JPH0770367B2 - Thin film resistor for strain gauge - Google Patents

Thin film resistor for strain gauge

Info

Publication number
JPH0770367B2
JPH0770367B2 JP63227740A JP22774088A JPH0770367B2 JP H0770367 B2 JPH0770367 B2 JP H0770367B2 JP 63227740 A JP63227740 A JP 63227740A JP 22774088 A JP22774088 A JP 22774088A JP H0770367 B2 JPH0770367 B2 JP H0770367B2
Authority
JP
Japan
Prior art keywords
strain gauge
thin film
strain
resistance
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63227740A
Other languages
Japanese (ja)
Other versions
JPH0276201A (en
Inventor
秀哉 山寺
与志木 妹尾
康訓 多賀
勝彦 有賀
真 尾崎
直樹 原
治彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63227740A priority Critical patent/JPH0770367B2/en
Priority to EP89116555A priority patent/EP0359132B1/en
Priority to US07/404,209 priority patent/US5001454A/en
Priority to DE68911630T priority patent/DE68911630T2/en
Publication of JPH0276201A publication Critical patent/JPH0276201A/en
Publication of JPH0770367B2 publication Critical patent/JPH0770367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、歪による電気抵抗変化を利用した歪ゲージ用
の薄膜抵抗体に関するものである。
TECHNICAL FIELD The present invention relates to a thin film resistor for a strain gauge that utilizes a change in electrical resistance due to strain.

〔従来技術と問題点〕[Conventional technology and problems]

従来、歪ゲージ用薄膜抵抗体は、大きく分けて、金属ま
たは合金の歪抵抗変化を利用したものと、半導体のピエ
ゾ抵抗効果を利用したものの二種類が用いられてきた
(センサ技術vol.5,No.7,49(1985))。前者(例えば
ニッケル(Ni)−クロム(Cr)合金)は、抵抗温度係数
が小さいため温度による出力の変動が小さく、かつ歪抵
抗特性の直線性に優れている。しかし、歪に対する抵抗
変化の割合、すなわちゲージ率が低いという欠点があっ
た。その結果、前者は、ゲージ率が低いために、歪ゲー
ジのS/N比が小さく高感度の増幅器を必要とし、歪ゲー
ジの小型化が困難であった。一方、後者(例えばSi)
は、ゲージ率は高いが、抵抗温度係数が大きく、歪抵抗
特性の直線性が悪いという欠点があった。その結果、後
者は、歪ゲージの出力に直線性を改善するための増幅器
や温度補償回路を必要とし、制御系が複雑になるという
問題があった。さらに、後者は前者と比べて破壊強度が
弱く、高圧用の歪ゲージには不適であった。
Conventionally, there are roughly two types of thin film resistors for strain gauges, one that utilizes the strain resistance change of metal or alloy and the other that utilizes the piezoresistive effect of semiconductor (sensor technology vol.5, No. 7,49 (1985)). The former (for example, a nickel (Ni) -chromium (Cr) alloy) has a small temperature coefficient of resistance and thus has a small change in output due to temperature, and has excellent linearity of strain resistance characteristics. However, there is a drawback that the ratio of resistance change to strain, that is, the gauge factor is low. As a result, the former requires a high-sensitivity amplifier with a low S / N ratio of the strain gauge due to its low gauge ratio, and it has been difficult to downsize the strain gauge. On the other hand, the latter (eg Si)
Has a high gauge factor, but has a large resistance temperature coefficient and has a drawback that the linearity of the strain resistance characteristic is poor. As a result, the latter requires an amplifier and a temperature compensating circuit for improving the linearity in the output of the strain gauge, which causes a problem that the control system becomes complicated. Furthermore, the latter has a weaker breaking strength than the former and is not suitable for a strain gauge for high pressure.

すなわち、従来は高感度で機械的強度に優れた歪ゲージ
用薄膜抵抗体は存在しなった。特に高感度で歪抵抗特性
・抵抗温度特性・機械的強度がともに良好な歪ゲージ用
薄膜抵抗体は開発することが困難であるとされていた。
That is, conventionally, there has not been a thin film resistor for a strain gauge having high sensitivity and excellent mechanical strength. In particular, it has been considered difficult to develop a thin film resistor for a strain gauge, which has high sensitivity and good strain resistance characteristics, resistance temperature characteristics, and mechanical strength.

〔発明の背景〕[Background of the Invention]

このような状況下、本発明者等は上記問題点を解決すべ
く鋭意努力を重ねた。本発明者等はスパッタリングによ
ってクロム(Cr)と酸素と半導体であるシリコン(Si)
を混合した薄膜が通常の金属・合金では得られないゲー
ジ率(k=5〜10、通常の金属等は1.5〜3)を持つこ
とを見いだした。したがって、Crと酸素と半導体を含ん
だ薄膜抵抗体を歪ゲージ材として用いれば、高感度の歪
ゲージ材が得られることに到達した。また、発明者はCr
への添加剤である酸素とSi等の半導体がCrの伝導電子の
流れを妨げる散乱体として作用して、Crの伝導電子の平
均自由行程を制御でき、その結果、抵抗温度係数を低下
することができると考えた。
Under such circumstances, the present inventors have made diligent efforts to solve the above problems. The inventors of the present invention used chromium (Cr), oxygen, and silicon (Si), which is a semiconductor, by sputtering.
It has been found that the thin film mixed with has a gauge factor (k = 5 to 10 for ordinary metals and the like, 1.5 to 3) that cannot be obtained with ordinary metals and alloys. Therefore, it has been reached that a highly sensitive strain gauge material can be obtained by using a thin film resistor containing Cr, oxygen and a semiconductor as the strain gauge material. In addition, the inventor is Cr
Additives such as oxygen and semiconductors such as Si act as a scatterer that obstructs the flow of conduction electrons of Cr, and can control the mean free path of conduction electrons of Cr, resulting in a decrease in the temperature coefficient of resistance. I thought I could do it.

〔発明の目的〕[Object of the Invention]

本発明は、高感度で機械的強度に優れた歪ゲージ用薄膜
抵抗体、さらには歪抵抗特性および抵抗温度特性にも優
れた歪ゲージ用の薄膜抵抗体を提供することを目的とす
る。
An object of the present invention is to provide a thin film resistor for a strain gauge which has high sensitivity and excellent mechanical strength, and a thin film resistor for a strain gauge which is also excellent in strain resistance characteristics and resistance temperature characteristics.

〔第1発明の説明〕 本第1発明(特許請求の範囲に記載の発明)は、物理的
蒸着法または化学的蒸着法によって形成されたCr60〜98
原子%、酸素2〜30原子%、半導体0〜10原子%が均一
に分布した薄膜であって、膜厚が0.01〜10μmであるこ
とを特徴とする歪ゲージ用薄膜抵抗体に関するものであ
る。
[Explanation of First Invention] The first invention (the invention described in the claims) is made of Cr60 to 98 formed by a physical vapor deposition method or a chemical vapor deposition method.
The present invention relates to a thin film resistor for a strain gauge, which is a thin film in which atomic%, 2 to 30 atomic% of oxygen, and 0 to 10 atomic% of a semiconductor are uniformly distributed and which has a film thickness of 0.01 to 10 μm.

本第1発明に係る歪ゲージ用薄膜抵抗体は、従来ある金
属または合金の歪ゲージに比べ5以上という高ゲージ率
を示す。また、Si等の半導体歪ゲージに比べ歪抵抗の直
線性に優れ、抵抗温度係数も±100ppm/℃以下と小さ
い。また、120℃前後の温度に長時間保持しても抵抗変
化率がほとんど変わらず優れた高温耐久性を示す。さら
に、従来の金属抵抗体に近い強度が維持されており、Si
等の半導体系抵抗体に比べ著しく高い強度を示す。この
ような優れた特性を示す理由ははっきり明らかにされて
いないが、抵抗温度係数が小さい理由として、酸素、特
に半導体がCrの伝導電子の流れを妨げる散乱体として作
用しCrの伝導電子の平均自由行程を制御していること、
組織が極めて微細であること等によるものと考えられ
る。また、Crと添加元素との混合状態が均一なため高温
強度に優れているものと推定される。
The strain gauge thin film resistor according to the first aspect of the present invention exhibits a high gauge ratio of 5 or more as compared with conventional metal or alloy strain gauges. In addition, the linearity of strain resistance is superior to that of semiconductor strain gauges such as Si, and the temperature coefficient of resistance is as small as ± 100 ppm / ° C or less. Further, even if the temperature is kept at around 120 ° C for a long time, the rate of change in resistance hardly changes, and excellent high temperature durability is exhibited. Furthermore, the strength close to that of conventional metal resistors is maintained.
Remarkably higher strength than semiconductor-based resistors such as. The reason why such excellent characteristics are exhibited is not clearly clarified, but the reason for the small temperature coefficient of resistance is that oxygen, especially a semiconductor, acts as a scatterer that blocks the flow of conduction electrons of Cr, and the average of conduction electrons of Cr. Controlling the free path,
It is considered that this is because the structure is extremely fine. Further, it is presumed that the high temperature strength is excellent because the mixed state of Cr and the additional element is uniform.

したがって、本発明に係る薄膜抵抗体を用いれば、高ゲ
ージ率で高温耐久性に優れた圧力センサ、ロードセル等
への応用も可能である。
Therefore, if the thin film resistor according to the present invention is used, it can be applied to a pressure sensor, a load cell, etc. having a high gauge ratio and excellent high temperature durability.

〔第2発明の説明〕 以下、本第1発明をより具体化した発明(本第2発明と
する)について詳しく説明する。
[Description of Second Invention] Hereinafter, an invention (hereinafter referred to as a second invention) that is a more specific embodiment of the first invention will be described in detail.

薄膜抵抗体を構成するCrの含有量は、60〜98%で、酸素
の含有量は2〜30原子%の範囲が望ましい。これらの範
囲外では、高ゲージ率を得るのが困難である。また、半
導体はSiゲルマニウム(Ge)、硼素(B)等を用いる。
半導体の含有量は、高ゲージ率を保ち良好な歪抵抗特性
・抵抗温度特性を得るために、0〜10原子%の範囲が望
ましい。Cr、酸素および半導体は、少なくともμmオー
ダー以下でほぼ均一に分布していないと良好な性質は得
られない。
The Cr content of the thin film resistor is preferably 60 to 98%, and the oxygen content is preferably 2 to 30 atomic%. Outside these ranges, it is difficult to obtain a high gauge factor. As the semiconductor, Si germanium (Ge), boron (B), or the like is used.
The content of the semiconductor is preferably in the range of 0 to 10 atomic% in order to maintain a high gauge ratio and obtain good strain resistance characteristics and resistance temperature characteristics. Good properties cannot be obtained unless Cr, oxygen, and the semiconductor are distributed at least on the order of μm and not substantially evenly.

膜厚は連続膜を形成でき安定な歪抵抗特性を得るため
に、0.01以上で、かつ、膜の内部応力による破壊を防ぐ
ために10μm以下が望ましい。
The film thickness is preferably 0.01 or more in order to form a continuous film and obtain stable strain resistance characteristics, and 10 μm or less in order to prevent the film from being damaged by internal stress.

本第2発明に係る薄膜抵抗体の製造方法は通常の薄膜形
成に用いられるイオンプレーティング法、スパッタリン
グ法、蒸着法やプラズマCVD法等のPVD法あるいはCVD法
のいずれを用いてもよい。ただし、Cr、酸素と半導体の
混合状態を緻密かつ均一にするためには、スパッタリン
グ法または蒸着法が望ましい。また、Cr、酸素と半導体
の混合状態を一層均一にするために、薄膜形成後、200
〜500%で1〜2時間程度の熱処理を施してもよい。薄
膜抵抗体中に酸素を含ませるためには、スパッタリング
等の処理雰囲気中に酸素が含有されていなければならな
いが、スパッタリング等のPVD法等において雰囲気中に
不純物として含まれている程度の酸素量でよい。
The thin film resistor manufacturing method according to the second aspect of the present invention may use any of the PVD method and the CVD method such as the ion plating method, the sputtering method, the vapor deposition method and the plasma CVD method which are used for forming a normal thin film. However, in order to make the mixed state of Cr, oxygen and the semiconductor dense and uniform, the sputtering method or the vapor deposition method is desirable. In order to make the mixed state of Cr, oxygen and semiconductor more uniform, after forming a thin film,
The heat treatment may be performed at about 500% for about 1 to 2 hours. In order to contain oxygen in the thin film resistor, oxygen must be contained in the processing atmosphere such as sputtering, but the amount of oxygen contained as an impurity in the atmosphere in the PVD method such as sputtering. Good.

〔実施例〕〔Example〕

実施例1 第1図に、本実施例によって製作した歪ゲージを示す。 Example 1 FIG. 1 shows a strain gauge manufactured according to this example.

薄膜抵抗体は、二元同時スパッタリング法により形成し
た。まず、コーニング0313ガラス基板1に、トリクレン
煮沸洗浄およびアセトン超音波洗浄を施し、乾燥後スパ
ッタリング装置内に歪ゲージ用SUS製マスクを介して配
置し、装置内で5×10-6Torrまで真空排気した。次に、
Arガスを上記装置内に5×10-3Torr導入し、Crターゲッ
トにDC300W、SiOターゲットにRF100W(13.56M Hz)の電
力を印加し、6分間スパッタリングを行った。このよう
に製作した抵抗体である歪ゲージ膜2の組成をXPS、厚
さを触針式膜厚計によって調査したところ歪ゲージ膜の
組成はCr−24at%酸素(O)−4at%シリコン(Si)膜
厚は0.17μmであった(表)。歪ゲージ膜を形成した基
板を大気中に取り出し、電極用マスクを取り付けた後ス
パッタリング装置内で前記と同様の方法で、Auターゲッ
トにDC250Wの電力を印加し、1分間のスパッタリングを
行い、Au電力膜3を0.1μm形成した。さらに、大気中
で300℃、1hrの熱処理を施した後、Au電極にリード線4
を半田付けした。このようにして製作した歪ゲージを用
いて特性評価試験を行った。
The thin film resistor was formed by a binary simultaneous sputtering method. First, Corning 0313 glass substrate 1 is subjected to trichlene boiling cleaning and acetone ultrasonic cleaning, dried and then placed in a sputtering apparatus through a SUS mask for strain gauge, and vacuum exhausted to 5 × 10 -6 Torr in the apparatus. did. next,
Ar gas was introduced into the above apparatus at 5 × 10 −3 Torr, DC300W was applied to the Cr target, and RF100W (13.56 MHz) was applied to the SiO target, and sputtering was performed for 6 minutes. As a result of investigating the composition of the strain gauge film 2 which is the resistor thus manufactured by XPS and the thickness by a stylus type film thickness meter, the composition of the strain gauge film was found to be Cr-24 at% oxygen (O) -4 at% silicon The Si) film thickness was 0.17 μm (table). After taking out the substrate on which the strain gauge film was formed into the atmosphere and attaching the electrode mask, in the same manner as above in the sputtering device, apply DC250W power to the Au target and perform sputtering for 1 minute. The film 3 was formed to a thickness of 0.1 μm. Further, after heat treatment at 300 ° C for 1 hr in the atmosphere, the lead wire 4 is attached to the Au electrode.
Was soldered. A characteristic evaluation test was performed using the strain gauge manufactured in this manner.

歪ゲージとしての特性評価は、歪抵抗特性、抵抗温度特
性、高温放置試験により行った。第3図は、本実施例に
よって製作した歪ゲージの歪と抵抗変化率の関係を示し
たものである。ゲージ率Kは歪と抵抗変化率の関係を示
す直線の傾きから求めた。抵抗温度特性は、−30℃から
120℃まで温度を変化させ、抵抗温度係数TCR(ppm/℃)
を測定した。また高温放置試験は、120℃で500hr放置し
た後の抵抗変化率ΔR(%)を測定した。表に評価結果
を示す。
The characteristics of the strain gauge were evaluated by strain resistance characteristics, resistance temperature characteristics, and high temperature storage tests. FIG. 3 shows the relationship between strain and resistance change rate of the strain gauge manufactured according to this example. The gauge factor K was obtained from the slope of a straight line showing the relationship between strain and resistance change rate. Resistance temperature characteristics from -30 ℃
Temperature coefficient up to 120 ℃, temperature coefficient of resistance TCR (ppm / ℃)
Was measured. In the high temperature storage test, the resistance change rate ΔR (%) after standing for 500 hours at 120 ° C. was measured. The evaluation results are shown in the table.

実施例2〜4 実施例1と同様の方法で、酸素およびSiの組成を変えて
歪ゲージ膜を形成した。表に、歪ゲージ膜の組成・膜厚
を示す。つぎに、実施例1と同様の方法で電極・リード
線を取り付けて、実施例1と同様の評価試験を実施し、
表に評価結果を示す。
Examples 2 to 4 By the same method as in Example 1, the composition of oxygen and Si was changed to form a strain gauge film. The composition and thickness of the strain gauge film are shown in the table. Next, an electrode / lead wire was attached in the same manner as in Example 1, and the same evaluation test as in Example 1 was performed.
The evaluation results are shown in the table.

比較例 実施例1と同様に、二元スパッタリング法を用いて、組
成がCr−15at%O−13at%SiおよびCr−26at%O−12at
%Siである薄膜抵抗体ならびに従来使われてきた歪ゲー
ジ材であるNi−CrおよびSiをガラス基板上に歪ゲージ膜
として形成した。表に組成・膜厚を示す。次に、実施例
1と同様の方法で電極・リード線を取り付けて歪ゲージ
を製作し、実施例1と同様の評価試験を実施した。表に
評価結果を示す。また、Ni−Cr合金の歪抵抗特性を第3
図に示す。
Comparative Example Similar to Example 1, the composition was Cr-15 at% O-13 at% Si and Cr-26 at% O-12 at using the binary sputtering method.
% Si thin film resistor and Ni-Cr and Si strain gauge materials that have been used conventionally were formed as strain gauge films on a glass substrate. The composition and film thickness are shown in the table. Next, an electrode / lead wire was attached in the same manner as in Example 1 to manufacture a strain gauge, and the same evaluation test as in Example 1 was performed. The evaluation results are shown in the table. In addition, the strain resistance characteristics of Ni-Cr alloy are
Shown in the figure.

評 価 表からわかるように、本実施例1〜4に係るCrと酸素な
らびにCrと酸素とSiで構成される歪ゲージ膜は、比較例
のNi−Cr合金と比べて、3〜5.6倍のゲージ率を有す
る。すなわち、本実 施例の歪ゲージは従来の金属抵抗型歪ゲージよりも感度
が数倍も優れていることが明らかである。また、Cr、酸
素に対しSiを12%ならびに13%添加した比較例5、6は
ゲージ率が5以下と低く、また、Si12%のものは抵抗温
度係数も劣っている。これは、本実施例の歪ゲージで
は、Crに酸素とSiが適当量混合していることにより高い
ゲージ率を有する薄膜が形成された効果によるものであ
る。
As can be seen from the evaluation table, the strain gauge films composed of Cr and oxygen and Cr, oxygen and Si according to the present Examples 1 to 4 have 3 to 5.6 times as much as the Ni-Cr alloy of the Comparative Example. Has a gauge factor. That is, the real It is clear that the strain gauge of the example is several times more sensitive than the conventional metal resistance type strain gauge. Further, Comparative Examples 5 and 6 in which Si is added to Cr and oxygen at 12% and 13% have a low gauge ratio of 5 or less, and those having Si12% are inferior in the temperature coefficient of resistance. This is because, in the strain gauge of this example, a thin film having a high gauge ratio was formed by mixing oxygen and Si in appropriate amounts in Cr.

さらに、表からわかるようにCrと酸素ならびにCrと酸素
とSiからなる歪ゲージは、比較例のSiの歪ゲージと比
べ、抵抗温度特性・高温耐久性が優れていることが明ら
かである。これは、Cr中に酸素とSiが適当量混合するこ
とにより、Crの伝導電子の平均自由行程が短くなり、抵
抗温度係数が小さくなったためであると考えられる。ま
た、Crと酸素とSiの混合状態が均一なために、高温放置
しても薄膜は安定であった。また第3図から本実施例に
より製作した歪ゲージは直線性を維持したままで歪感度
が著しく改善されていることが明らかである。
Further, as can be seen from the table, it is clear that the strain gauge composed of Cr and oxygen and Cr, oxygen and Si are superior in resistance temperature characteristics and high temperature durability as compared with the strain gauge of Si of the comparative example. It is considered that this is because the mean free path of conduction electrons of Cr was shortened and the temperature coefficient of resistance was decreased by mixing oxygen and Si in an appropriate amount in Cr. In addition, since the mixed state of Cr, oxygen and Si was uniform, the thin film was stable even when left at high temperature. Further, it is apparent from FIG. 3 that the strain gauge manufactured according to this example has a significantly improved strain sensitivity while maintaining the linearity.

また、本実施例1および2に係る歪ゲージはSi等の半導
体の歪ゲージに比し、強度が著しく優れていた。
Further, the strain gauges according to Examples 1 and 2 were remarkably excellent in strength as compared with the strain gauges of semiconductors such as Si.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例において用いた歪ゲージの平面
図、第2図は該歪ゲージの断面図、第3図は実施例1と
比較例1の歪−抵抗変化率の関係を求めた図である。 1……ガラス基板、2……歪ゲージ膜 3……Au電極膜、4……リード線
FIG. 1 is a plan view of a strain gauge used in an example of the present invention, FIG. 2 is a sectional view of the strain gauge, and FIG. 3 is a relationship between strain-resistance change rates of Example 1 and Comparative Example 1. It is a figure. 1 ... Glass substrate, 2 ... Strain gauge film 3 ... Au electrode film, 4 ... Lead wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有賀 勝彦 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 尾崎 真 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 原 直樹 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 井上 治彦 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 審査官 張谷 雅人 (56)参考文献 特開 昭52−139992(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiko Ariga 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihon Denso Co., Ltd. (72) Inventor, Makoto Ozaki 1-1-1-1, Showa town, Kariya city, Aichi prefecture Incorporated (72) Inventor Naoki Hara, 1-1, Showa-cho, Kariya, Aichi Nihon Denso Co., Ltd. (72) Inventor Haruhiko Inoue, 1-1, Showa-cho, Kariya, Aichi Nidec Corporation Official Masato Hariya (56) Reference JP-A-52-139992 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物理的蒸着法または化学的蒸着法によって
形成された、Cr60〜98原子%、酸素2〜30原子%、半導
体0〜10原子%が均一に分布した薄膜であって、膜厚が
0.01〜10μmであることを特徴とする歪ゲージ用薄膜抵
抗体。
1. A thin film formed by physical vapor deposition or chemical vapor deposition, in which Cr60 to 98 atomic%, oxygen 2 to 30 atomic%, and semiconductor 0 to 10 atomic% are uniformly distributed. But
A thin film resistor for a strain gauge, which is 0.01 to 10 μm.
JP63227740A 1988-09-12 1988-09-12 Thin film resistor for strain gauge Expired - Fee Related JPH0770367B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63227740A JPH0770367B2 (en) 1988-09-12 1988-09-12 Thin film resistor for strain gauge
EP89116555A EP0359132B1 (en) 1988-09-12 1989-09-07 Thin film resistor for strain gauge
US07/404,209 US5001454A (en) 1988-09-12 1989-09-07 Thin film resistor for strain gauge
DE68911630T DE68911630T2 (en) 1988-09-12 1989-09-07 Thin film resistance for strain gauges.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227740A JPH0770367B2 (en) 1988-09-12 1988-09-12 Thin film resistor for strain gauge

Publications (2)

Publication Number Publication Date
JPH0276201A JPH0276201A (en) 1990-03-15
JPH0770367B2 true JPH0770367B2 (en) 1995-07-31

Family

ID=16865626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227740A Expired - Fee Related JPH0770367B2 (en) 1988-09-12 1988-09-12 Thin film resistor for strain gauge

Country Status (1)

Country Link
JP (1) JPH0770367B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2838361B2 (en) * 1994-06-06 1998-12-16 大阪府 Pressure sensor integrated pressure sensor
JP3391115B2 (en) * 1994-09-27 2003-03-31 エヌオーケー株式会社 Method for producing chromium-oxygen alloy thin film
EP0736881B1 (en) * 1995-03-09 2000-05-24 Philips Patentverwaltung GmbH Electrical resistance device with CrSi resistance layer
JP6940369B2 (en) * 2017-10-18 2021-09-29 公益財団法人電磁材料研究所 Thin film strain sensor material and thin film strain sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100524A (en) * 1976-05-06 1978-07-11 Gould Inc. Electrical transducer and method of making

Also Published As

Publication number Publication date
JPH0276201A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
JP3010166B2 (en) Thick film piezoresistor detection structure
US5508676A (en) Strain gauge on a flexible support and transducer equipped with said gauge
JP5295779B2 (en) Precision force transducer with strain gauge elements
US4276535A (en) Thermistor
JPS5955001A (en) Resistor
US4100524A (en) Electrical transducer and method of making
US5001454A (en) Thin film resistor for strain gauge
JPS63249301A (en) Compound resistor and manufacture of the same
JPH0666162B2 (en) Thin film resistor for strain gauge
JPH0770367B2 (en) Thin film resistor for strain gauge
JP2562610B2 (en) Thin film resistor for strain gauge
Bethe et al. Thin-film strain-gage transducers
JP2022074104A (en) Strain gauge and manufacturing method thereof
JPS62222137A (en) Diaphragm for pressure sensor
Ayerdi et al. Ceramic pressure sensor based on tantalum thin film
JPH06163201A (en) Resistance thin film
JP2001110602A (en) Thin-film resistor forming method and sensor
JPH0350801A (en) Thin-film resistor for strain gage
JPH0684602A (en) Thin film resistor material
EP4350313A1 (en) Strain resistance film, physical quantity sensor, and method for manufacturing the strain resistance film
JPS5892201A (en) Thin film platinum temperature sensor
JPS60174844A (en) Amorphous alloy for material of strain gauge
WO2022202106A1 (en) Strain resistance film, pressure sensor, and layered body
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
Chang et al. The influence of iron on properties of deposited Ni Cr Si resistors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees