortion resistance material and manufacture thereof and thin film distortion sensor
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
JPH07306002A (en) * 1994-05-13 1995-11-21 Nok Corp Thin film for strain gage and its manufacture method
JPH1038727A (en) * 1996-07-24 1998-02-13 Matsushita Electric Works Ltd Film element and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442101A (en) * 1987-08-08 1989-02-14 Toyota Central Res & Dev Thin-film resistor for strain gauge
JPH06213612A (en) * 1993-01-14 1994-08-05 Sumitomo Electric Ind Ltd Distortion resistance material and manufacture thereof and thin film distortion sensor
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
JPH07306002A (en) * 1994-05-13 1995-11-21 Nok Corp Thin film for strain gage and its manufacture method
JPH1038727A (en) * 1996-07-24 1998-02-13 Matsushita Electric Works Ltd Film element and method for manufacturing the same

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048607A (en) * 2000-08-02 2002-02-15 Res Inst Electric Magnetic Alloys Thin-film tactile sensor
JP2002141201A (en) * 2000-11-02 2002-05-17 Koa Corp Thin-film resistor and its manufacturing method
JP2003139504A (en) * 2001-10-30 2003-05-14 Japan Science & Technology Corp Displacement sensor, its manufacturing method, and positioning stage
JP2004071952A (en) * 2002-08-08 2004-03-04 K-Tech Devices Corp Method for manufacturing electric element and circuit board including electric element
JP2005069685A (en) * 2003-06-24 2005-03-17 Osaka Prefecture Pressure sensor integrated with pressure receiving pipe
JP2005265274A (en) * 2004-03-18 2005-09-29 Fujitsu Ltd Method to promote eating all food, refrigerator using the method, and electronic scale
JP2014035239A (en) * 2012-08-08 2014-02-24 Research Institute For Electromagnetic Materials Strain sensor
JP2014074661A (en) * 2012-10-04 2014-04-24 Research Institute For Electromagnetic Materials Strain gage
WO2014097891A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097883A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097949A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014097910A1 (en) 2012-12-21 2014-06-26 三菱マテリアル株式会社 Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
WO2014196486A1 (en) 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
JP2015043409A (en) * 2013-06-05 2015-03-05 三菱マテリアル株式会社 Metal nitride material for thermistor and production method of the same, and film type thermistor sensor
US9754706B2 (en) 2013-06-05 2017-09-05 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
WO2014196583A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
JP2014236205A (en) * 2013-06-05 2014-12-15 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2014236204A (en) * 2013-06-05 2014-12-15 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
KR20160021103A (en) 2013-06-05 2016-02-24 미쓰비시 마테리알 가부시키가이샤 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
CN105144310A (en) * 2013-06-05 2015-12-09 三菱综合材料株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
CN105144309A (en) * 2013-06-05 2015-12-09 三菱综合材料株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196649A1 (en) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
WO2014196488A1 (en) 2013-06-05 2014-12-11 三菱マテリアル株式会社 Metal nitride material for thermistors, method for producing same, and film-type thermistor sensor
JP2015043410A (en) * 2013-06-05 2015-03-05 三菱マテリアル株式会社 Metal nitride material for thermistor and production method of the same, and film type thermistor sensor
US9842675B2 (en) 2013-06-05 2017-12-12 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
US10054497B2 (en) 2013-07-25 2018-08-21 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film-type thermistor sensor
WO2015012413A1 (en) 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
CN105210161A (en) * 2013-07-25 2015-12-30 三菱综合材料株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
WO2015012414A1 (en) 2013-07-25 2015-01-29 三菱マテリアル株式会社 Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
JP2015073076A (en) * 2013-08-12 2015-04-16 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2015073075A (en) * 2013-08-12 2015-04-16 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
WO2015029914A1 (en) 2013-08-30 2015-03-05 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
KR20160046788A (en) 2013-08-30 2016-04-29 미쓰비시 마테리알 가부시키가이샤 Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
CN104425089A (en) * 2013-08-30 2015-03-18 三菱综合材料株式会社 Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
WO2015029915A1 (en) 2013-08-30 2015-03-05 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
US10304597B2 (en) 2013-08-30 2019-05-28 Mitsubishi Materials Corporation Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP2016143808A (en) * 2015-02-04 2016-08-08 三菱マテリアル株式会社 Metal nitride material for thermistor, method of producing the same and thermistor sensor
JP2017022176A (en) * 2015-07-07 2017-01-26 Koa株式会社 Thin film resistor and manufacturing method of the same
JP2017174974A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2017174973A (en) * 2016-03-24 2017-09-28 三菱マテリアル株式会社 Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP2017201235A (en) * 2016-05-02 2017-11-09 地方独立行政法人大阪府立産業技術総合研究所 Strain-resistive thin film and sensor using the strain-resistive thin film
JP2018091705A (en) * 2016-12-02 2018-06-14 公益財団法人電磁材料研究所 Strain resistance film and strain sensor for high temperature, and manufacturing method of them
US11177059B2 (en) 2017-04-21 2021-11-16 Tdk Electronics Ag Film resistor and thin-film sensor
US11676743B2 (en) 2017-06-19 2023-06-13 Tdk Electronics Ag Film resistor and thin-film sensor with a piezoresistive layer
CN111417829A (en) * 2017-09-29 2020-07-14 美蓓亚三美株式会社 Strain gauge
JP2019066311A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
US11326966B2 (en) 2017-09-29 2022-05-10 Minebea Mitsumi Inc. Strain gauge with improved design to reduce pinholes and damage
US11702730B2 (en) 2017-09-29 2023-07-18 Minebea Mitsumi Inc. Strain gauge
CN111406195A (en) * 2017-09-29 2020-07-10 美蓓亚三美株式会社 Strain gauge
US11692806B2 (en) 2017-09-29 2023-07-04 Minebea Mitsumi Inc. Strain gauge with improved stability
CN111417831A (en) * 2017-09-29 2020-07-14 美蓓亚三美株式会社 Strain gauge
US11543308B2 (en) 2017-09-29 2023-01-03 Minebea Mitsumi Inc. Strain gauge
US11454488B2 (en) 2017-09-29 2022-09-27 Minebea Mitsumi Inc. Strain gauge with improved stability
US11542590B2 (en) 2017-09-29 2023-01-03 Minebea Mitsumi Inc. Strain gauge
EP3690389A4 (en) * 2017-09-29 2021-07-21 Minebea Mitsumi Inc. Strain gauge
JP2019074452A (en) * 2017-10-18 2019-05-16 公益財団法人電磁材料研究所 Thin film strain sensor material and thin film strain sensor
EP3702722A4 (en) * 2017-10-27 2021-07-21 Minebea Mitsumi Inc. Strain gauge and sensor module
US11499876B2 (en) 2017-10-27 2022-11-15 Minebea Mitsumi Inc. Strain gauge and sensor module
CN111566435A (en) * 2017-10-27 2020-08-21 美蓓亚三美株式会社 Strain gauge and sensor module
CN111630339A (en) * 2017-10-31 2020-09-04 美蓓亚三美株式会社 Strain gauge
CN111630339B (en) * 2017-10-31 2022-05-03 美蓓亚三美株式会社 Strain gauge
EP3705840A4 (en) * 2017-10-31 2021-07-28 Minebea Mitsumi Inc. Strain gauge
EP3705842A4 (en) * 2017-10-31 2021-07-28 Minebea Mitsumi Inc. Strain gauge
EP3705841A4 (en) * 2017-10-31 2021-07-28 Minebea Mitsumi Inc. Strain gauge
US11087905B2 (en) 2017-10-31 2021-08-10 Minebea Mitsumi Inc. Strain gauge
CN111542727A (en) * 2017-10-31 2020-08-14 美蓓亚三美株式会社 Strain gauge
CN111527370A (en) * 2017-10-31 2020-08-11 美蓓亚三美株式会社 Strain gauge
US11262257B2 (en) 2017-10-31 2022-03-01 Minebea Mitsumi Inc. Strain gauge including improved stability of temperature coefficient of resistance and gauge factor
US11788827B2 (en) 2017-10-31 2023-10-17 Minebea Mitsumi Inc. Strain gauge
CN111587356A (en) * 2017-11-15 2020-08-25 美蓓亚三美株式会社 Strain gauge
CN111587357A (en) * 2017-11-15 2020-08-25 美蓓亚三美株式会社 Strain gauge
US11543309B2 (en) 2017-12-22 2023-01-03 Minebea Mitsumi Inc. Strain gauge and sensor module
CN111758012A (en) * 2017-12-28 2020-10-09 美蓓亚三美株式会社 Strain gauge and sensor module
US11448560B2 (en) 2017-12-28 2022-09-20 Minebea Mitsumi Inc. Strain gauge and sensor module
CN111902690B (en) * 2018-01-22 2022-12-06 美蓓亚三美株式会社 Sensor module
CN111902690A (en) * 2018-01-22 2020-11-06 美蓓亚三美株式会社 Sensor module
US11454489B2 (en) 2018-01-22 2022-09-27 Minebea Mitsumi Inc. Sensor module with reduced size
JP2019132791A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
US11796404B2 (en) 2018-03-29 2023-10-24 Minebea Mitsumi Inc. Strain gauge
US11747225B2 (en) 2018-04-05 2023-09-05 Minebea Mitsumi Inc. Strain gauge with improved stability and stress reduction
JP2019204874A (en) * 2018-05-23 2019-11-28 株式会社豊田中央研究所 Film resistor for strain gauge
JP2020034536A (en) * 2018-08-28 2020-03-05 ミネベアミツミ株式会社 Battery pack
EP3855148A4 (en) * 2018-10-23 2022-10-26 Minebea Mitsumi Inc. Accelerator pedal, steering apparatus, 6-axis sensor, engine, bumper, and the like
JPWO2020085247A1 (en) * 2018-10-23 2021-09-16 ミネベアミツミ株式会社 Accelerator pedal, steering, door, door opening and closing system
US11774303B2 (en) 2018-10-23 2023-10-03 Minebea Mitsumi Inc. Accelerator, steering wheel, six-axis sensor, engine, bumper and the like
CN112955724A (en) * 2018-10-23 2021-06-11 美蓓亚三美株式会社 Accelerator pedal, steering system, 6-axis sensor, engine, bumper, and the like
WO2020085247A1 (en) * 2018-10-23 2020-04-30 ミネベアミツミ株式会社 Accelerator pedal, steering apparatus, 6-axis sensor, engine, bumper, and the like
JP2020129013A (en) * 2020-06-05 2020-08-27 ミネベアミツミ株式会社 Strain gauge
WO2022092204A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Laminated film and strain sensor
WO2022092207A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Laminated film, and method for manufacturing strain sensor
WO2022092205A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Laminated film, manufacturing method therefor, and strain sensor
WO2022092202A1 (en) * 2020-10-30 2022-05-05 日東電工株式会社 Multilayer film, method for producing second multilayer film, and method for producing strain sensor
WO2022202106A1 (en) * 2021-03-26 2022-09-29 Tdk株式会社 Strain resistance film, pressure sensor, and layered body
WO2022209963A1 (en) * 2021-03-31 2022-10-06 Tdk株式会社 Strain-resistance film and pressure sensor
CN113481484B (en) * 2021-07-01 2022-03-08 陛通半导体设备(苏州)有限公司 Preparation method of cobalt-germanium alloy film with temperature coefficient of resistance tending to zero
CN113481484A (en) * 2021-07-01 2021-10-08 陛通半导体设备(苏州)有限公司 Preparation method of cobalt-germanium alloy film with temperature coefficient of resistance tending to zero

Also Published As

Publication number Publication date
JP3642449B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3642449B2 (en) Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor
JP6159613B2 (en) Strain sensor
JP4436064B2 (en) Thermistor material and manufacturing method thereof
Jia et al. Reactively sputtered RuO2 thin film resistor with near zero temperature coefficient of resistance
JP6084393B2 (en) Strain sensor and strain measurement method
JP6308435B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015423B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015426B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP2015065417A (en) Metal nitride material for thermistor, method for manufacturing the same, and film-type thermistor sensor
JP6120250B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
CN105144309B (en) Thermistor metal nitride materials and its manufacture method and film-type thermistor (temperature) sensor
JP3933213B2 (en) Cr-based alloy thin film, method for producing the same, and strain gauge
WO2015012414A1 (en) Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
WO2014097949A1 (en) Metal-nitride thermistor material, manufacturing method therefor, and film-type thermistor sensor
JP6308365B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP2008010604A (en) Resistor thin film material, resistor thin film, sputtering target for forming the same, and thin-film resistor and its manufacturing method
JP6015425B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP2016136609A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JPH11195504A (en) Electrical resistance thin-film and manufacture thereof and sensor device
JP3852446B2 (en) Resistance thin film material and method of manufacturing resistance thin film using the same
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JP2721322B2 (en) Oxide superconducting compact
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JPH03126836A (en) Superconducting material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees