JP3642449B2 - Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor - Google Patents

Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor Download PDF

Info

Publication number
JP3642449B2
JP3642449B2 JP10803997A JP10803997A JP3642449B2 JP 3642449 B2 JP3642449 B2 JP 3642449B2 JP 10803997 A JP10803997 A JP 10803997A JP 10803997 A JP10803997 A JP 10803997A JP 3642449 B2 JP3642449 B2 JP 3642449B2
Authority
JP
Japan
Prior art keywords
resistance
strain
temperature
film
tcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10803997A
Other languages
Japanese (ja)
Other versions
JPH10270201A (en
Inventor
英二 丹羽
祥弘 佐々木
剛 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Original Assignee
THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS filed Critical THE FOUDATION: THE RESEARCH INSTITUTE FOR ELECTRIC AND MAGNETIC MATERIALS
Priority to JP10803997A priority Critical patent/JP3642449B2/en
Publication of JPH10270201A publication Critical patent/JPH10270201A/en
Application granted granted Critical
Publication of JP3642449B2 publication Critical patent/JP3642449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、Cr(クロム)およびN(窒素)を主成分とし、副成分としてTi(チタン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Ni(ニッケル)、Zr(ジルコニウム)、Hf(ハフニウム)、Si(ケイ素)、Ge(ゲルマニウム)、C(炭素)、O(酸素)、P(リン)、Se(セレン)、Te(テルル)、Zn(亜鉛)、Cu(銅)、Bi(ビスマス)、Fe(鉄)、Mo(モリブデン)、W(タングステン)、As(ヒ素)、Sn(スズ)、Sb(アンチモン)、Pb(鉛)、B(ホウ素)、Ga(ガリウム)、In(インジウム)、Tl(タリウム)、Ru(ルテニウム)、Rh(ロジウム)、Re(レニウム)、Os(オスミウム)、Ir(イリジウム)、pt(白金)、Pd(パラジウム)、Ag(銀)、Au(金)、Co(コバルト)、Be(ベリリウム)、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Mn(マンガン)、Al(アルミニウム)および希土類元素のうち1元素または2元素以上の合計0.0001〜50%とからなるCrN基歪(ひずみ)抵抗膜およびその製造法ならびにこの抵抗膜を使用した歪センサ(ストレインゲージとも呼ばれる)に関するもので、その目的とするところはゲージ率(抵抗歪感度)が2以上で、且つ抵抗温度係数が(4〜4)×10−4/℃以内である歪抵抗膜を提供するにある。また、前記歪抵抗膜よりなる歪センサを提供するにある。
【0002】
【従来の技術】
歪センサは、一般に弾性否によって細線または箔形状のセンサ材の電気抵抗が変化する現象を利用するものであるが、逆に抵抗変化を測定することにより、歪や応力の計測ならびに変換に用いられる。例えば、生産工業における歪計、重量計、加速度計、トルク計、流量計および各種力学量−電気量変換器、土木工業における土圧計、建築業・エネルギー関連業における圧力計、流量計および撓み量計、航空・宇宙・鉄道・船舶関連業における加速度計、トルク計、流量計および各種応力・歪計等に広く利用されており、さらに民生用としての商用秤およびセキュリティ機器等にも多く利用されている。
【0003】
歪センサは、その構造が金属細線(10〜30μm)または金属箔(3〜5μm)をグリッド状あるいはロゼット状に配置してなり、またその使用法としては前記センサ材を被測定物に接着剤で貼り付けし、被測定物に生じた歪をセンサの抵抗変化から間接的に測定するものである。歪センサの感度は、ゲージ率Kによって決まり、Kの値は一般に次の式で与えられる。
【0004】
【数1】

Figure 0003642449
【0005】
ここで、R、σ、ρおよびlはそれぞれセンサ材である細線または箔の全抵抗、ポアソン比、比電気抵抗および全長である。一般に、金属・合金におけるσはほぼ0.3であるから、前記の式における右辺第1項と第2項の合計は約1.6でほぼ一定の値となる。したがってゲージ率を大きくするためには、前記の式における第3項が大きいことが必須条件である。すなわち、材料に引っ張り変形を与えたとき材料の長さ方向の電子構造が大幅に変化し、比電気抵抗の変化量Δρ/ρが増加することによる。
【0006】
ゲージ率が大きな材料には半導体の炭素、ケイ素およびゲルマニウム等が知られている。しかしこれら半導体の場合、ゲージ率は10〜170と非常に大きいが、その値の異方性および温度による変動が大きく安定性にも欠け、さらに機械的強度が劣る等の欠点を有することから、特殊な小型圧力変換機器に応用されるにとどまっている。歪センサ用材料として現在最も多く使用されている材料は、CuNi合金である。この合金は抵抗温度係数がきわめて小さいため、温度変化に対する特性の変動が小さいという特徴を有しているが、その反面、ゲージ率は2と小さく、さらに高感度な歪センサ用材料としては適していない。
【0007】
合金バルク(塊状)材料を用いた歪センサは、上で述べたように細線もしくは箔の形で使用される。しかし、細線形状の歪センサは、グリッド形成時の残留歪の影響および加工した細線材と基板を密着させるために用いる接着剤の影響等により特性にばらつきが大きく、しかもグリッドの形成や細線材と基板の接着といった特殊技術が必要なため、生産効率が悪くコスト高の原因となっている。また、箔形状の歪センサは、加工時の歪の影響はないが、接着剤の影響については細線材と同様であり、これも問題となっている。
【0008】
【発明が解決しようとする課題】
歪センサの応用領域は、近年のマイクロコンピューターの進歩に伴ってますます拡大し、小型化および高性能化に向かっている。「従来の技術」の中で述べた用途のいずれにも当てはまるが、特に、高感度で安定性を必要とする圧力変換器やロードセルの他、ロボットの接触センサや滑りセンサ等に使用可能な歪センサの要求が高まってきた。これらの各種センサに使用する歪センサに関して、高感度で良好な安定性を有する素材の開発ならびに製造工程の改良が緊急に求められている。
【0009】
本発明が解決しようとする課題は、既に市販されている歪センサのゲージ率2を上回り、且つ実用上(4〜4)×10−4/℃以内が望ましいとされている抵抗温度係数の小さい薄膜材料とその製造法を開発するにある。本発明においては、高感度で良好な安定性を有する素材として構造上安定な金属材料に対象を絞り、その中からゲージ率の高い素材としてCrに着目した。
【0010】
Crのバルク(塊状)の抵抗ひずみ感度は26〜28と非常に大きいことが知られている。しかし、Crは加工が非常に困難であることから、これまで細線および箔形状の歪センサに用いることはできなかった。そこで加工を必要としない薄膜化によって、Crを歪センサに応用することが考えられる。Cr薄膜のゲージ率はバルクほどではないが約15と大きい。また材料を直接基板につけてしまうので、合金バルク材料を用いた歪センサの場合に生じる接着剤の影響の問題も解消される。一方、歪センサは歪以外の物理量に対して敏感であってはならず、特に温度に対する電気抵抗の変化量は小さくなくてはならない。しかし通常の蒸着装置やスパッタリング装置を用いて作製したCr薄膜の抵抗の温度依存性は、図1に示すとおり、通常使用される室温近傍において温度に対する抵抗(ここでは0℃のときの抵抗値で規格化した抵抗値R/R0℃縦軸に用いている)の変化が大きく、そのTCRは負の大きな値(6×10−4/℃)を示し、このままでは安定性の点で歪センサに適していない。
【0011】
そこで本発明は、Cr薄膜の高いゲージ率をできるだけ保持しながら、抵抗温度係数の絶対値を小さくすることによって、高感度で高安定な歪センサ用薄膜を得ることを目的としてなされたものである。
【0012】
【発明が解決するための手段】
Cr薄膜作製についての幾多の実験の結果、約30×10−4/℃のバルクCrのTCRが薄膜化によって約6×10−4/℃になる原因として、薄膜作製直前における成膜室内の真空度が関係することが明らかになった。すなわち、通常の蒸着装置やスパッタリング装置の成膜室内背景真空度はおよそ107オーダーであるが、その真空度において非常に僅かに存在する空気の量の変化によってTCRが正から負に変化するのである。空気の主成分は窒素であることから、それを意図的にCr薄膜中に添加した結果、TCRが負の値をとることが可能となり、窒素濃度によってTCRの値が異なることを見出した。図2は、窒素濃度とTCRとの関係を示す。窒素を20%以下添加した膜の結晶構造を調べた結果、それらはCrのbcc構造もしくはA15型構造(参考文献)もしくはそれら両者の混合組織からなっていた。窒素濃度が小さい場合は、結晶構造はbcc構造となりTCRは正の値を示し、一方大きい場合は、結晶構造はA15型構造となりTCRは負の値を示した。
【0013】
また、図3に示すCr96歪抵抗膜の場合のように、これらの薄膜のTCRは熱処理温度の増加に伴って増大し、熱処理温度で決まることを見出した。すなわち、成膜時に負のTCRを示す薄膜を適当な温度で熱処理することによってTCR約0×10−4/℃の特性を示す薄膜が得られるのである。このとき膜の結晶構造は、図4に示すCr96歪抵抗膜の場合のように、A15型構造から熱処理温度の増加に伴ってbcc構造へと変化していくが、この過程において、bcc構造とA15型構造が共存する組織からbcc構造単独の組織に変化する熱処理温度領域において、TCRはゼロ近傍の値が得られる。これらの製造法によって、一般式Cr100−xで表され、組成比xは原子%で0.0001≦x≦30なる関係を有し、結晶構造力住としてbcc構造もしくは主としてbcc構造とA15型構造との混合組織からなり、ゲージ率が2以上で、且つ電気抵抗の温度係数が(4)×10−4/℃以内であることを特徴とするCrN基歪抵抗膜が得られ、高感度歪センサ用材料として適していることを見い出したのである。
【0014】
CrN歪抵抗材料を用いることによって、約0×10−4/℃のTCRを得ることが可能となったが、そのTCRが約0×10−4/℃を示す温度領域が使用温度範囲と一致するとは限らない。そこで、それらを一致させるために、副成分の添加が有効と考えた。バルクのCrのネール点の温度(ネール温度)は特定の元素を添加することによって、低温側または高温側に移動することが知られている。したがって、抵抗値の温度依存性を示す抵抗温度曲線は、ネール点と緊密な関連があるものと考えられ、CrNに副成分として種々の元素を添加し、その添加量と抵抗温度曲線の移動幅との関係について調べる実験を鋭意行った。その結果、適当な量の副成分元素をCrNに添加することによって、抵抗温度曲線を温度軸に沿って移動させることが可能となり、これによって抵抗温度曲線の変化量の小さい部分を使用温度範囲内に移動させ得ることが明らかとなった。
【0015】
また、室温以外の温度で歪センサを使用する場合にも、CrNに加える元素の種類と添加量を適当に選択することによって、所望の温度領域において抵抗温度係数が小さい歪抵抗膜が得られ、これを用いた歪センサを提供することが可能であることが判明した。
【0016】
これらの知見のもとに、さらに幾多の実験を行った結果、一般式Cr100−x−yで表され、MはTi、V、Nb、Ta、Ni、Zr、Hf、Si、Ge、C、O、P、Se、Te、Zn、Cu、Bi、Fe、Mo、W、As、Sn、Sb、Pb、B、Ga、In、Tl、Ru、Rh、Re、Os、Ir、Pt、Pd、Ag、Au、Co、Be、Mg、Ca、Sr、Ba、Mn、Alおよび希土類元素から選択される1種または2種以上の元素であり、組成比x、yは原子%で0.0001≦x≦30、0≦y≦30、0.0001≦x+y≦50なる関係を有し、熱処理によってA15型構造をbcc構造へ変化させて、結晶構造がbcc構造もしくはbcc構造とA15型構造との混合組織からなるCr−N基歪抵抗膜が得られ、ゲージ率が2以上で、且つ電気抵抗の温度係数が(−4〜4)×10−4/℃以内高感度歪センサ用材料として適していることを見い出したのである。
【0017】
本発明を製造するには、上記組成の合金を原料とした蒸着法、または上記組成の薄膜の形成が可能な合金ターゲット、複合ターゲットまたは多元ターゲットを用いたスパッタリング法、上記副成分元素ガスを含む成膜雰囲気を用いた反応性スパッタリング法、もしくは上記組成の薄膜の形成が可能な原料を用いた気相輸送法等により、絶縁性基板上に、または導電性基板表面に絶縁体膜を形成した上にマスク法などを用いて所望の形状および厚さの薄膜を形成する。または適当な形状の薄膜を形成した後、ドライエッチング(プラズマエッチング、スパッタエッチング等)、化学エッチング(腐食法)、リフトオフ法、レーザトリミング法などのエッチングまたはトリミング加工などを施すことにより所望の形状に加工し、素子となす。また必要ならば温度補償として、前記素子と直角に配置した素子を同一価内に構築したゲージパターンを形成する。さらにこのままで使用するか、または必要ならばこれに電極を構築し、さらに必要ならばこれらの薄膜を大気中、非酸化性ガス中、還元性ガス中または真空中の200℃以上1000℃以下の温度で、適当な時間、好ましくは1秒間以上100時間以下加熱後、適度な速度で、好ましくは1℃/時以上100℃/分以下の速度で冷却することによって、抵抗ひずみ感度(ゲージ率)が2以上で、且つ抵抗温度係数が(4〜4)×10−4/℃以内の値を有する歪センサ用CrN基薄膜が得られる。
【0018】
第1発明
一般式Cr100−x−yで表され、MはTi、V、Nb、Ta、Ni、Zr、Hf、Si、Ge、C、O、P、Se、Te、Zn、Cu、Bi、Fe、Mo、W、As、Sn、Sb、Pb、B、Ga、In、Tl、Ru、Rh、Re、Os、Ir、Pt、Pd、Ag、Au、Co、Be、Mg、Ca、Sr、Ba、Mn、Alおよび希土類元素から選択される1種または2種以上の元素であり、組成比x、yは原子%で0.0001≦x≦30、0≦y≦30、0.0001≦x+y≦50なる関係を有し、熱処理によるA15型構造のbcc構造への変化により、bcc構造またはbcc構造とA15型構造との混合組織からなるものとしたことを特徴とするCr−N基歪抵抗膜。
【0019】
第2発明
窒素を含むガス雰囲気中で、蒸着法またはスパッタリング法により、一般式Cr100−x−yで表され、MはTi、V、Nb、Ta、Ni、Zr、Hf、Si、Ge、C、O、P、Se、Te、Zn、Cu、Bi、Fe、Mo、W、As、Sn、Sb、Pb、B、Ga、In、Tl、Ru、Rh、Re、Os、Ir、Pt、Pd、Ag、Au、Co、Be、Mg、Ca、Sr、Ba、Mn、Alおよび希土類元素から選択される1種または2種以上の元素であり、組成比x、yは原子%で0.0001≦x≦30、0≦y≦30、0.0001≦x+y≦50なる関係を有し、A15型構造を含むCr−N基膜を、絶縁性基板上または導電性基板上に絶縁体膜を形成した上に成膜し、ついで該Cr−N基膜を200℃以上1000℃以下の温度で熱処理してA15型構造をbcc構造へ変化させ、前記Cr−N基膜をbcc構造またはbcc構造とA15型構造との混合組織からなるものとすることを特徴とするCr−N基歪抵抗膜の製造法。
【0020】
第3発明
第1発明に記載のCrN基歪抵抗膜を用いたことを特徴とする歪センサ。
【0021】
【作用】
CrN薄膜は窒素濃度によってTCRの値が異なり、窒素濃度が小さい場合は、結晶構造はbcc構造となりTCRは正の値を示し、大きい場合は、結晶構造は主としてA15型構造となりTCRは負の値を示した。また、図3に示すように、これらの薄膜のTCRは熱処理温度の増加に伴って増大し、熱処理温度に強く依存することを見出した。したがって、適量の窒素を含む雰囲気ガス中で成膜した負TCRを示す薄膜を、適当な温度で熱処理することによって、TCRがゼロの特性を示す優れたCrN歪抵抗膜が得られると考えられる。このときの膜の結晶構造は、図4に示すように、A15型構造から熱処理温度の上昇に伴ってbcc構造へと変化していくが、この過程において、bcc構造とA15型構造が共存する組織からbcc構造単独の組織に変化する温度領域においてTCRはゼロ近傍の値をとる。
【0022】
窒素濃度が約15%よりも大きい場合は、Cr窒化物(CrNおよびCrN等)の微結晶もしくはアモルファス状態のCrNが、bcc構造のCrもしくはbcc構造とA15型構造が共存するCrの膜中に生じ、結晶構造が判別しにくくなることがある。このような場合もTCRは負の値を示すが、熱処理によってTCRの制御が可能であり、小さくすることができる。しかし、これらCr窒化物の微結晶もしくはアモルファス状態のCrNの占める割合が多くなるにつれてTCRは増大し、30%を超えるとほぼ膜全体がCr窒化物になりTCRは4×10−4/℃を超えてしまうため好ましくない。したがって、窒素濃度は30%以下に限定した。
【0023】
図5の実線は、500℃で熱処理したCr96歪抵抗膜の抵抗温度曲線を示す。約80℃から+150℃の温度範囲で曲線の傾きが小さく、すなわち温度変化が小さいので、この温度範囲で用いる歪センサとして非常に優れた特性を示している。実際、この曲線の傾きから計算したTCRは±1×10−4/℃以内と小さい値であった。ここで、使用したい温度範囲がもう少し高温である場合、このTCRが小さい約80℃から+150℃の温度範囲をその所望の温度範囲まで移動させる必要がある。そのための手段として、適当な量の副成分元素をCrNに加えることが有効と考えられる。図5の破線点線および一点鎖線は、Cr96にMnをそれぞれ1%、2%および3%添加したCr96−yMn(y=1、2および3)薄膜の抵抗温度曲線を示す。図から、Mn量の増加と伴に、抵抗温度曲線が高温側に移動していくことがわかる。このように副成分元素の添加によって、抵抗温度曲線を温度軸に沿って移動させることができ、抵抗温度曲線の変化の小さい領域を使用温度範囲内に移動させることが可能となる。このとき抵抗温度曲線を低温側に移動させる働きをもつ元素および高温側に移動させる働きをもつ元素を使い分ける必要がある。
【0024】
図6〜13には、高周波スパッタリング装置を用いてガラス基板上に成膜したCr100−x−y試料について、各副成分元素Mの添加量yと、0〜50℃における抵抗温度係数および室温(約20℃)におけるゲージ率との関係を示す。これらの図からわかるように、Ti、V、Nb、Ta、Ni、Zr、Hf、Si、Ge、C、O、P、Se、Te、Zn、Cu、Bi、Fe、Mo、W、As、Sn、Sb、Pb、B、Ga、In、Tl、Ru、Rh、Re、Os、Ir、Pt、Pd、Ag、Au、Co、Be、Mg、Ca、Sr、Ba、Mn、Alおよび希土類元素のそれぞれ30%以下のうち1元素または2元素以上、および窒素を加えた合計0.0001〜50%、好ましくは0.1〜40%、さらに好ましくは1〜40%および残部Crと限定した理由は、これらの範囲ではゲージ率が2以上の高い値が得られ、且つ抵抗温度係数が(4〜4)×10−4/℃以内の小さい値が得られるからであり、これらの範囲外では、これらの効果が期待できないからである。
【0025】
上記副成分のうち、Hf、Zr、P、As、Sb、Mg、Ca、CoおよびPdは、限定の範囲を超えても抵抗温度係数が(4〜4)×10−4/℃以内を示すが、30%を越えると、ゲージ率が2よりも小さくなってしまうので、ストレインゲージに適用することができず、したがって、これらの元素に対して上記限定をもうけた。
【0026】
図2〜7から、ゲージ率は副成分の添加量の増加に伴って減少することがわかるが、C、Si、Ge、AlおよびGaは、副成分の添加量の増加に対しゲージ率の減少が小さく、また、Ni、NbおよびTiは、それら副成分を少量添加するだけで極小点が室温付近に移動するので、高いゲージ率を得ることができる。これらの高いゲージ率を得ることができる元素を複数加えた場合は高いゲージ率が得られ、また、本発明の副成分のうちから2元素以上を加えた場合、すべて2より大きなゲージ率の値が得られた。
【0027】
なお、希土類元素はSc、Yおよびランタン系元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLu)からなるが、その効果は均等であり、いずれも同効成分である。
【0028】
図14は、加熱温度と本発明合金(試料番号:13)の抵抗温度係数、比抵抗およびゲージ率との関係を示す。図に見られるように、本発明合金を200℃以上1000℃以下の温度範囲において、1分間以上100時間以下加熱し、ついで1℃/時以上1000℃/分以下の速度で冷却することにより、所望のゲージ特性が得られる。熱処理の条件において、200℃以上1000℃以下の温度範囲において、好ましくは1分間以上100時間以下加熱するように限定した理由は、この処理条件内ではゲージ率が2以上で、且つ抵抗温度係数が(4〜4)×10−4/℃以内になって好ましいからである。200℃以下では安定なTCRが得られず好ましくない。また1000℃以上では、所望のTCRが得られず好ましくない。
【0029】
【実施例】
本発明の実施例について説明する。
実施例1 試料番号1(組成:Cr4%N)の合金薄膜の製造と評価
直径105mmおよび厚さ3mmのCrの円盤(純度99.9%)を銅製電極にボンディングし、スパッタ用ターゲットとする。成膜雰囲気としてスパッタリングガスであるるAr(アルゴン)と伴に窒素ガスを微量流し、このターゲットからマグネトロン方式高周波スパッタリング装置を用いて、下記に示したスパッタリング条件で厚さ約0.36μmのCrN薄膜を作製する(反応性スパッタリング)。基板には成膜前にガラス製のマスクをかぶせておき、成膜時にパターン化した薄膜を形成できるようにする。
予備排気 1×10−7Torr
高周波電力 100W
アルゴン流量 20.0SCCM
窒素流量 0.9SCCM
雰囲気ガス圧 1×10−2Torr
基板 ガラス(CORNING♯0211)
基板温渡 非加熱
電極間距離 50mm
成膜速度 30Å/min
作製した薄膜にハンダを用いて直径0.05mmの被服導線を溶接して電極となし、4端子法にて抵抗温度係数およびゲージ率の測定を行った。その結果、表1に示したとおり、6×10−4/℃の負の抵抗温度係数と7.1のゲージ率が得られた。
次に得られた薄膜を、各種雰囲気中200℃〜1000℃の各種温度で適当時間加熱後室温まで炉中冷却(冷却速度:200℃/時間)した。表1は、それらの熱処理条件と、測定したゲージ率、比抵抗および抵抗温度係数(TCR)を示す。いずれの雰囲気においてもゲージ率は改善され、大きな値を示した。熱処理温度の上昇に伴って抵抗温度係数は大きくなり、約560℃で熱処理した試料でTCRが0.04×10−4/℃、ゲージ率が7.4という非常に優れた特性が得られた。
【0030】
【表1】
Figure 0003642449
【0031】
実施例2 試料番号14(組成:Cr4%N6.0%V)の合金薄膜の製造と評価 純度99.9%のCrおよびVをアークメルト法によって合金化し、直径203mmおよび厚さ5mmの合金ターゲットを作製する。その合金ターゲットを銅製電極にボンディングしてスパッタ用ターゲットとする。このターゲットからイオンビームスパッタリング装置を用いて、下記に示したスパッタリング条件で厚さ0.36μmの薄膜を作製する。基板には成膜前にガラス製のマスクをかぶせておき、成膜時にゲージパターンを形成できるようにし、さらにNiおよびAuの積層電極を構築する。
予備排気 2×10−8Torr
加速電圧 700V
イオン電流密度 2mA/cm
窒素ガス流量 0.5SCCM
窒素ガス圧 0.5mtorr
基板 表面にSiO絶縁膜を形成したステンレス
基板温度 500℃
イオン源−ターゲット間距離 120mm
基板−ターゲット間距離 120mm
成膜速度 90Å/min
作製した薄膜の電極にAu線を溶接し、4端子法にて抵抗温度係数およびゲージ率の測定を行った結果、それぞれ4.5×10−4/℃および9.4の値が得られた。
次に得られた薄膜に、各種雰囲気中200℃〜1000℃の各種温度で適当時間加熱後、室温まで炉中冷却(冷却速度:500℃/時間)した。表2は、それらの熱処理条件と、測定したゲージ率、比抵抗および抵抗温度係数(TCR)を示す。いずれの雰囲気においてもゲージ率は温度の上昇に伴って増大した。図14は、これら熱処理を真空中2時間の条件で施した場合の熱処理温度と抵抗温度係数、比抵抗およびゲージ率との関係を示す。抵抗温度係数は負から正へと増大し、比抵抗は加熱温度の上昇とともに小さくなっていくが、ゲージ率は単調な増加傾向を示した。450℃の温度で熱処理した試料において0.03×10−4/℃という非常に小さいTCRおよび10.9の大きなゲージ率が得られた。高感度で高安定なストレインゲージを製造する上で本発明の熱処理は有効であることが判明した。
【0032】
【表2】
Figure 0003642449
【0033】
実施例3 試料番号53(組成:Cr4%N1.2%Al1.6%Si)の合金薄膜の製造と評価 純度99.99%のCr、純度99.9%のAlおよび純度99.999%のSiを、97.0%Cr、1.3%Alおよび1.7%Siの配合で高周波溶解炉により溶解して合金化し、そのうち約1gを蒸発源原料とする。この原料を用いて、窒素気流中真空蒸着装置内において下記の条件のもと真空蒸着によって厚さ1.2μmの薄膜を作製する。基板には成膜前に金属製のマスクをかぶせておき、成膜時にゲージパターンを形成できるようにする。
真空度 6×10−7Torr
基板 ポリイミド(厚さ0.1mm)
基板温度 200℃
窒素ガス流量 10SCCM
窒素ガス圧 10mtorr
基板−蒸発源間距離 180mm
成膜速度 130Å/min
作製した薄膜を真空蒸着装置から取り出し、基板を覆うマスクを交換した後再び真空蒸着装置にて電極用のCu膜を形成し、ハンダを用いて直径0.2mmの被服導線を溶接して4端子法にて抵抗温度係数およびゲージ率の測定を行った結果、それぞれ5.4×10−4/℃および7.9の値が得られた。
次に得られた薄膜に、各種雰囲気中200℃〜1000℃の各種温度で適当時間加熱後、室温まで炉中冷却(冷却速度:500℃/時間)した。表3は、それらの熱処理条件と、測定したゲージ率、比抵抗および抵抗温度係数(TCR)を示す。実施例1と同様、いずれの雰囲気においてもゲージ率は改善され、大きな値を示した。また、これも同様に熱処理温度の上昇に伴って抵抗温度係数は増大し、450℃で熱処理した試料において0.1×10−4/℃の非常に小さなTCRおよび8.1の大きなゲージ率を示した。すなわち、本発明合金を使用することによって高感度・高安定性歪センサを提供できることが明らかになった。
【0034】
【表3】
Figure 0003642449
【0035】
本発明にかかる多数の成膜実験を鋭意行い、種々の成膜方法を用いて種々の基板上にCr100−x−y薄膜を作製した。表4および表5に、それらの中から窒素を4%含む試料における、成膜したままの試料の場合、もしくは種々の条件で熱処理を施した試料の場合について、本発明の代表的な薄膜のゲージ率(K)、比抵抗(ρ)および抵抗温度係数(TCR)の測定結果を、副成分の組成および熱処理条件とともに示す。
【0036】
【表4】
Figure 0003642449
【0037】
【表5】
Figure 0003642449
【0038】
【発明の効果】
本発明のCrN基歪抵抗膜は、広い温度範囲にわたって抵抗温度係数が小さく、且つ従来の材料よりもゲージ率が格段に大きい。すなわち、本発明のCrN基歪抵抗膜は、ゲージ率が2以上で、且つ抵抗温度係数が(4〜4)×10−4/℃以内であるので、これを用いた歪センサは、高感度・高安定性を発揮する効果がある。したがって、本発明の薄膜よりなるストレインゲージは、ロードセル、ストレインセンサ、重量計、加速度計、各種応力・歪計および各種セキュリティ機器等に好適である。
【図面の簡単な説明】
【図1】図1は、通常の蒸着装置やスパッタリング装置を用いて作製したCr薄膜の電気抵抗の温度依存性を示す特性図。
【図2】図2は、Cr100−x歪抵抗膜における窒素濃度とTCRとの関係を示す特性図。
【図3】図3は、Cr96歪抵抗膜における熱処理温度とTCRとの関係を示す特性図。
【図4】図4は、各熱処理温度におけるCr96歪抵抗膜のX線回折パターンを示す。
【図5】図5は、Cr96−yMn(y=0、1、2、3)歪抵抗膜の抵抗温度曲線を示す特性図。
【図6】図6は、副成分として加えるBe、Mg、Ca、SrおよびBaの量に対する0〜50℃における抵抗温度係数および室温(20℃)におけるゲージ率を示す特性図。
【図7】図7は、副成分として加えるFe、Co、MnおよびAlの量に対する0〜50℃における抵抗温度係数および室温(20℃)におけるゲージ率を示す特性図。
【図8】図8は、副成分として加えるTi、V、Zr、Nb、HfおよびTaの量に対する0〜50℃における抵抗温度係数および室温(20℃)におけるゲージ率を示す特性図。
【図9】図9は、副成分として加えるTi、V、Zr、Nb、Hf、Ta、Ni、Ge、Si、C、N、P、SeおよびTeの量に対する0〜50℃における抵抗温度係数および室温(20℃)におけるゲージ率を示す特性図。
【図10】図10は、副成分として加えるRu、Rh、Re、Os、Ir、PtおよびPdの量に対する0〜50℃における抵抗温度係数および室温(20℃)におけるゲージ率を示す特性図。
【図11】図11は、副成分として加えるAg、Au、Y、LaおよびCeの量に対する0〜50℃における抵抗温度係数および室温(20℃)におけるゲージ率を示す特性図。
【図12】図12は、副成分として加えるPb、Sn、As、Sb、Bi、WおよびMoの量に対する0〜50℃における抵抗温度係数および室温(約20℃)におけるゲージ率を示す特性図。
【図13】図13は、副成分として加えるB、Ga、In、Tl、CuおよびZnの量に対する0〜50℃における抵抗温度係数および室温(約20℃)におけるゲージ率を示す特性図。
【図14】試料番号14(組成:Cr4%N6%V)の合金薄膜に真空中2時間の熱処理を施した場合の熱処理温度と抵抗温度係数、比抵抗およびゲージ率との関係を示す特性図。[0001]
[Industrial application fields]
The present invention has Cr (chromium) and N (nitrogen) as main components, and Ti (titanium), V (vanadium), Nb (niobium), Ta (tantalum), Ni (nickel), and Zr (zirconium) as subcomponents. , Hf (hafnium), Si (silicon), Ge (germanium), C (carbon), O (oxygen), P (phosphorus), Se (selenium), Te (tellurium), Zn (zinc), Cu (copper) Bi (bismuth), Fe (iron), Mo (molybdenum), W (tungsten), As (arsenic), Sn (tin), Sb (antimony), Pb (lead), B (boron), Ga (gallium) , In (indium), Tl (thallium), Ru (ruthenium), Rh (rhodium), Re (rhenium), Os (osmium), Ir (iridium), pt (platinum), Pd (palladium), Ag (silver) Au (gold), Co (cobalt), Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), Mn (manganese), Al (aluminum) and rare earth elements 1 Cr consisting of 0.0001 to 50% in total of elements or two or more elementsThe present invention relates to an N-based strain (strain) resistance film, a method for manufacturing the same, and a strain sensor (also referred to as a strain gauge) using the resistance film, the purpose of which is a gauge factor (resistance strain sensitivity) of 2 or more, and Resistance temperature coefficient is (4-4) × 10-4The object of the present invention is to provide a strain resistance film that is within / ° C. Another object of the present invention is to provide a strain sensor comprising the strain resistance film.
[0002]
[Prior art]
Strain sensors generally use a phenomenon in which the electrical resistance of a thin wire or foil-shaped sensor material changes depending on elasticity, but conversely, it is used to measure and convert strain and stress by measuring resistance changes. . For example, strain gauges, weight meters, accelerometers, torque meters, flow meters and various mechanical quantity-electric quantity converters in the manufacturing industry, earth pressure gauges in the civil engineering industry, pressure gauges, flow meters and deflection amounts in the construction and energy related industries It is widely used in accelerometers, torque meters, flow meters, and various stress / strain gauges in aerospace, aerospace, railway, and ship related industries, and is also widely used in commercial scales and security equipment for consumer use. ing.
[0003]
The strain sensor has a structure in which fine metal wires (10 to 30 μm) or metal foils (3 to 5 μm) are arranged in a grid shape or a rosette shape, and the sensor material is used as an adhesive to the object to be measured. The distortion produced in the object to be measured is indirectly measured from the resistance change of the sensor. The sensitivity of the strain sensor is determined by the gauge factor K, and the value of K is generally given by the following equation.
[0004]
[Expression 1]
Figure 0003642449
[0005]
Here, R, σ, ρ, and l are the total resistance, Poisson's ratio, specific electrical resistance, and overall length of the thin wire or foil that is the sensor material, respectively. In general, since σ in a metal / alloy is approximately 0.3, the sum of the first term and the second term on the right side in the above formula is approximately 1.6, which is a substantially constant value. Therefore, in order to increase the gauge factor, it is an essential condition that the third term in the above equation is large. That is, when tensile deformation is applied to the material, the electronic structure in the length direction of the material changes significantly, and the amount of change Δρ / ρ in specific electrical resistance increases.
[0006]
Semiconductors such as carbon, silicon, and germanium are known as materials having a large gauge factor. However, in the case of these semiconductors, the gauge factor is very large as 10 to 170, but the variation of the value due to anisotropy and temperature is large and also lacks stability, and further, it has disadvantages such as inferior mechanical strength. It is only applied to special small pressure transducers. The most commonly used material for strain sensors is CuNi alloy. This alloy has the characteristic that the temperature coefficient of resistance is extremely small and the characteristic variation with respect to the temperature change is small, but on the other hand, the gauge factor is as small as 2 and it is suitable as a highly sensitive strain sensor material. Absent.
[0007]
A strain sensor using an alloy bulk material is used in the form of a fine wire or a foil as described above. However, the strain sensor of the thin wire shape has a large variation in characteristics due to the influence of residual strain at the time of grid formation and the effect of the adhesive used to adhere the processed thin wire material to the substrate, etc. Since special technology such as bonding of substrates is required, production efficiency is poor and this causes high costs. In addition, the foil-shaped strain sensor is not affected by distortion during processing, but the effect of the adhesive is the same as that of the thin wire material, which is also a problem.
[0008]
[Problems to be solved by the invention]
The application area of strain sensors has been expanded with the recent progress of microcomputers, and is becoming smaller and higher performance. It applies to any of the applications described in “Prior Art”, but in particular, it can be used for pressure transducers and load cells that require high sensitivity and stability, as well as robot contact sensors and slip sensors. The demand for sensors has increased. Regarding strain sensors used for these various sensors, development of materials having high sensitivity and good stability and improvement of manufacturing processes are urgently required.
[0009]
The problem to be solved by the present invention exceeds the gauge factor 2 of strain sensors already on the market and is practically used (4-4) × 10-4The purpose is to develop a thin film material having a small temperature coefficient of resistance, which is desirable within / ° C, and a method for producing the same. In the present invention, the focus is on a structurally stable metal material as a material having high sensitivity and good stability, and attention is focused on Cr as a material having a high gauge factor.
[0010]
It is known that the resistance strain sensitivity of Cr bulk (bulk) is as large as 26 to 28. However, since Cr is very difficult to process, it has not been possible to use it for strain sensors in the form of fine wires and foils. Therefore, it is conceivable to apply Cr to a strain sensor by reducing the film thickness that does not require processing. Although the gauge factor of the Cr thin film is not as large as the bulk, it is as large as about 15. In addition, since the material is directly applied to the substrate, the problem of the influence of the adhesive that occurs in the case of a strain sensor using an alloy bulk material is also eliminated. On the other hand, the strain sensor must not be sensitive to physical quantities other than strain, and in particular, the amount of change in electrical resistance with respect to temperature must be small. However, as shown in FIG. 1, the temperature dependence of the resistance of the Cr thin film produced using a normal vapor deposition apparatus or sputtering apparatus is the resistance to temperature (here, the resistance value at 0 ° C.) near the normal room temperature. Standardized resistance value R / R0 ℃The change in the vertical axis is large, and the TCR has a large negative value (6x10-4/ ° C.), and it is not suitable for a strain sensor in terms of stability.
[0011]
Therefore, the present invention has been made for the purpose of obtaining a highly sensitive and highly stable thin film for a strain sensor by reducing the absolute value of the temperature coefficient of resistance while keeping the high gauge factor of the Cr thin film as much as possible. .
[0012]
[Means for Solving the Invention]
As a result of a number of experiments on the preparation of Cr thin films, about 30 × 10-4/ CRC bulk Cr TCR is reduced by thinning6x10-4It has been clarified that the cause of / ° C is related to the degree of vacuum in the film formation chamber immediately before the thin film production. That is, the background vacuum in the film forming chamber of a normal vapor deposition apparatus or sputtering apparatus is about 10Although the order is seven, the TCR changes from positive to negative by a very small change in the amount of air present at that degree of vacuum. Since the main component of air is nitrogen, it was found that as a result of intentionally adding it to the Cr thin film, the TCR can take a negative value, and the TCR value varies depending on the nitrogen concentration. FIG. 2 shows the relationship between nitrogen concentration and TCR. As a result of examining the crystal structure of the film to which 20% or less of nitrogen was added, they consisted of a bcc structure of Cr, an A15 type structure (reference), or a mixed structure of both. When the nitrogen concentration was low, the crystal structure was a bcc structure and the TCR showed a positive value, whereas when the nitrogen concentration was high, the crystal structure was an A15 type structure and the TCR showed a negative value.
[0013]
In addition, Cr shown in FIG.96N4As in the case of the strain resistance film, it was found that the TCR of these thin films increases with the heat treatment temperature and is determined by the heat treatment temperature. That is, a thin film showing a negative TCR at the time of film formation is heat-treated at an appropriate temperature to obtain a TCR of about 0 × 10.-4A thin film having a characteristic of / ° C. can be obtained. At this time, the crystal structure of the film is Cr as shown in FIG.96N4As in the case of the strain resistance film, the structure changes from the A15 type structure to the bcc structure as the heat treatment temperature increases. In this process, the structure where the bcc structure and the A15 type structure coexist is changed to the structure of the bcc structure alone. In the heat treatment temperature region that changes to TCR, the value of TCR near zero is obtained. By these manufacturing methods, the general formula Cr100-xNxThe composition ratio x has a relationship of 0.0001 ≦ x ≦ 30 in atomic%, and is composed of a bcc structure or a mixed structure of a bcc structure and an A15 type structure as crystal structure force, and has a gauge factor of 2 With the above, the temperature coefficient of electrical resistance is (4~4)×10-4Cr, characterized by being within / ° CIt has been found that an N-based strain resistance film is obtained and is suitable as a material for a highly sensitive strain sensor.
[0014]
CrBy using N strain resistance material, about 0 × 10-4/ ° C TCR can be obtained, but the TCR is about 0x10-4The temperature range indicating / ° C does not always coincide with the operating temperature range. Therefore, in order to make them coincide, it was considered that the addition of subcomponents was effective. It is known that the temperature at the Neel point of bulk Cr (the Neel temperature) moves to a low temperature side or a high temperature side by adding a specific element. Therefore, the resistance temperature curve indicating the temperature dependence of the resistance value is considered to be closely related to the Neel point.Various elements were added to N as subcomponents, and experiments were conducted to investigate the relationship between the amount added and the movement width of the resistance temperature curve. As a result, an appropriate amount of sub-component elements is changed to Cr.By adding to N, it becomes clear that the resistance temperature curve can be moved along the temperature axis, and thereby a portion with a small amount of change in the resistance temperature curve can be moved within the operating temperature range.
[0015]
Also, when using strain sensors at temperatures other than room temperature, CrIt is possible to obtain a strain resistance film having a small resistance temperature coefficient in a desired temperature region by appropriately selecting the type and addition amount of the element added to N, and to provide a strain sensor using this. found.
[0016]
  Based on these findings, many more experiments were conducted, and as a result, the general formula Cr100-xyNxMyM is Ti, V, Nb, Ta, Ni, Zr, Hf, Si, Ge, C, O, P, Se, Te, Zn, Cu, Bi, Fe, Mo, W, As, Sn, Select from Sb, Pb, B, Ga, In, Tl, Ru, Rh, Re, Os, Ir, Pt, Pd, Ag, Au, Co, Be, Mg, Ca, Sr, Ba, Mn, Al and rare earth elements 1 or 2 or more elements, and the composition ratios x and y have a relationship of 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, 0.0001 ≦ x + y ≦ 50 in atomic%,By changing the A15 type structure to bcc structure by heat treatment,The crystal structure is a bcc structure or a mixed structure of a bcc structure and an A15 type structure.Cr-N-based strain resistance film is obtained,The gauge factor is 2 or more and the temperature coefficient of electrical resistance is (−4 to 4) × 10-4Within ℃ofIt has been found that it is suitable as a material for high-sensitivity strain sensors.
[0017]
In order to produce the present invention, a vapor deposition method using an alloy having the above composition as a raw material, or an alloy target capable of forming a thin film having the above composition, a sputtering method using a composite target or a multi-target, and the above sub-element gas are included. An insulating film was formed on the insulating substrate or on the surface of the conductive substrate by a reactive sputtering method using a film formation atmosphere or a vapor transport method using a raw material capable of forming a thin film having the above composition. A thin film having a desired shape and thickness is formed thereon using a mask method or the like. Alternatively, after forming a thin film of an appropriate shape, it is etched or trimmed by dry etching (plasma etching, sputter etching, etc.), chemical etching (corrosion method), lift-off method, laser trimming method, etc., to a desired shape. Processed to make an element. If necessary, a gauge pattern in which elements arranged at right angles to the elements are constructed within the same valence is formed as temperature compensation. Further, it is used as it is, or an electrode is built on it if necessary, and if necessary, these thin films can be used in the atmosphere, in a non-oxidizing gas, in a reducing gas or in a vacuum at 200 ° C. Resistive strain sensitivity (gauge factor) by heating at an appropriate time, preferably 1 second to 100 hours, and then cooling at an appropriate rate, preferably 1 ° C / hour to 100 ° C / minute Is 2 or more and the temperature coefficient of resistance is (4-4) × 10-4/ Cr for strain sensor having a value within ℃An N-based thin film is obtained.
[0018]
1st invention
  General formula Cr100-xyNxMyM is Ti, V, Nb, Ta, Ni, Zr, Hf, Si, Ge, C, O, P, Se, Te, Zn, Cu, Bi, Fe, Mo, W, As, Sn, Select from Sb, Pb, B, Ga, In, Tl, Ru, Rh, Re, Os, Ir, Pt, Pd, Ag, Au, Co, Be, Mg, Ca, Sr, Ba, Mn, Al and rare earth elements 1 or 2 or more elements, and the composition ratios x and y have a relationship of 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, 0.0001 ≦ x + y ≦ 50 in atomic%,By changing the A15 type structure to bcc structure by heat treatment,bcc structureOrConsisting of mixed structure of bcc structure and A15 type structureAssumedA Cr—N-based strain resistance film characterized by the above.
[0019]
Second invention
  In a gas atmosphere containing nitrogen, the general formula Cr is obtained by vapor deposition or sputtering.100-xyNxMyM is Ti, V, Nb, Ta, Ni, Zr, Hf, Si, Ge, C, O, P, Se, Te, Zn, Cu, Bi, Fe, Mo, W, As, Sn, Select from Sb, Pb, B, Ga, In, Tl, Ru, Rh, Re, Os, Ir, Pt, Pd, Ag, Au, Co, Be, Mg, Ca, Sr, Ba, Mn, Al and rare earth elements 1 or 2 or more elements, and the composition ratios x and y have a relationship of 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, 0.0001 ≦ x + y ≦ 50 in atomic%,Includes A15 type structureA Cr—N base film is formed on an insulating substrate or a conductive substrate on which an insulator film is formed.Cr-N groupHeat treatment of the film at a temperature of 200 ° C to 1000 ° CThen, the A15 type structure is changed to the bcc structure, and the Cr—N base film is made of a bcc structure or a mixed structure of the bcc structure and the A15 type structure.A method for producing a Cr—N-based strain resistance film, characterized in that:
[0020]
Third invention
Cr according to the first inventionA strain sensor using an N-based strain resistance film.
[0021]
[Action]
CrThe N thin film has a different TCR value depending on the nitrogen concentration. When the nitrogen concentration is low, the crystal structure is a bcc structure and the TCR shows a positive value. When it is large, the crystal structure is mainly an A15 type structure and the TCR has a negative value. showed that. Further, as shown in FIG. 3, it has been found that the TCR of these thin films increases with an increase in the heat treatment temperature and strongly depends on the heat treatment temperature. Therefore, a thin film showing a negative TCR formed in an atmospheric gas containing an appropriate amount of nitrogen is heat-treated at an appropriate temperature, thereby providing an excellent Cr having a TCR zero characteristic.It is considered that an N strain resistance film can be obtained. As shown in FIG. 4, the crystal structure of the film at this time changes from the A15 type structure to the bcc structure as the heat treatment temperature rises. In this process, the bcc structure and the A15 type structure coexist. The TCR takes a value near zero in the temperature region where the tissue changes to the tissue of the bcc structure alone.
[0022]
If the nitrogen concentration is greater than about 15%, Cr nitride (Cr2N, CrN, etc.) microcrystalline or amorphous CrN may occur in a Cr film having a bcc structure or a Cr film in which a bcc structure and an A15 type structure coexist, and the crystal structure may be difficult to distinguish. Even in such a case, the TCR shows a negative value, but the TCR can be controlled by heat treatment and can be reduced. However, these Cr nitride microcrystals or amorphous CrAs the proportion of N increases, the TCR increases, and when it exceeds 30%, almost the entire film becomes Cr nitride, and the TCR is 4 × 10.-4Since it exceeds / ° C., it is not preferable. Therefore, the nitrogen concentration is limited to 30% or less.
[0023]
The solid line in FIG. 5 shows Cr heat-treated at 500 ° C.96N4The resistance temperature curve of a strain resistance film is shown. aboutSince the slope of the curve is small in the temperature range from 80 ° C. to + 150 ° C., that is, the temperature change is small, it shows very excellent characteristics as a strain sensor used in this temperature range. Actually, the TCR calculated from the slope of this curve is ± 1 × 10-4It was a small value within / ° C. Here, if the temperature range you want to use is a little higher, this TCR is small.It is necessary to move the temperature range from 80 ° C. to + 150 ° C. to the desired temperature range. As a means for that purpose, an appropriate amount of sub-component elements is added to Cr.It is considered effective to add to N. The dashed dotted line and the alternate long and short dash line in FIG.96N4Cr containing 1%, 2% and 3% Mn96-yN4Mny(Y = 1, 2, and 3) The resistance temperature curve of a thin film is shown. From the figure, it can be seen that the resistance temperature curve moves to the high temperature side as the amount of Mn increases. Thus, by adding the subcomponent element, the resistance temperature curve can be moved along the temperature axis, and the region where the change of the resistance temperature curve is small can be moved within the operating temperature range. At this time, it is necessary to selectively use an element that moves the resistance temperature curve to the low temperature side and an element that moves the resistance temperature curve to the high temperature side.
[0024]
6 to 13 show Cr films formed on a glass substrate using a high-frequency sputtering apparatus.100-xyNxMyAbout the sample, the relationship between the addition amount y of each subcomponent element M, the resistance temperature coefficient at 0 to 50 ° C., and the gauge factor at room temperature (about 20 ° C.) is shown. As can be seen from these figures, Ti, V, Nb, Ta, Ni, Zr, Hf, Si, Ge, C, O, P, Se, Te, Zn, Cu, Bi, Fe, Mo, W, As, Sn, Sb, Pb, B, Ga, In, Tl, Ru, Rh, Re, Os, Ir, Pt, Pd, Ag, Au, Co, Be, Mg, Ca, Sr, Ba, Mn, Al and rare earth elements The reason why the total of 0.0001 to 50%, preferably 0.1 to 40%, more preferably 1 to 40%, and the balance Cr is limited to 1 element or 2 elements or more of each of 30% or less and nitrogen added. In these ranges, a high value of a gauge factor of 2 or more is obtained, and the resistance temperature coefficient is (4-4) × 10-4This is because a small value within / ° C. can be obtained, and these effects cannot be expected outside these ranges.
[0025]
Among the subcomponents, Hf, Zr, P, As, Sb, Mg, Ca, Co, and Pd have a resistance temperature coefficient of (4-4) × 10-4Although it is within / ° C., if it exceeds 30%, the gauge factor becomes smaller than 2, so it cannot be applied to a strain gauge. Therefore, the above limitation was applied to these elements.
[0026]
2 to 7, it can be seen that the gauge factor decreases with an increase in the additive amount of the subcomponent, but C, Si, Ge, Al, and Ga decrease with an increase in the additive amount of the subcomponent. In addition, Ni, Nb, and Ti can obtain a high gauge factor because the minimum point moves to around room temperature just by adding a small amount of these subcomponents. When a plurality of these elements capable of obtaining a high gauge factor are added, a high gauge factor is obtained. When two or more elements are added from the subcomponents of the present invention, all of the values of gauge factors greater than 2. was gotten.
[0027]
The rare earth elements are composed of Sc, Y and lanthanum elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). They are equivalent and all have the same effect.
[0028]
FIG. 14 shows the relationship between the heating temperature and the temperature coefficient of resistance, specific resistance, and gauge factor of the alloy of the present invention (sample number: 13). As shown in the figure, the alloy of the present invention is heated in the temperature range of 200 ° C. to 1000 ° C. for 1 minute to 100 hours, and then cooled at a rate of 1 ° C./hour to 1000 ° C./minute, Desired gauge characteristics can be obtained. The reason for limiting heating to a temperature range of 200 ° C. to 1000 ° C., preferably 1 minute to 100 hours under the heat treatment conditions is that the gauge factor is 2 or more and the resistance temperature coefficient is within this treatment condition. (4-4) × 10-4This is because it is preferably within / ° C. Below 200 ° C., a stable TCR cannot be obtained, which is not preferable. On the other hand, when the temperature is 1000 ° C. or higher, a desired TCR cannot be obtained.
[0029]
【Example】
Examples of the present invention will be described.
Example 1 Sample No. 1 (Composition: CrProduction and evaluation of 4% N) alloy thin films
A Cr disk (purity 99.9%) having a diameter of 105 mm and a thickness of 3 mm is bonded to a copper electrode to obtain a sputtering target. A small amount of nitrogen gas is flown as a film forming atmosphere with Ar (argon) as a sputtering gas, and a magnetron type high frequency sputtering apparatus is used from this target to form a Cr film having a thickness of about 0.36 μm under the sputtering conditions shown below.An N thin film is prepared (reactive sputtering). The substrate is covered with a glass mask before film formation so that a patterned thin film can be formed during film formation.
Pre-exhaust 1 × 10-7Torr
High frequency power 100W
Argon flow rate 20.0SCCM
Nitrogen flow rate 0.9 SCCM
Atmospheric gas pressure 1 × 10-2Torr
Substrate glass (CORNING # 0211)
Substrate warming Unheated
Distance between electrodes 50mm
Deposition rate 30 m / min
The prepared thin film was welded with a coated lead wire having a diameter of 0.05 mm to form an electrode, and the resistance temperature coefficient and the gauge factor were measured by a four-terminal method. As a result, as shown in Table 1,6x10-4A negative resistance temperature coefficient of / ° C and a gauge factor of 7.1 were obtained.
Next, the obtained thin film was heated in various atmospheres at various temperatures of 200 ° C. to 1000 ° C. for an appropriate time and then cooled in the furnace to room temperature (cooling rate: 200 ° C./hour). Table 1 shows those heat treatment conditions and the measured gauge factor, specific resistance, and resistance temperature coefficient (TCR). In any atmosphere, the gauge factor was improved and showed a large value. As the heat treatment temperature increases, the resistance temperature coefficient increases, and the TCR of the sample heat treated at about 560 ° C. is 0.04 × 10 6.-4A very excellent characteristic of / ° C. and a gauge factor of 7.4 was obtained.
[0030]
[Table 1]
Figure 0003642449
[0031]
Example 2 Sample No. 14 (Composition: Cr4% NProduction and Evaluation of 6.0% V) Alloy Thin Film Cr and V having a purity of 99.9% are alloyed by the arc melt method to produce an alloy target having a diameter of 203 mm and a thickness of 5 mm. The alloy target is bonded to a copper electrode to form a sputtering target. A thin film having a thickness of 0.36 μm is produced from this target using an ion beam sputtering apparatus under the sputtering conditions shown below. The substrate is covered with a glass mask before film formation so that a gauge pattern can be formed at the time of film formation, and a laminated electrode of Ni and Au is constructed.
Pre-exhaust 2 × 10-8Torr
Acceleration voltage 700V
Ion current density 2mA / cm2
Nitrogen gas flow rate 0.5SCCM
Nitrogen gas pressure 0.5 mtorr
SiO on substrate surface2Stainless steel with insulating film
Substrate temperature 500 ° C
Distance between ion source and target 120mm
Distance between substrate and target 120mm
Deposition rate 90Å / min
As a result of welding the Au wire to the prepared thin film electrode and measuring the resistance temperature coefficient and the gauge factor by the four-terminal method, 4.5 × 10 respectively.-4The values / ° C and 9.4 were obtained.
Next, the obtained thin film was heated in various atmospheres at various temperatures of 200 ° C. to 1000 ° C. for an appropriate time, and then cooled in the furnace to room temperature (cooling rate: 500 ° C./hour). Table 2 shows those heat treatment conditions and the measured gauge factor, specific resistance, and resistance temperature coefficient (TCR). In any atmosphere, the gauge factor increased with increasing temperature. FIG. 14 shows the relationship between the heat treatment temperature, the resistance temperature coefficient, the specific resistance, and the gauge factor when these heat treatments are performed under vacuum conditions for 2 hours. The temperature coefficient of resistance increased from negative to positive, and the resistivity decreased with increasing heating temperature, but the gauge factor showed a monotonous increasing trend. 0.03 × 10 6 in a sample heat-treated at a temperature of 450 ° C.-4A very small TCR of / ° C and a large gauge factor of 10.9 was obtained. It has been found that the heat treatment of the present invention is effective in producing a highly sensitive and highly stable strain gauge.
[0032]
[Table 2]
Figure 0003642449
[0033]
Example 3 Sample No. 53 (Composition: Cr4% N1.2% Al1.6% Si) Alloy Thin Films and Evaluation Purity 99.99% Cr, purity 99.9% Al and purity 99.999% Si, 97.0% Cr, 1.3% Al and It melt | dissolves and alloys with a high frequency melting furnace with the mixing | blending of 1.7% Si, About 1g is used as an evaporation source raw material among them. Using this raw material, a thin film having a thickness of 1.2 μm is formed by vacuum deposition under the following conditions in a vacuum deposition apparatus in a nitrogen stream. The substrate is covered with a metal mask before film formation so that a gauge pattern can be formed during film formation.
Degree of vacuum 6 × 10-7Torr
Substrate Polyimide (thickness 0.1mm)
Substrate temperature 200 ° C
Nitrogen gas flow rate 10SCCM
Nitrogen gas pressure 10 mtorr
Distance between substrate and evaporation source 180mm
Deposition rate 130Å / min
The prepared thin film is taken out from the vacuum deposition apparatus, the mask covering the substrate is replaced, a Cu film for an electrode is formed again by the vacuum deposition apparatus, and a coated lead wire having a diameter of 0.2 mm is welded using solder to form four terminals. As a result of measuring the temperature coefficient of resistance and gauge factor by the5.4 × 10-4/ ° C and a value of 7.9 were obtained.
Next, the obtained thin film was heated in various atmospheres at various temperatures of 200 ° C. to 1000 ° C. for an appropriate time, and then cooled in the furnace to room temperature (cooling rate: 500 ° C./hour). Table 3 shows the heat treatment conditions and the measured gauge factor, specific resistance, and temperature coefficient of resistance (TCR). As in Example 1, the gauge factor was improved and showed a large value in any atmosphere. Similarly, the temperature coefficient of resistance increases as the heat treatment temperature is increased, and 0.1 × 10 10 in the sample heat treated at 450 ° C.-4It exhibited a very small TCR of / ° C and a large gauge factor of 8.1. That is, it became clear that a highly sensitive and highly stable strain sensor can be provided by using the alloy of the present invention.
[0034]
[Table 3]
Figure 0003642449
[0035]
Numerous film formation experiments according to the present invention were conducted and Cr100 was formed on various substrates using various film formation methods.-XyNxMyA thin film was prepared. Tables 4 and 5 show the typical thin film of the present invention in the case of a sample containing 4% nitrogen out of them, as it is, or in the case of a sample subjected to heat treatment under various conditions. The measurement results of gauge factor (K), specific resistance (ρ), and temperature coefficient of resistance (TCR) are shown together with the composition of subcomponents and heat treatment conditions.
[0036]
[Table 4]
Figure 0003642449
[0037]
[Table 5]
Figure 0003642449
[0038]
【The invention's effect】
Cr of the present inventionThe N-based strain resistance film has a small temperature coefficient of resistance over a wide temperature range, and has a much higher gauge factor than conventional materials. That is, Cr of the present inventionThe N-based strain resistance film has a gauge factor of 2 or more and a temperature coefficient of resistance (4-4) × 10-4Since it is within / ° C., the strain sensor using this has the effect of exhibiting high sensitivity and high stability. Therefore, the strain gauge comprising the thin film of the present invention is suitable for a load cell, strain sensor, weight meter, accelerometer, various stress / strain meters, various security devices, and the like.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the temperature dependence of the electrical resistance of a Cr thin film produced using a normal vapor deposition apparatus or sputtering apparatus.
FIG. 2 shows Cr100-xNxThe characteristic view which shows the relationship between the nitrogen concentration in a strain resistance film, and TCR.
FIG. 3 shows Cr96N4The characteristic view which shows the relationship between the heat processing temperature and TCR in a strain resistance film.
FIG. 4 shows Cr at each heat treatment temperature.96N42 shows an X-ray diffraction pattern of a strain resistance film.
FIG. 5 shows Cr96-yN4Mny(Y = 0, 1, 2, 3) The characteristic figure which shows the resistance temperature curve of a strain resistance film.
FIG. 6 is a characteristic diagram showing a resistance temperature coefficient at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amounts of Be, Mg, Ca, Sr and Ba added as subcomponents.
FIG. 7 is a characteristic diagram showing a resistance temperature coefficient at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amounts of Fe, Co, Mn and Al added as subcomponents.
FIG. 8 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amounts of Ti, V, Zr, Nb, Hf and Ta added as subcomponents.
FIG. 9 is a temperature coefficient of resistance at 0 to 50 ° C. with respect to amounts of Ti, V, Zr, Nb, Hf, Ta, Ni, Ge, Si, C, N, P, Se and Te added as subcomponents. And a characteristic diagram showing a gauge factor at room temperature (20 ° C.).
FIG. 10 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amount of Ru, Rh, Re, Os, Ir, Pt and Pd added as subcomponents.
FIG. 11 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (20 ° C.) with respect to the amounts of Ag, Au, Y, La and Ce added as subcomponents.
FIG. 12 is a characteristic diagram showing a temperature coefficient of resistance at 0 to 50 ° C. and a gauge factor at room temperature (about 20 ° C.) with respect to the amounts of Pb, Sn, As, Sb, Bi, W and Mo added as subcomponents. .
FIG. 13 is a characteristic diagram showing a resistance temperature coefficient at 0 to 50 ° C. and a gauge factor at room temperature (about 20 ° C.) with respect to the amounts of B, Ga, In, Tl, Cu and Zn added as subcomponents.
FIG. 14: Sample number 14 (composition: Cr4% N6 is a characteristic diagram showing the relationship between the heat treatment temperature, the resistance temperature coefficient, the specific resistance, and the gauge factor when the alloy thin film of 6% V) is subjected to a heat treatment in vacuum for 2 hours.

Claims (3)

一般式Cr100−x−yで表され、MはTi、V、Nb、Ta、Ni、Zr、Hf、Si、Ge、C、O、P、Se、Te、Zn、Cu、Bi、Fe、Mo、W、As、Sn、Sb、Pb、B、Ga、In、Tl、Ru、Rh、Re、Os、Ir、Pt、Pd、Ag、Au、Co、Be、Mg、Ca、Sr、Ba、Mn、Alおよび希土類元素から選択される1種または2種以上の元素であり、組成比x、yは原子%で0.0001≦x≦30、0≦y≦30、0.0001≦x+y≦50なる関係を有し、熱処理によるA15型構造のbcc構造への変化により、bcc構造またはbcc構造とA15型構造との混合組織からなるものとしたことを特徴とするCr−N基歪抵抗膜。Is represented by the general formula Cr 100-x-y N x M y, M is Ti, V, Nb, Ta, Ni, Zr, Hf, Si, Ge, C, O, P, Se, Te, Zn, Cu, Bi, Fe, Mo, W, As, Sn, Sb, Pb, B, Ga, In, Tl, Ru, Rh, Re, Os, Ir, Pt, Pd, Ag, Au, Co, Be, Mg, Ca, One or more elements selected from Sr, Ba, Mn, Al, and rare earth elements, and the composition ratios x and y are 0.0001 ≦ x ≦ 30, 0 ≦ y ≦ 30,. it has a 0001 ≦ x + y ≦ 50 the relationship, a change in the bcc structure of A15 type structure by heat treatment, characterized in that consisted of mixed structure of bcc structure or bcc structure and A15 type structure Cr-N Basic strain resistance film. 窒素を含むガス雰囲気中で、蒸着法またはスパッタリング法により、一般式Cr100−x−yで表され、MはTi、V、Nb、Ta、Ni、Zr、Hf、Si、Ge、C、O、P、Se、Te、Zn、Cu、Bi、Fe、Mo、W、As、Sn、Sb、Pb、B、Ga、In、Tl、Ru、Rh、Re、Os、Ir、Pt、Pd、Ag、Au、Co、Be、Mg、Ca、Sr、Ba、Mn、Alおよび希土類元素から選択される1種または2種以上の元素であり、組成比x、yは原子%で0.0001≦x≦30、0≦y≦30、0.0001≦x+y≦50なる関係を有し、A15型構造を含むCr−N基膜を、絶縁性基板上または導電性基板上に絶縁体膜を形成した上に成膜し、ついで該Cr−N基膜を200℃以上1000℃以下の温度で熱処理してA15型構造をbcc構造へ変化させ、前記Cr−N基膜をbcc構造またはbcc構造とA15型構造との混合組織からなるものとすることを特徴とするCr−N基歪抵抗膜の製造法。In a gas atmosphere containing nitrogen, by vapor deposition or sputtering, is represented by the general formula Cr 100-x-y N x M y, M is Ti, V, Nb, Ta, Ni, Zr, Hf, Si, Ge C, O, P, Se, Te, Zn, Cu, Bi, Fe, Mo, W, As, Sn, Sb, Pb, B, Ga, In, Tl, Ru, Rh, Re, Os, Ir, Pt , Pd, Ag, Au, Co, Be, Mg, Ca, Sr, Ba, Mn, Al and one or more elements selected from rare earth elements, and the composition ratio x, y is 0 in atomic% .0001 ≦ x ≦ 30, 0 ≦ y ≦ 30, 0.0001 ≦ x + y ≦ 50, and a Cr—N base film including an A15 type structure is formed on an insulating substrate or a conductive substrate. is formed on the formation of the film, then 200 ° C. or higher the Cr-N group film 10 0 ℃ the A15 type structure was heat-treated at a temperature varying the bcc structure, characterized in that it shall become the Cr-N base film from mixed structure of bcc structure or bcc structure and A15 type structure Cr -Manufacturing method of N group strain resistance film. 請求項1に記載のCr−N基歪抵抗膜を用いたことを特徴とする歪センサ。  A strain sensor comprising the Cr—N-based strain resistance film according to claim 1.
JP10803997A 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor Expired - Fee Related JP3642449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10803997A JP3642449B2 (en) 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10803997A JP3642449B2 (en) 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor

Publications (2)

Publication Number Publication Date
JPH10270201A JPH10270201A (en) 1998-10-09
JP3642449B2 true JP3642449B2 (en) 2005-04-27

Family

ID=14474406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10803997A Expired - Fee Related JP3642449B2 (en) 1997-03-21 1997-03-21 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor

Country Status (1)

Country Link
JP (1) JP3642449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor
JP2019074454A (en) * 2017-10-18 2019-05-16 公益財団法人電磁材料研究所 Thin-film alloy for strain sensors with superior thermal stability and high strain gauge factor

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756737B2 (en) * 2000-08-02 2006-03-15 財団法人電気磁気材料研究所 Thin film tactile sensor
JP2002141201A (en) * 2000-11-02 2002-05-17 Koa Corp Thin-film resistor and its manufacturing method
JP3913526B2 (en) * 2001-10-30 2007-05-09 独立行政法人科学技術振興機構 Displacement sensor, manufacturing method thereof and positioning stage
JP2004071952A (en) * 2002-08-08 2004-03-04 K-Tech Devices Corp Method for manufacturing electric element and circuit board including electric element
JP4284508B2 (en) * 2003-06-24 2009-06-24 大阪府 Pressure sensor with integrated pressure tube
JP4087806B2 (en) * 2004-03-18 2008-05-21 富士通株式会社 Method for encouraging food to be eaten without waste, refrigerator using the same, and electronic balance
JP6084393B2 (en) * 2012-08-08 2017-02-22 公益財団法人電磁材料研究所 Strain sensor and strain measurement method
JP6022881B2 (en) * 2012-10-04 2016-11-09 公益財団法人電磁材料研究所 Strain gauge
JP6015425B2 (en) 2012-12-21 2016-10-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015426B2 (en) 2012-12-21 2016-10-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015423B2 (en) 2012-12-21 2016-10-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015424B2 (en) 2012-12-21 2016-10-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6120251B2 (en) 2013-06-05 2017-04-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6308364B2 (en) * 2013-06-05 2018-04-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6120250B2 (en) * 2013-06-05 2017-04-26 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6308365B2 (en) 2013-06-05 2018-04-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6308435B2 (en) 2013-07-25 2018-04-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6308436B2 (en) 2013-07-25 2018-04-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6311879B2 (en) * 2013-08-12 2018-04-18 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6311878B2 (en) * 2013-08-12 2018-04-18 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6355022B2 (en) 2013-08-30 2018-07-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6354947B2 (en) 2013-08-30 2018-07-11 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6318916B2 (en) * 2013-08-30 2018-05-09 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6501059B2 (en) * 2015-02-04 2019-04-17 三菱マテリアル株式会社 Thermistor, method for manufacturing the same, and thermistor sensor
JP2017022176A (en) * 2015-07-07 2017-01-26 Koa株式会社 Thin film resistor and manufacturing method of the same
JP6641597B2 (en) * 2016-03-24 2020-02-05 三菱マテリアル株式会社 Metal nitride material for thermistor, method for producing the same, and film-type thermistor sensor
JP6562217B2 (en) * 2016-03-24 2019-08-21 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6840317B2 (en) * 2016-05-02 2021-03-10 地方独立行政法人大阪産業技術研究所 Strain resistance thin film and sensor using the strain resistance thin film
JP6774861B2 (en) * 2016-12-02 2020-10-28 公益財団法人電磁材料研究所 Strain resistance film and strain sensor for high temperature, and their manufacturing method
DE102017108582A1 (en) 2017-04-21 2018-10-25 Epcos Ag Sheet resistance and thin film sensor
DE102017113401A1 (en) 2017-06-19 2018-12-20 Epcos Ag Sheet resistance and thin film sensor
JP6793103B2 (en) 2017-09-29 2020-12-02 ミネベアミツミ株式会社 Strain gauge
JP2019066453A (en) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019066312A (en) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2019066454A (en) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019066313A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP6940369B2 (en) * 2017-10-18 2021-09-29 公益財団法人電磁材料研究所 Thin film strain sensor material and thin film strain sensor
JP2019078726A (en) * 2017-10-27 2019-05-23 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019082425A (en) 2017-10-31 2019-05-30 ミネベアミツミ株式会社 Strain gauge
JP2019082424A (en) * 2017-10-31 2019-05-30 ミネベアミツミ株式会社 Strain gauge
JP2019082426A (en) * 2017-10-31 2019-05-30 ミネベアミツミ株式会社 Strain gauge
JP2019090724A (en) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 Strain gauge
JP2019090722A (en) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 Strain gauge
JP2019113411A (en) 2017-12-22 2019-07-11 ミネベアミツミ株式会社 Strain gauge and sensor module
JP2019120555A (en) 2017-12-28 2019-07-22 ミネベアミツミ株式会社 Strain gauge, sensor module
JP2019128183A (en) 2018-01-22 2019-08-01 ミネベアミツミ株式会社 Sensor module
JP2019132791A (en) * 2018-02-02 2019-08-08 ミネベアミツミ株式会社 Strain gauge
JP2019174387A (en) 2018-03-29 2019-10-10 ミネベアミツミ株式会社 Strain gauge
JP2019184344A (en) 2018-04-05 2019-10-24 ミネベアミツミ株式会社 Strain gauge and manufacturing method therefor
JP7025995B2 (en) * 2018-05-23 2022-02-25 株式会社豊田中央研究所 Thin film resistor for strain gauge
JP7008618B2 (en) * 2018-08-28 2022-01-25 ミネベアミツミ株式会社 Battery pack
WO2020085247A1 (en) * 2018-10-23 2020-04-30 ミネベアミツミ株式会社 Accelerator pedal, steering apparatus, 6-axis sensor, engine, bumper, and the like
JP2020129013A (en) * 2020-06-05 2020-08-27 ミネベアミツミ株式会社 Strain gauge
JP2022072605A (en) * 2020-10-30 2022-05-17 日東電工株式会社 Laminated film and strain sensor
JP2022072607A (en) * 2020-10-30 2022-05-17 日東電工株式会社 Method for manufacturing laminate film and strain sensor
JP2022072604A (en) * 2020-10-30 2022-05-17 日東電工株式会社 Laminated film, manufacturing method therefor, and strain sensor
JP2022072602A (en) * 2020-10-30 2022-05-17 日東電工株式会社 Method for manufacturing laminate film and second laminate film, and method for manufacturing strain sensor
JP2022150486A (en) * 2021-03-26 2022-10-07 Tdk株式会社 Strain-resistive film, pressure sensor, and laminate
JP2022157019A (en) * 2021-03-31 2022-10-14 Tdk株式会社 Strain resistance film and pressure sensor
CN113481484B (en) * 2021-07-01 2022-03-08 陛通半导体设备(苏州)有限公司 Preparation method of cobalt-germanium alloy film with temperature coefficient of resistance tending to zero

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562610B2 (en) * 1987-08-08 1996-12-11 株式会社豊田中央研究所 Thin film resistor for strain gauge
JPH06213612A (en) * 1993-01-14 1994-08-05 Sumitomo Electric Ind Ltd Distortion resistance material and manufacture thereof and thin film distortion sensor
JPH06300649A (en) * 1993-04-12 1994-10-28 Sumitomo Electric Ind Ltd Thin film strain resistance material, fabrication thereof and thin film strain sensor
JP3233248B2 (en) * 1994-05-13 2001-11-26 エヌオーケー株式会社 Thin film for strain gauge and its manufacturing method
JP3156593B2 (en) * 1996-07-24 2001-04-16 松下電工株式会社 Thin film element and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor
JP2019074454A (en) * 2017-10-18 2019-05-16 公益財団法人電磁材料研究所 Thin-film alloy for strain sensors with superior thermal stability and high strain gauge factor

Also Published As

Publication number Publication date
JPH10270201A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3642449B2 (en) Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor
JP6159613B2 (en) Strain sensor
JP6354947B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6308435B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015423B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015426B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6120250B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
CN104425090A (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP6308436B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
CN105144309B (en) Thermistor metal nitride materials and its manufacture method and film-type thermistor (temperature) sensor
CN104376939A (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
JP3933213B2 (en) Cr-based alloy thin film, method for producing the same, and strain gauge
JP6015424B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
CN105264619B (en) Thermistor metal nitride materials and its manufacture method and film-type thermistor (temperature) sensor
JP6308365B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015425B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JPH11195504A (en) Electrical resistance thin-film and manufacture thereof and sensor device
JPH0427286B2 (en)
JPH03253067A (en) Resistor and its manufacture
JP2016134491A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JP2016134504A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JP2016136610A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JP2016134490A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JPH04309271A (en) Manufacture of thin film thermoelectric element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees