JP6940369B2 - Thin film strain sensor material and thin film strain sensor - Google Patents

Thin film strain sensor material and thin film strain sensor Download PDF

Info

Publication number
JP6940369B2
JP6940369B2 JP2017201731A JP2017201731A JP6940369B2 JP 6940369 B2 JP6940369 B2 JP 6940369B2 JP 2017201731 A JP2017201731 A JP 2017201731A JP 2017201731 A JP2017201731 A JP 2017201731A JP 6940369 B2 JP6940369 B2 JP 6940369B2
Authority
JP
Japan
Prior art keywords
thin film
gauge
strain sensor
strain
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017201731A
Other languages
Japanese (ja)
Other versions
JP2019074452A (en
Inventor
英二 丹羽
英二 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP2017201731A priority Critical patent/JP6940369B2/en
Publication of JP2019074452A publication Critical patent/JP2019074452A/en
Application granted granted Critical
Publication of JP6940369B2 publication Critical patent/JP6940369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、薄膜ひずみセンサ材料および薄膜ひずみセンサに関する。 The present invention relates to thin film strain sensor materials and thin film strain sensors.

ひずみセンサは、物体に生じるひずみを計測する素子等のことであり、ひずみゲージとも呼ばれる。一般に、ひずみゲージがその正規の測定方向であるゲージ軸(主たる受感部の電流の流れる方向)に対し垂直方向に持つ感度を横感度といい、その横感度は、ゲージ軸をひずみ方向と一致させて測定した時の感度である主軸感度(縦感度)の2〜3%以下と報告されている(非特許文献1、2)。したがって、従来の一般的なひずみゲージは、ゲージ軸と垂直方向のひずみにともなう出力をほとんど生じることがない。 A strain sensor is an element or the like that measures the strain generated in an object, and is also called a strain gauge. Generally, the sensitivity that the strain gauge has in the direction perpendicular to the gauge axis (the direction in which the current flows in the main sensing part), which is the normal measurement direction, is called the lateral sensitivity, and the lateral sensitivity coincides with the strain direction of the gauge axis. It has been reported that it is 2 to 3% or less of the spindle sensitivity (vertical sensitivity), which is the sensitivity when measured by the force (Non-Patent Documents 1 and 2). Therefore, a conventional general strain gauge hardly produces an output due to strain in the direction perpendicular to the gauge axis.

その特長を利用して、2アクティブ4ゲージ式ホィートストンブリッジ回路構成をなす場合に、アクティブゲージの近傍にそのゲージ方向(=ひずみ方向)と垂直にダミーゲージを形成する方法がとられる。この方法は、近年薄膜ひずみセンサで多用されている。ダミーゲージをアクティブゲージの近傍に配置するのは、成膜領域の制限を含めて他に場所がないため、配線を短くしてそこで拾うノイズを減少させるため、温度分布の影響を低減させるため等の理由による。上記ブリッジ回路における2つのダミーゲージはひずみに対して垂直方向を向いているため、そのひずみによる抵抗変化をほとんど生じることがなくダミーとしての役割を果たすことができる。 Taking advantage of this feature, when a 2-active 4-gauge type Wheatstone bridge circuit configuration is formed, a method is adopted in which a dummy gauge is formed in the vicinity of the active gauge in a direction perpendicular to the gauge direction (= strain direction). This method has been widely used in thin film strain sensors in recent years. The reason why the dummy gauge is placed near the active gauge is that there is no other place including the limitation of the film formation area, so the wiring is shortened to reduce the noise picked up there, and the influence of the temperature distribution is reduced. For the reason. Since the two dummy gauges in the bridge circuit are oriented in the direction perpendicular to the strain, they can play a role as dummies with almost no resistance change due to the strain.

しかし、実際は、測定対象とするひずみによって、そのひずみ方向に垂直な方向(横方向)に対象計測物質のポアソン比に基づく変形が生じ、その方向にひずみ(横ひずみ)が発生する。するとその横ひずみの方向はダミーゲージのゲージ軸と一致するため、その主軸感度で出力が発生することになり、ブリッジ出力にロスを生じさせる。すなわち、ダミーとしての機能が不十分となる。また、複数の単軸ひずみゲージを異なる方向に向けて重ねて、または並べて一つのゲージ素子とした多軸(ロゼット)ひずみゲージの場合や、多軸の力学量検知のために一群のひずみゲージを配置した場合などにおいても、横ひずみが他軸干渉などの雑音成分の原因となる場合がある。 However, in reality, the strain to be measured causes deformation based on the Poisson's ratio of the target measurement substance in the direction perpendicular to the strain direction (lateral direction), and strain (transverse strain) occurs in that direction. Then, since the direction of the lateral strain coincides with the gauge shaft of the dummy gauge, the output is generated at the spindle sensitivity, and a loss is caused in the bridge output. That is, the function as a dummy becomes insufficient. Also, in the case of a multi-axis (rosette) strain gauge in which multiple uniaxial strain gauges are stacked or arranged in different directions to form a single gauge element, or a group of strain gauges for multi-axis mechanical quantity detection. Even when arranged, lateral strain may cause noise components such as interference with other axes.

後述する図1の垂直配置試料のように、測定対象であるひずみに対して垂直方向に配置したひずみゲージとして、例えばCuNi合金箔からなる市販のストレインゲージ(ひずみゲージ)の場合、その出力値は、みかけのゲージ率として−0.4と報告されている(特許文献1)。その値は、本来の計測対象であるひずみの方向(ひずみ印加方向)とゲージの主軸方向を一致させた時のゲージ率2.1に対しては負の少し小さい値ではあるが、横感度よりも10倍ほども大きく、問題となる。 As a strain gauge arranged in the direction perpendicular to the strain to be measured as in the vertically arranged sample of FIG. 1 described later, for example, in the case of a commercially available strain gauge (strain gauge) made of CuNi alloy foil, the output value is , The apparent gauge ratio is reported to be -0.4 (Patent Document 1). The value is a little smaller than the gauge ratio 2.1 when the direction of strain (strain application direction), which is the original measurement target, and the main axis direction of the gauge are matched, but it is smaller than the lateral sensitivity. Is about 10 times larger, which is a problem.

また、ゲージ率が大きくひずみゲージとして適した材料としてCr薄膜およびCr−N薄膜が知られているが(特許文献2、3)、これらは横感度も大きいことが知られている(特許文献1)。従来の一般のひずみゲージは横感度がほとんど無いことから、指向性を持ち、多軸応力場でのひずみの大きさと方向を特定することが可能になるのに対し、Cr薄膜やCr−N薄膜を用いたひずみセンサは感度がほぼ等方的であり、設置したゲージ軸の方向によらず、全ての方向のひずみの影響を受ける。そのため、ひずみ方向の特定ならびに多軸ひずみゲージを成すことなどができない。 Further, Cr thin films and Cr—N thin films are known as materials having a large gauge ratio and suitable as strain gauges (Patent Documents 2 and 3), but they are also known to have high lateral sensitivity (Patent Document 1). ). Conventional general strain gauges have almost no lateral sensitivity, so they have anisotropy and can specify the magnitude and direction of strain in a multiaxial stress field, whereas Cr thin films and Cr-N thin films can be specified. The strain sensor using is almost isotropic in sensitivity and is affected by strain in all directions regardless of the direction of the installed gauge shaft. Therefore, it is not possible to specify the strain direction and form a multi-axis strain gauge.

一方、特許文献4では、従来のPd−Cr合金およびNi−Cr−Al合金には、それぞれ抵抗温度係数が大きいこと、およびひずみ感度(縦方向)が小さく横感度が大きいという課題があり、この課題を解決するために、従来と異なる組成のPd−Cr合金(Cr含有量:14〜25質量%)を提案しており、その組成のPd−Cr合金において横感度が−0.3〜0.3、ひずみ感度(ゲージ率)が1.75〜1.83、TCRが39〜60ppm/℃と、抵抗温度係数が小さく、横感度が小さく、縦方向のひずみ感度が大きい、従来よりも優れた特性のひずみセンサが得られるとしている。なお、特許文献4において横感度としている値は、純粋な横感度ではなく、横方向、すなわち縦方向に対して垂直方向にひずみゲージを配置(垂直配置)した場合に得られる見かけのゲージ率を表していると思われる。 On the other hand, in Patent Document 4, the conventional Pd-Cr alloy and Ni-Cr-Al alloy have problems that the temperature coefficient of resistance is large and the strain sensitivity (longitudinal direction) is small and the lateral sensitivity is large. In order to solve the problem, we have proposed a Pd-Cr alloy (Cr content: 14 to 25% by mass) having a composition different from the conventional one, and the Pd-Cr alloy having that composition has a lateral sensitivity of -0.3 to 0. .3, strain sensitivity (gauge ratio) is 1.75 to 1.83, TCR is 39 to 60 ppm / ° C, resistance temperature coefficient is small, lateral sensitivity is small, and strain sensitivity in the vertical direction is large, which is better than before. It is said that a strain sensor with different characteristics can be obtained. The value of the lateral sensitivity in Patent Document 4 is not the pure lateral sensitivity, but the apparent gauge ratio obtained when the strain gauge is arranged (vertically arranged) in the horizontal direction, that is, in the direction perpendicular to the vertical direction. It seems to represent.

しかし、特許文献4では、垂直配置の場合のゲージ率をゼロとすることは実現できているものの、縦方向の感度、すなわちひずみ方向と平行に配置した場合のゲージ率が約1.8と、一般的な市販のストレインゲージ(ひずみゲージ)の2.1よりもさらに小さな値となっている。多軸、高精度、および高速応答などの計測においては、横感度や垂直配置の感度が無視できず、また、より大きな平行配置のゲージ率が求められる。 However, in Patent Document 4, although it is possible to set the gauge ratio to zero in the case of vertical arrangement, the sensitivity in the vertical direction, that is, the gauge ratio in the case of arrangement parallel to the strain direction is about 1.8. The value is even smaller than 2.1 of a general commercially available strain gauge (strain gauge). In measurements such as multi-axis, high accuracy, and high-speed response, lateral sensitivity and vertical placement sensitivity cannot be ignored, and a larger gauge ratio for parallel placement is required.

特開2014−035239号公報Japanese Unexamined Patent Publication No. 2014-305239 特開平10−270201号公報Japanese Unexamined Patent Publication No. 10-270201 特開2015−031633号公報Japanese Unexamined Patent Publication No. 2015-031633 特開2013−217763号公報Japanese Unexamined Patent Publication No. 2013-217763

高橋賞,河井正安:「ひずみゲージによるひずみ測定入門」,大成社,pp.46〜47(2007)Takahashi Award, Masayasu Kawai: "Introduction to Strain Measurement with Strain Gauge", Taiseisha, pp. 46-47 (2007) 菅野昭,高橋賞,吉野利男:「応力ひずみ解析」,朝倉書店,p.31(1986)Akira Kanno, Takahashi Award, Toshio Yoshino: "Stress-Strain Analysis", Asakura Shoten, p. 31 (1986)

本発明は、このような事情に鑑みてなされたものであり、垂直配置におけるゲージ率がほぼゼロで、平行配置におけるゲージ率が大きい薄膜ひずみセンサ材料および薄膜ひずみセンサを提供することを課題とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a thin film strain sensor material and a thin film strain sensor having a gauge ratio of almost zero in a vertical arrangement and a large gauge ratio in a parallel arrangement. ..

本発明者は、上記課題を解決すべく検討を重ねた結果、所定の組成を有するCr−Ni薄膜に代表されるCr基薄膜またはCr−N基薄膜を用いることにより、垂直配置におけるゲージ率がほぼゼロで、平行配置におけるゲージ率が大きい薄膜ひずみセンサが得られることを見出した。 As a result of repeated studies to solve the above problems, the present inventor uses a Cr-based thin film or a Cr—N-based thin film represented by a Cr—Ni thin film having a predetermined composition, so that the gauge ratio in the vertical arrangement can be increased. We have found that a thin film strain sensor with almost zero and a large gauge ratio in parallel arrangement can be obtained.

本発明は、このような知見に基づいてなされたものであり、以下の(1)〜(8)を提供する。 The present invention has been made based on such findings, and provides the following (1) to (8).

(1)一般式Cr100−xで表される薄膜ひずみセンサ材料であって、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第2元素Mを添加することを特徴とする薄膜ひずみセンサ材料。 (1) A thin film strain sensor material represented by the general formula Cr 100-x Mx , in which the thin film of the material is arranged in a direction perpendicular to the strain direction of the measurement target on the high temperature side of the nail temperature of the material. A thin film strain sensor material, characterized in that the second element M is added in the range of 0 ≦ x ≦ 30 in composition ratio x in atomic% so that the gauge ratio is within 0 ± 0.3.

(2)一般式(Cr100−x100−yで表される薄膜ひずみセンサ材料であって、組成比yは、原子%で0.0001≦y≦30の範囲であり、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第3元素Mを添加することを特徴とする薄膜ひずみセンサ材料。 (2) A thin film strain sensor material represented by the general formula (Cr 100-x M x) 100-y N y, composition ratio y is in the range of 0.0001 ≦ y ≦ 30 in atomic percent, The composition ratio x is atomic so that the gauge ratio is within 0 ± 0.3 when the thin film of the material is arranged in the direction perpendicular to the strain direction to be measured on the high temperature side of the nail temperature of the material. A thin film strain sensor material, characterized in that the third element M is added in the range of 0 ≦ x ≦ 30 in%.

(3)前記第2元素MがNiであり、組成比xが原子%で5≦x≦22であることを特徴とする上記(1)に記載の薄膜ひずみセンサ材料。 (3) The thin film strain sensor material according to (1) above, wherein the second element M is Ni and the composition ratio x is 5 ≦ x ≦ 22 in atomic%.

(4)前記第2元素MがFeであり、組成比xが原子%で17≦x≦28であることを特徴とする上記(1)に記載の薄膜ひずみセンサ材料。 (4) The thin film strain sensor material according to (1) above, wherein the second element M is Fe and the composition ratio x is 17 ≦ x ≦ 28 in atomic%.

(5)一般式Cr100−xで表される材料の薄膜を受感部として有する薄膜ひずみセンサであって、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第2元素Mを添加することを特徴とする薄膜ひずみセンサ。 (5) a thin film of material represented by the general formula Cr 100-x M x A thin film strain sensor having a sensing part, the high-temperature side of the Neel temperature of the material, the strain thin film of said material to be measured The second element M should be added in the range of 0 ≦ x ≦ 30 with a composition ratio x of atomic% so that the gauge ratio when arranged in the direction perpendicular to the direction of is within 0 ± 0.3. A featured thin film strain sensor.

(6)一般式(Cr100−x100−yで表される材料の薄膜を受感部として有する薄膜ひずみセンサであって、組成比yは、原子%で0.0001≦y≦30の範囲であり、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第3元素Mを添加することを特徴とする薄膜ひずみセンサ。 (6) The general formula (Cr 100-x M x) thin film of a material represented by 100-y N y thin film strain sensor having a sensing part, the composition ratio y is, 0.0001 ≦ with atomic% It is in the range of y ≦ 30, and the gauge ratio is within 0 ± 0.3 when the thin film of the material is arranged in the direction perpendicular to the strain direction of the measurement target on the high temperature side of the nail temperature of the material. As described above, the thin film strain sensor is characterized in that the third element M is added in the range where the composition ratio x is atomic% and 0 ≦ x ≦ 30.

(7)前記第2元素MがNiであり、組成比xが原子%で5≦x≦22であることを特徴とする上記(5)に記載の薄膜ひずみセンサ。 (7) The thin film strain sensor according to (5) above, wherein the second element M is Ni and the composition ratio x is 5 ≦ x ≦ 22 in atomic%.

(8)前記第2元素MがFeであり、組成比xが原子%で17≦x≦28であることを特徴とする上記(5)に記載の薄膜ひずみセンサ。 (8) The thin film strain sensor according to (5) above, wherein the second element M is Fe and the composition ratio x is 17 ≦ x ≦ 28 in atomic%.

本発明によれば、垂直配置におけるゲージ率がほぼゼロで、平行配置におけるゲージ率が大きい薄膜ひずみセンサ材料および薄膜ひずみセンサが提供される。 According to the present invention, there are provided a thin film strain sensor material and a thin film strain sensor having a gauge ratio of almost zero in a vertical arrangement and a large gauge ratio in a parallel arrangement.

薄膜素子パターンにおける平行配置試料と垂直配置試料について説明するための図である。It is a figure for demonstrating the parallel arrangement sample and the vertical arrangement sample in a thin film element pattern. Cr−Ni薄膜におけるNi添加量と、平行配置のゲージ率および垂直配置のゲージ率との関係を示す図である。It is a figure which shows the relationship between the Ni addition amount in a Cr—Ni thin film, the gauge ratio of a parallel arrangement, and the gauge ratio of a vertical arrangement. Cr−Fe薄膜におけるFe添加量と、平行配置のゲージ率および垂直配置のゲージ率との関係を示す図である。It is a figure which shows the relationship between the Fe addition amount in a Cr—Fe thin film, the gauge ratio of a parallel arrangement, and the gauge ratio of a vertical arrangement. Cr薄膜における温度とゲージ率の関係および温度と抵抗値の関係を示す図である。It is a figure which shows the relationship between the temperature and the gauge ratio, and the relationship between the temperature and a resistance value in a Cr thin film. 非特許文献3の40ページに記載された図である。It is a figure described on page 40 of Non-Patent Document 3. 非特許文献3の39ページに記載された図である。It is a figure described on page 39 of Non-Patent Document 3. Cr−Ni薄膜のNi量と抵抗温度係数(TCR)との関係を示す図である。It is a figure which shows the relationship between the amount of Ni of a Cr—Ni thin film, and the temperature coefficient of resistance (TCR). Cr−Ni薄膜のNi量と感度温度係数(TCS)との関係を示す図である。It is a figure which shows the relationship between the amount of Ni of a Cr—Ni thin film, and the temperature coefficient of sensitivity (TCS). Cr−Fe薄膜のFe量と感度温度係数(TCS)との関係を示す図である。It is a figure which shows the relationship between the Fe amount of Cr—Fe thin film, and the sensitivity temperature coefficient (TCS).

以下、本発明の実施の形態について詳細に説明する。
最初に、以下の説明において、薄膜素子パターンにおける平行配置試料と垂直配置試料について図1を参照して説明する。図1はI字型試料であり、平行配置試料は、薄膜素子パターンの方向をひずみ印加方向に一致させた場合であり、垂直配置試料は、薄膜素子パターンの方向をひずみ印加方向と垂直にした場合である。平行配置試料のゲージ率(平行配置におけるゲージ率)が主軸方向のゲージ率であり、垂直配置試料のゲージ率(垂直配置におけるゲージ率)が横感度に関係するゲージ率である。
Hereinafter, embodiments of the present invention will be described in detail.
First, in the following description, the parallel arrangement sample and the vertically arrangement sample in the thin film element pattern will be described with reference to FIG. FIG. 1 shows an I-shaped sample in which the direction of the thin film element pattern is matched with the strain application direction in the parallel arrangement sample, and the direction of the thin film element pattern is perpendicular to the strain application direction in the vertical arrangement sample. If. The gauge ratio of the parallel arrangement sample (gauge ratio in the parallel arrangement) is the gauge ratio in the spindle direction, and the gauge ratio of the vertically arranged sample (gauge ratio in the vertical arrangement) is the gauge ratio related to the lateral sensitivity.

本発明者は、垂直配置におけるゲージ率がほぼゼロで、平行配置におけるゲージ率が大きい薄膜ひずみセンサ材料を得るべく、種々のCr基合金薄膜について検討した。その結果、Cr−Ni薄膜およびCr−Fe薄膜において、それぞれ図2および図3の結果を得た。すなわち、Ni含有量が増加するに従い平行配置におけるゲージ率および垂直配置におけるゲージ率はともに低下し、Niが8.4at%で平行配置のゲージ率が約2.6で、垂直配置のゲージ率がゼロとなること、およびFeが20at%で平行配置のゲージ率が約3.3で、垂直配置のゲージ率がゼロとなることが初めて見出された。 The present inventor has studied various Cr-based alloy thin films in order to obtain a thin film strain sensor material having a gauge ratio of almost zero in a vertical arrangement and a large gauge ratio in a parallel arrangement. As a result, the results shown in FIGS. 2 and 3 were obtained for the Cr—Ni thin film and the Cr—Fe thin film, respectively. That is, as the Ni content increases, both the gauge ratio in the parallel arrangement and the gauge ratio in the vertical arrangement decrease, and the gauge ratio in the parallel arrangement is about 2.6 with 8.4 at% of Ni, and the gauge ratio in the vertical arrangement is For the first time, it was found that the gauge ratio was zero, and that the gauge ratio of the parallel arrangement was about 3.3 with Fe of 20 at% and the gauge ratio of the vertical arrangement was zero.

一方、本発明者は、先に、Cr薄膜またはCr−N薄膜において、横感度は縦感度と同程度に正に大きな値を示すことを明らかにした(上記特許文献3)。また、本発明者は、さらに、高温域までのゲージ率の測定から、Cr薄膜の大きな平行配置のゲージ率は、反強磁性体にみられるネール温度の低温側に現れることを明らかにした(丹羽英二:「高温域のゲージ率に及ぼすCr薄膜への第2元素添加の影響」,電気学会フィジカルセンサ研究会試料,PHS−17−005(2017))。 On the other hand, the present inventor has previously clarified that in a Cr thin film or a Cr—N thin film, the lateral sensitivity shows a value as large as the longitudinal sensitivity (Patent Document 3 above). In addition, the present inventor further clarified from the measurement of the gauge ratio up to the high temperature region that the gauge ratio of the large parallel arrangement of the Cr thin film appears on the low temperature side of the Néel temperature observed in the antiferromagnet. Eiji Niwa: "Effect of Addition of Second Element to Cr Thin Film on Gauge Ratio in High Temperature Region", Institute of Electrical Engineers of Japan Physical Sensor Study Group Sample, PHS-17-005 (2017)).

これらの知見に基づいて、上記Cr−Ni薄膜およびCr−Fe薄膜の挙動を考察した内容を図4に基づいて説明する。図4は、Cr薄膜における温度とゲージ率の関係および温度と抵抗値の関係を示す図である。図4に示すように、Cr薄膜に関しては、ネール温度以下では反強磁性相になるためピエゾ抵抗効果が大きく作用して横感度も大きくなり、平行配置の場合だけでなく垂直配置の場合にもゲージ率は正の大きな値をとることになると考えられる。 Based on these findings, the contents of considering the behavior of the Cr—Ni thin film and the Cr—Fe thin film will be described with reference to FIG. FIG. 4 is a diagram showing the relationship between the temperature and the gauge ratio and the relationship between the temperature and the resistance value in the Cr thin film. As shown in FIG. 4, with respect to the Cr thin film, since it becomes an antiferromagnetic phase below the Néel temperature, the piezoresistive effect greatly acts and the lateral sensitivity also increases, and not only in the case of parallel arrangement but also in the case of vertical arrangement. It is considered that the gauge rate will take a large positive value.

一方、ネール温度以上では常磁性相であるためピエゾ抵抗効果は作用せず、ゆえに横感度はほぼゼロとなり、ゲージ率は形状効果のみが作用してポアソン比による負の小さな値をとると考えられる。すると、両者の遷移領域、すなわちネール温度近傍では垂直配置のゲージ率がゼロになる温度があることになると考えた。そして、その時の平行配置のゲージ率はCr−Ni薄膜およびCr−Fe薄膜においては2よりも大きいことを確認した。なお、図4中、測定温度に対するCr薄膜のゲージ率および抵抗値は実測値を用いた。 On the other hand, since it is a paramagnetic phase above the Néel temperature, the piezoresistive effect does not work, so the lateral sensitivity becomes almost zero, and it is considered that the gauge ratio takes a small negative value due to the Poisson's ratio due to the shape effect alone. .. Then, it was considered that there is a temperature at which the gauge ratio of the vertical arrangement becomes zero in the transition region between the two, that is, in the vicinity of the Néel temperature. Then, it was confirmed that the gauge ratio of the parallel arrangement at that time was larger than 2 in the Cr—Ni thin film and the Cr—Fe thin film. In FIG. 4, the measured values were used as the gauge ratio and the resistance value of the Cr thin film with respect to the measured temperature.

また、非特許文献3(E.Fawcett et al.:"Spin-density-wave antiferromagnetism in chromium alloys", Rev. Mod. Phys., 66(1),(1994))の40ページに記載された図を図5に示し、39ページに記載された図を図6に示すが、これらの図に示す通り、Crに第2元素Mを添加した薄膜の場合、添加する第2元素Mの種類と量によって、薄膜のネール温度を高温側または低温側へ変化させることが可能であることがわかる。具体的には、第2元素MがMn、Os、Ir、Pt、Ru、Rh、Ge、As、Sn、Ga、Sb、Re等のときはネール温度を高温側に変化させることができ、第2元素MがAu、Fe、Co、Mo、W、Ti、Ni、V、Er、Yb、Be、Si等のときは、ネール温度を低温側に変化させることができる。また、第2元素MがAlのときは、その量によって低温側にも高温側にも変化させることができる。 The figure described on page 40 of Non-Patent Document 3 (E. Fawcett et al .: "Spin-density-wave antiferromagnetism in chromium alloys", Rev. Mod. Phys., 66 (1), (1994)). 5 is shown in FIG. 5, and the figure shown on page 39 is shown in FIG. 6. As shown in these figures, in the case of a thin film in which the second element M is added to Cr, the type and amount of the second element M to be added. It can be seen that it is possible to change the nail temperature of the thin film to the high temperature side or the low temperature side. Specifically, when the second element M is Mn, Os, Ir, Pt, Ru, Rh, Ge, As, Sn, Ga, Sb, Re or the like, the Néel temperature can be changed to the higher temperature side. When the two elements M are Au, Fe, Co, Mo, W, Ti, Ni, V, Er, Yb, Be, Si and the like, the Neel temperature can be changed to the lower temperature side. When the second element M is Al, it can be changed to either the low temperature side or the high temperature side depending on the amount.

これら図5、6のデータ、および上記考察結果から、第2元素Mの種類および量を調整することによって、任意の温度で垂直配置のゲージ率がゼロ近傍(0から±0.3以内)の特性を現出させることができることが見出された。 From the data in FIGS. 5 and 6 and the above consideration results, by adjusting the type and amount of the second element M, the gauge ratio of the vertical arrangement is near zero (within 0 to ± 0.3) at an arbitrary temperature. It has been found that the properties can be manifested.

上記図2および図3において、Cr−Ni薄膜およびCr−Fe薄膜では、室温のゲージ率が平行配置の場合でそれぞれ約2.6および3.3、垂直配置で0となる組成があることを確認した。Cr薄膜の170℃付近のネール温度(Crバルクのネール温度は35℃であるが、薄膜であるゆえにシフトしたものと思われる)がNiまたはFe添加によって低減し、室温近傍にシフトした結果と考えられる。ネール温度を減少させるNi、Fe以外の元素でも同様の結果を得ることができ、逆に、ネール温度を上昇させる元素では、より高温において同様の特性を得ることができる。 In FIGS. 2 and 3, the Cr—Ni thin film and the Cr—Fe thin film have a composition in which the gauge ratios at room temperature are about 2.6 and 3.3 in the parallel arrangement and 0 in the vertical arrangement, respectively. confirmed. It is considered that the Néel temperature around 170 ° C of the Cr thin film (the Néel temperature of Cr bulk is 35 ° C, but it seems that it was shifted because it is a thin film) was reduced by adding Ni or Fe and shifted to near room temperature. Be done. Similar results can be obtained with elements other than Ni and Fe that reduce the Néel temperature, and conversely, similar characteristics can be obtained at higher temperatures with elements that increase the Néel temperature.

NiおよびFe以外の種々の元素を用いた実験結果も、上記考察結果とよく整合し、現象を論理的に説明することができた。 The experimental results using various elements other than Ni and Fe were also in good agreement with the above discussion results, and the phenomenon could be explained logically.

本発明は、これら多数の実験結果と、本発明者がこれまで積み重ねた経験とに基づくものであり、一般式Cr100−xで表され、当該材料のネール温度近傍、かつ、ネール温度の高温側において、その材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合に、そのゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第2元素Mを添加する薄膜ひずみセンサ材料、およびその材料の薄膜を受感部として有する薄膜ひずみセンサを提供するものである。これにより、平行配置のゲージ率が大きく、かつ垂直配置のゲージ率がほぼゼロになる薄膜ひずみセンサを得ることができる。 The present invention includes a result many of these experiments, which the present inventors is based on the experience of stacked far, is represented by the general formula Cr 100-x M x, Neel temperature vicinity of the material, and Neel temperature When the thin film of the material is arranged in the direction perpendicular to the strain direction of the measurement target on the high temperature side of, the composition ratio x is 0 in atomic% so that the gauge ratio is within 0 ± 0.3. The present invention provides a thin film strain sensor material to which the second element M is added in the range of ≦ x ≦ 30, and a thin film strain sensor having a thin film of the material as a sensitive portion. As a result, it is possible to obtain a thin film strain sensor in which the gauge ratio of the parallel arrangement is large and the gauge ratio of the vertical arrangement is almost zero.

第2元素Mとしては、上述したMn、Os、Ir、Pt、Ru、Rh、Ge、As、Sn、Ga、Sb、Re、Au、Fe、Co、Mo、W、Ti、Ni、V、Er、Yb、Be、Si、Al等を用いることができる。組成比xを原子%で0≦x≦30の範囲としたのは、この範囲を超えると、主軸方向の感度が小さくなってしまうからである。また、垂直配置におけるゲージ率を0±0.3以内としたのは、この範囲を外れると、他軸干渉等の雑音成分が顕著になってしまうからである。なお、Crと第2元素M以外の不可避不純物は許容される。 The second element M includes the above-mentioned Mn, Os, Ir, Pt, Ru, Rh, Ge, As, Sn, Ga, Sb, Re, Au, Fe, Co, Mo, W, Ti, Ni, V, Er. , Yb, Be, Si, Al and the like can be used. The reason why the composition ratio x is set in the range of 0 ≦ x ≦ 30 in atomic% is that if it exceeds this range, the sensitivity in the spindle direction becomes small. Further, the reason why the gauge ratio in the vertical arrangement is set to 0 ± 0.3 or less is that if the gauge ratio is out of this range, noise components such as interference with other axes become remarkable. Inevitable impurities other than Cr and the second element M are allowed.

第2元素MがNiの場合、図2にも示すように、Ni含有量(組成比x)が5〜22at%の範囲において平行配置のゲージ率が2.1以上と大きく、かつ垂直配置のゲージ率がほぼゼロになる。したがって、第2元素MがNiの場合は、組成比xは5〜22at%の範囲が好ましい。より好ましくは、6.8〜10原子%の範囲である。 When the second element M is Ni, as shown in FIG. 2, the gauge ratio of the parallel arrangement is as large as 2.1 or more in the range of the Ni content (composition ratio x) of 5 to 22 at%, and the vertical arrangement is performed. The gauge rate becomes almost zero. Therefore, when the second element M is Ni, the composition ratio x is preferably in the range of 5 to 22 at%. More preferably, it is in the range of 6.8 to 10 atomic%.

Cr−Ni薄膜において、上記Ni含有量における抵抗温度係数(TCR)は、図7に示すように、約500ppm/℃と大きい。しかし、ブリッジの4素子を狭い領域内に形成することでブリッジ内の温度差を生じなくさせることが可能であり、それによってTCRが大きい点は問題とならなくなる。 In the Cr—Ni thin film, the temperature coefficient of resistance (TCR) at the Ni content is as large as about 500 ppm / ° C. as shown in FIG. However, by forming the four elements of the bridge in a narrow region, it is possible to eliminate the temperature difference in the bridge, so that the point that the TCR is large does not matter.

一方、感度温度係数(TCS)(ゲージ率の温度による変化の度合い)は、そのような補償方法がなく、その値自体が小さいことが重要である。Cr−Ni薄膜のTCSは、図8に示すように約400ppm/℃と小さく良好である。 On the other hand, it is important that the sensitivity temperature coefficient (TCS) (degree of change of gauge rate with temperature) has no such compensation method and its value itself is small. As shown in FIG. 8, the TCS of the Cr—Ni thin film is small and good at about 400 ppm / ° C.

また、第2元素MがFeの場合、図3に示すように、Fe含有量(組成比x)17〜28at%において、平行配置のゲージ率が3.3以上と大きく、かつ垂直配置のゲージ率がほぼゼロになる。そのFe含有量におけるTCSは、図9に示すようにほぼゼロ(<±500ppm/℃)と非常に良好である。したがって、第2元素MがFeの場合は、組成比xは17〜28at%の範囲が好ましい。より好ましくは、17〜23原子%の範囲である。 When the second element M is Fe, as shown in FIG. 3, the gauge ratio of the parallel arrangement is as large as 3.3 or more at the Fe content (composition ratio x) of 17 to 28 at%, and the gauge of the vertical arrangement is vertically arranged. The rate is almost zero. The TCS at the Fe content is very good at almost zero (<± 500 ppm / ° C.) as shown in FIG. Therefore, when the second element M is Fe, the composition ratio x is preferably in the range of 17 to 28 at%. More preferably, it is in the range of 17 to 23 atomic%.

なお、上記特許文献4では、TCSについて言及されていない。 Note that TCS is not mentioned in Patent Document 4 above.

以上はCrをベースとして第2元素を添加した薄膜について説明したが、特許文献2に示すように、Cr−N薄膜もCr薄膜と同様に大きなゲージ率を有し、Cr−Nをベースとして、Crに添加する上記第2元素を、それと等価な第3元素として用いることにより、Crをベースとして第2元素を添加した場合と全く同様の添加量による調整を行うことができ、また同様の結果を得ることができる。 The thin film to which the second element is added based on Cr has been described above, but as shown in Patent Document 2, the Cr-N thin film also has a large gauge ratio like the Cr thin film, and is based on Cr-N. By using the second element to be added to Cr as a third element equivalent thereto, it is possible to make adjustments with exactly the same amount of addition as when the second element is added based on Cr, and the same result. Can be obtained.

ここで、Cr−Nをベースとした場合は、薄膜ひずみセンサ材料は、一般式(Cr100−x100−yで表すことができ、第3元素Mの添加量xは、同様に原子%で0≦x≦30の範囲であり、Nの添加量yは、上記特許文献2と同様、0.0001≦y≦30の範囲である。 Here, when Cr-N is used as a base, the thin film strain sensor material can be represented by the general formula (Cr 100-x M x ) 100-y N y , and the addition amount x of the third element M is Similarly, the atomic% is in the range of 0 ≦ x ≦ 30, and the amount y of N added is in the range of 0.0001 ≦ y ≦ 30, as in Patent Document 2.

Nを添加してCr−Nをベースとすることにより、Nを添加しない場合よりもゲージ率は少し減少することはあるが、N量および熱処理温度によってTCRの調整が可能となり、TCSだけでなくTCRもほぼ0の薄膜ひずみセンサを得ることができる。組成比yを原子%で0.0001≦y≦30の範囲としたのは、この範囲を外れると、TCRの値が絶対値で大きくなってしまうからである。 By adding N and using Cr-N as a base, the gauge ratio may decrease slightly compared to the case where N is not added, but TCR can be adjusted by the amount of N and the heat treatment temperature, and not only TCS but also TCS A thin film strain sensor having a TCR of almost 0 can be obtained. The reason why the composition ratio y is set in the range of 0.0001 ≦ y ≦ 30 in terms of atomic% is that if the composition ratio is out of this range, the TCR value becomes large in absolute value.

以上のように、本発明により、平行配置による一般的なひずみ感度を示すゲージ率が2.1以上、垂直配置の場合のみかけのゲージ率が0±0.3以内の薄膜ひずみセンサを得ることができる。また同時に、TCSが0±500ppm/℃以内の優れた特性を得ることが可能となる。 As described above, according to the present invention, it is possible to obtain a thin film strain sensor having a gauge ratio of 2.1 or more indicating general strain sensitivity in parallel arrangement and an apparent gauge ratio of 0 ± 0.3 or less in the case of vertical arrangement. Can be done. At the same time, it is possible to obtain excellent characteristics in which TCS is within 0 ± 500 ppm / ° C.

Claims (8)

一般式Cr100−xで表される薄膜ひずみセンサ材料であって、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第2元素Mを添加することを特徴とする薄膜ひずみセンサ材料。 A thin film strain sensor material represented by the general formula Cr 100-x M x , in which the thin film of the material is arranged in a direction perpendicular to the direction of the strain to be measured on the high temperature side of the nail temperature of the material. A thin film strain sensor material, wherein the second element M is added in a range of 0 ≦ x ≦ 30 in a composition ratio x of atomic% so that the gauge ratio of the above is within 0 ± 0.3. 一般式(Cr100−x100−yで表される薄膜ひずみセンサ材料であって、組成比yは、原子%で0.0001≦y≦30の範囲であり、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第3元素Mを添加することを特徴とする薄膜ひずみセンサ材料。 A thin film strain sensor material represented by the general formula (Cr 100-x M x) 100-y N y, composition ratio y is in the range of 0.0001 ≦ y ≦ 30 in atomic percent, of the material The composition ratio x is 0 in atomic% so that the gauge ratio is within 0 ± 0.3 when the thin film of the material is arranged in the direction perpendicular to the strain direction to be measured on the high temperature side of the nail temperature. A thin film strain sensor material, characterized in that the third element M is added in the range of ≦ x ≦ 30. 前記第2元素MがNiであり、組成比xが原子%で5≦x≦22であることを特徴とする請求項1に記載の薄膜ひずみセンサ材料。 The thin film strain sensor material according to claim 1, wherein the second element M is Ni and the composition ratio x is 5 ≦ x ≦ 22 in atomic%. 前記第2元素MがFeであり、組成比xが原子%で17≦x≦28であることを特徴とする請求項1に記載の薄膜ひずみセンサ材料。 The thin film strain sensor material according to claim 1, wherein the second element M is Fe and the composition ratio x is 17 ≦ x ≦ 28 in atomic%. 一般式Cr100−xで表される材料の薄膜を受感部として有する薄膜ひずみセンサであって、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第2元素Mを添加することを特徴とする薄膜ひずみセンサ。 A thin film of material represented by the general formula Cr 100-x M x A thin film strain sensor having a sensing part, the high-temperature side of the Neel temperature of the material in the direction of the strain thin film of said material to be measured The second element M is added in the range of 0 ≦ x ≦ 30 with a composition ratio x of atomic% so that the gauge ratio when arranged in the vertical direction is within 0 ± 0.3. Thin film strain sensor. 一般式(Cr100−x100−yで表される材料の薄膜を受感部として有する薄膜ひずみセンサであって、組成比yは、原子%で0.0001≦y≦30の範囲であり、前記材料のネール温度の高温側において、前記材料の薄膜が測定対象のひずみの方向に垂直な方向に配置された場合のゲージ率が0±0.3以内となるように、組成比xが原子%で0≦x≦30の範囲で第3元素Mを添加することを特徴とする薄膜ひずみセンサ。 A general thin-film strain sensor having a (Cr 100-x M x) thin film of a material represented by 100-y N y as a sensing part, the composition ratio y is, 0.0001 ≦ y ≦ 30 at% The gauge ratio is within 0 ± 0.3 when the thin film of the material is arranged in the direction perpendicular to the strain direction of the measurement target on the high temperature side of the nail temperature of the material. A thin film strain sensor characterized in that the third element M is added in the range of 0 ≦ x ≦ 30 with a composition ratio x of atomic%. 前記第2元素MがNiであり、組成比xが原子%で5≦x≦22であることを特徴とする請求項5に記載の薄膜ひずみセンサ。 The thin film strain sensor according to claim 5, wherein the second element M is Ni and the composition ratio x is 5 ≦ x ≦ 22 in atomic%. 前記第2元素MがFeであり、組成比xが原子%で17≦x≦28であることを特徴とする請求項5に記載の薄膜ひずみセンサ。 The thin film strain sensor according to claim 5, wherein the second element M is Fe and the composition ratio x is 17 ≦ x ≦ 28 in atomic%.
JP2017201731A 2017-10-18 2017-10-18 Thin film strain sensor material and thin film strain sensor Active JP6940369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017201731A JP6940369B2 (en) 2017-10-18 2017-10-18 Thin film strain sensor material and thin film strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201731A JP6940369B2 (en) 2017-10-18 2017-10-18 Thin film strain sensor material and thin film strain sensor

Publications (2)

Publication Number Publication Date
JP2019074452A JP2019074452A (en) 2019-05-16
JP6940369B2 true JP6940369B2 (en) 2021-09-29

Family

ID=66545062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201731A Active JP6940369B2 (en) 2017-10-18 2017-10-18 Thin film strain sensor material and thin film strain sensor

Country Status (1)

Country Link
JP (1) JP6940369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171664A1 (en) * 2023-02-16 2024-08-22 アルプスアルパイン株式会社 Strain gauge and sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770367B2 (en) * 1988-09-12 1995-07-31 株式会社豊田中央研究所 Thin film resistor for strain gauge
JP3642449B2 (en) * 1997-03-21 2005-04-27 財団法人電気磁気材料研究所 Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor
JP2013217763A (en) * 2012-04-09 2013-10-24 Honda Motor Co Ltd Material for thin film strain sensor and thin film strain sensor using the same
JP6084393B2 (en) * 2012-08-08 2017-02-22 公益財団法人電磁材料研究所 Strain sensor and strain measurement method

Also Published As

Publication number Publication date
JP2019074452A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
EP3295139B1 (en) High gage factor strain gage
JP2022009950A (en) Strain resistance film and strain sensor, and manufacturing method of them
JP6084393B2 (en) Strain sensor and strain measurement method
EP3176843B1 (en) Magnetoresistive element, magnetic head using magnetoresistive element, and magnetic playback device
JP2013217763A (en) Material for thin film strain sensor and thin film strain sensor using the same
JP6940369B2 (en) Thin film strain sensor material and thin film strain sensor
CN109716548A (en) Exchanging coupling film and the magneto-resistance effect element and magnetic detection device for using the exchanging coupling film
US20080122572A1 (en) Strain sensor and a method of making the same
JP6908554B2 (en) Strain resistance film and strain sensor, and their manufacturing method
JP7268333B2 (en) Strain sensing element and mechanical quantity sensor
WO2021192792A1 (en) Magneto-sensitive wire and manufacturing method therefor
Aliyev et al. Features of electron and phonon processes in GaSb–FeGa1. 3 eutectics
US11366028B2 (en) Stress sensor
JP6708538B2 (en) Thin film alloy for strain sensors with excellent thermal stability
Jen et al. Magnetostriction and Young's modulus of [Fe15Ni85/Fe25Ni75] multilayers
US11177059B2 (en) Film resistor and thin-film sensor
EP4130772A1 (en) Magnetoresistive element having compensated temperature coefficient of tmr
JPH06248399A (en) Amorphous alloy for strain gage and strain gage
JP6774861B2 (en) Strain resistance film and strain sensor for high temperature, and their manufacturing method
Jen et al. Piezoresistance characteristics of some magnetic and non-magnetic metal films
Dössel Longitudinal and transverse gauge factors of polycrystalline strain gauges
RU2715367C1 (en) Structure for mechanical deformation converters
Manic et al. Die stress drift measurement in IC plastic packages using the piezo-Hall effect
Chou et al. Elastic constant anomaly in Fe80− xMoxB20 metallic glasses
CN109664570A (en) A kind of composition metal of corrosion-resistant and high-temperature resistant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210902

R150 Certificate of patent or registration of utility model

Ref document number: 6940369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250