JPS60174844A - Amorphous alloy for material of strain gauge - Google Patents

Amorphous alloy for material of strain gauge

Info

Publication number
JPS60174844A
JPS60174844A JP3193384A JP3193384A JPS60174844A JP S60174844 A JPS60174844 A JP S60174844A JP 3193384 A JP3193384 A JP 3193384A JP 3193384 A JP3193384 A JP 3193384A JP S60174844 A JPS60174844 A JP S60174844A
Authority
JP
Japan
Prior art keywords
strain gauge
amorphous alloy
formula
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3193384A
Other languages
Japanese (ja)
Other versions
JPH0536497B2 (en
Inventor
Takeshi Masumoto
健 増本
Kazuaki Fukamichi
和明 深道
Masami Ishii
石井 正己
Hiroshi Motoyama
本山 浩
Ryohei Yabuno
良平 藪野
Tetsuo Oka
徹雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3193384A priority Critical patent/JPS60174844A/en
Publication of JPS60174844A publication Critical patent/JPS60174844A/en
Publication of JPH0536497B2 publication Critical patent/JPH0536497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain the titled alloy usable even in an environment at high humidity under high vibration by forming an amorphous thin film of a nonmagnetic Ni-Si-B alloy having a specified composition, a low temp. coefft. of electric resistance and high electric resistance on a substrate by a vacuum film forming technique. CONSTITUTION:An amorphous thin film having a composition represented by a formula NiaSibBc (where each of a, b and c is the atomic vol% of the element, a+b+c=100, 60<=a<=74, 16.5<=b, and 26<=b+c<=40) is formed on a substrate by a vacuum film forming technique such as sputtering. Unlike a conventional film formed by adhesion the resulting amorphous alloy film maintains its reliability and has stable strain gauge characteristics and high sensitivity, so the amorphous alloy film is most suitable for use as material for a strain gauge.

Description

【発明の詳細な説明】 〔発明の対象〕 本発明は電気抵抗温度係数(以下TCRという)が小さ
く、電気抵抗が高く、非磁性である、ひずみゲージ材料
として通した、ひずみゲージ材料用非晶質合金に関する
ものである。
[Detailed Description of the Invention] [Object of the Invention] The present invention provides an amorphous material for strain gauge materials that has a small temperature coefficient of electrical resistance (hereinafter referred to as TCR), high electrical resistance, and is non-magnetic. It concerns quality alloys.

〔従来技術〕[Prior art]

この従来の非晶質合金としては、本発明者らの発明にか
かる、特開昭56−77356号「ひずみゲージ材料用
非晶質合金」がある。
An example of this conventional amorphous alloy is ``Amorphous Alloy for Strain Gauge Material'' disclosed in Japanese Patent Application Laid-open No. 56-77356, which was invented by the present inventors.

これは単ロール法あるいは、双ロール法で製造され、T
CRが小さく、電気抵抗率が高く、かつ非磁性であり、
式N1aSibBc又はNidMeSifBg (a 
:65.5〜70.1原子%、b:3〜16原子%、c
 : 13.9〜31.5%原子%、 a+b+c=1
00 、 d :5B、6〜73.0原子%、e:0〜
?原子%、f:3〜16原子%、g : 11.0〜3
1.4原子%、d+e+f+g=IQO)で示される非
晶質合金である。
This is manufactured by a single roll method or a twin roll method, and T
It has a low CR, high electrical resistivity, and is non-magnetic.
Formula N1aSibBc or NidMeSifBg (a
: 65.5 to 70.1 at%, b: 3 to 16 at%, c
: 13.9-31.5% atomic%, a+b+c=1
00, d: 5B, 6-73.0 atomic%, e: 0-
? atomic%, f: 3 to 16 atomic%, g: 11.0 to 3
It is an amorphous alloy with a content of 1.4 atomic % (d+e+f+g=IQO).

〔従来技術の問題点及びその技術的分析〕この種の従来
の非晶質合金は、単ロール法あるいは双ロール法によっ
て製造されるために、Si量を増大させていくと溶湯を
超急冷しても非晶質化力(困難であり、TCRが小さく
、電気抵抗率が高くかつ非磁性である非晶質合金を得る
ことが難しく、更に、ひずみゲージとして使用する場合
に形状が薄板よりなるリボン状であるために、(11被
測定位の中での変化を小さくするために小型で、薄い箔
状又は細線とする必要があり、(2)接着剤にて貼付け
て使用するために、ひずみゲージとしての耐久性信頼性
に乏しく、(3)大きな振動の無い場所で使用するとか
、湿気の少ない環境で使用する等の、測定機器の使用場
所の制限をうけ、 (4) 電気抵抗が小さいので、実際の使用について別
体として増幅回路を併用する必要があり、(5)年数回
の、ひずみゲージの精度測定のメンテナンスが必要であ
る、 という問題点があった。
[Problems in the prior art and their technical analysis] This type of conventional amorphous alloy is manufactured by a single roll method or a twin roll method, so as the amount of Si is increased, the molten metal is cooled super rapidly. However, it is difficult to obtain an amorphous alloy with low TCR, high electrical resistivity, and non-magnetic properties, and furthermore, when used as a strain gauge, the shape is made of a thin plate. Because it is ribbon-shaped, (11) it needs to be small and thin foil-shaped or a thin wire to reduce changes within the measured position, and (2) it is used by pasting it with adhesive. It lacks durability and reliability as a strain gauge, (3) there are restrictions on where the measuring equipment can be used, such as using it in a place without large vibrations or in a low humidity environment, and (4) the electrical resistance is low. Since it is small, it is necessary to use a separate amplifier circuit for actual use, and (5) maintenance is required to measure the accuracy of the strain gauge several times a year.

〔技術的課題〕[Technical issues]

そこで本発明は、Siを大量に含有し、しかもTCRが
小さく、電気抵抗が高(、かつ非磁性で、ひずみゲージ
として、大きな振動、湿度のある環境においても、その
影響をまったく受けず、感度が鋭敏で、耐久性、信頼性
がありメンテナンスも余り必要としない、ひずみゲージ
材料用非晶質合金を得ることを、その技術的課題とする
ものである。
Therefore, the present invention contains a large amount of Si, has a small TCR, has a high electrical resistance (and is non-magnetic), and can be used as a strain gauge even in environments with large vibrations and humidity, and is completely unaffected by the vibrations and has sensitivity. The technical objective is to obtain an amorphous alloy for strain gauge materials that is sensitive, durable, reliable, and requires little maintenance.

〔技術的手段及びその作用〕[Technical means and their effects]

上記技術的課題を解決するために、講じた技術的手段は
、 (11電気抵抗係数の絶対値が小さく、電気抵抗が高く
、かつ非磁性であり、真空薄膜作製技術により基板上に
形成されることを特徴とする、N1asibBcなる式
で示される成分組成をもつ、ひずみゲージ材料用非晶質
合金。
The technical measures taken to solve the above technical problems are as follows: An amorphous alloy for strain gauge materials having a composition represented by the formula N1asibBc.

但し式中Niはニッケル、Siは珪素、Bは硼素であり
、a、b、cは各々の元素の原子体積%を示しB+b+
cは実質的に100であり、60≦a≦74.16.5
≦b、26≦b+c≦40、および(2)前記11)に
示される合金のうち、Niの一部を他の元素で置換した
NidMeSifBgなる式で示される成分組成をもつ
、ひずみゲージ材料用非晶質合金・ 但し式中Nは元素記号(Hr、AI、Cu、Fe、V、
Tiのうち1種又は複数種の元素で、d、e、f、gは
各々の元素の原子体積%;を示し、d+e+f+gは実
質的ニ100テあり、405; d ≦74. O≦e
≦20.16.5≦f、26≦f+g≦40である。
However, in the formula, Ni is nickel, Si is silicon, and B is boron, and a, b, and c represent the atomic volume % of each element, and B+b+
c is substantially 100, and 60≦a≦74.16.5
≦b, 26≦b+c≦40, and (2) Among the alloys shown in 11) above, a non-alloy for strain gauge materials having a composition shown by the formula NidMeSifBg in which a part of Ni is replaced with another element. Crystalline alloy・However, N in the formula is the element symbol (Hr, AI, Cu, Fe, V,
One or more elements among Ti, d, e, f, g represent atomic volume % of each element; d+e+f+g is substantially 2100, 405; d≦74. O≦e
≦20.16.5≦f, 26≦f+g≦40.

上記(1)、 (21の非晶質合金は、真空蒸着法、 
CVD、スパッタ法等の真空成膜技術を用い、(al 
ガラス等のセラミック基板上。
The above (1), (21) amorphous alloy is produced by vacuum evaporation method,
Using vacuum film-forming techniques such as CVD and sputtering, (al
On ceramic substrates such as glass.

(b) 適当な絶縁皮膜や絶縁層を形成した金属基板上 (C) 樹脂や樹脂基板上 (d) その表面が電気的に絶縁された被測定部品上に
製造される。
(b) On a metal substrate with a suitable insulating film or layer formed thereon (C) On a resin or resin substrate (d) On a part to be measured whose surface is electrically insulated.

本発明の合金におい・て、成分組成を限定する理由は、
本発明の第1発明の合金において、Niが60%未満で
は、TCRが一50ppm /’C以下となり、 ひずみゲージとして好ましくなく、 Niが74%を超えると1、TCRが+50ppm /
”C以下となり、 ひずみゲージとして使用が困難であり、Stが16.5
%未満では、Bを増加する必要があり、Bの飛散による
濃度のバラツキが生じ易く、安定性が悪くなり、B又は
、Stが40%を超えると、TCRが一50ppm /
 ’C以下となる。
The reason for limiting the composition of the alloy of the present invention is as follows:
In the alloy of the first aspect of the present invention, if the Ni content is less than 60%, the TCR will be 150 ppm/'C or less, which is not preferable as a strain gauge, and if the Ni content is more than 74%, the TCR will be 1 and the TCR will be +50 ppm/'C.
”C or less, making it difficult to use as a strain gauge, and St is 16.5.
If B or St exceeds 40%, it is necessary to increase B, and the concentration tends to vary due to scattering of B, resulting in poor stability. If B or St exceeds 40%, TCR decreases to -50 ppm/
'C or below.

又本発明の第2合金において、 Niが40%未満ではTCRが一50ppm /’c以
下となり、ひずみゲージとして好ましくなくNiが74
%を超えるとTCRは+50ppm /T:以上となり
、ひずみゲージとして使用が困難であり、Siが16.
5%未満では、Bを増加することにより、Bの飛散によ
る濃度のバラツキが生じ易く、B又は、Siが40%を
超えると、TCRが一59ppm/℃以下となる。
In addition, in the second alloy of the present invention, if the Ni content is less than 40%, the TCR will be less than 150 ppm/'c, which is undesirable as a strain gauge.
%, the TCR becomes +50 ppm/T: or more, making it difficult to use as a strain gauge.
If it is less than 5%, increasing B tends to cause concentration variations due to scattering of B, and if B or Si exceeds 40%, the TCR will be 159 ppm/°C or less.

又、Cr、^1.Cu、Fe、V+Tiのなかから選ば
れる何れか1種又は数種以上の元素は、電気抵抗率を高
め、対銅熱起電力を小さくする等の効果があるが、20
%以上多くするとTCRが悪化することがあるので、こ
れらの元素は20%以下にする必要がある。
Also, Cr, ^1. One or more elements selected from Cu, Fe, and V+Ti have the effect of increasing electrical resistivity and reducing thermoelectromotive force against copper, but 20
If the content of these elements is increased by 20% or more, the TCR may deteriorate, so the content of these elements needs to be 20% or less.

次に上記成分組成により製造した、ひずみゲージは、 圧延等の薄板加工を必要としなく、又工程も少なく、非
常に均質で極薄膜(〜1μm)にできるので高い電気抵
抗をもち、高い感度を得ることができ、増巾器も低倍で
すみ、測定精度が高く、また基板上に直接成膜するたと
により、接着材による貼付を行なわないために、信頼性
が有り、振動等の耐環境性の飛躍的向上、検査回数の大
l】な削減、低コスト化1歩留り向上を期待することが
でき、特にスパッタ法やイオンブレーティング法によれ
ば密着強度は著しく向上し、信頼性が著しく改善される
ものである。
Next, the strain gauge manufactured with the above component composition does not require thin plate processing such as rolling, has few steps, and can be made into a very homogeneous and extremely thin film (~1 μm), so it has high electrical resistance and high sensitivity. It requires only a low magnification, high measurement accuracy, and since the film is formed directly on the substrate, no adhesive is required, making it reliable and resistant to vibrations and other environments. We can expect a dramatic improvement in performance, a significant reduction in the number of inspections, and lower costs.In particular, sputtering and ion-blating methods can significantly improve adhesion strength and significantly improve reliability. It will be improved.

更にN15iB系、 N1M5iB系非晶質合金の組成
による形成範囲を拡大することができ、従来液体急冷法
によればSt含有率の限界はその形成能により16原子
%であったが、これ以上かなり広い範囲まで非晶質化が
可能となり、これに従ってTCROの領域は図に示すよ
うに拡張された。図中の(A)はTCR=Oppn+/
”Cとなる組成を示す線で、(B)、(C)は各々約−
50ppm / ”C、約+50ppm/℃を示す線で
ある、(C)及び(、B)の線はそのSiとBの含有率
の和が各々はぼ26.39原子%であり、(B)と(C
)間の領域で示される組成ではひずみゲージ、として望
ましい温度特性を満足しているとみてよ(十分に実用に
供することができる。
Furthermore, it is possible to expand the formation range of N15iB-based and N1M5iB-based amorphous alloys depending on their composition. According to the conventional liquid quenching method, the limit of the St content was 16 at. Amorphousization has become possible over a wide range, and the TCRO area has accordingly been expanded as shown in the figure. (A) in the figure is TCR=Oppn+/
``A line showing the composition of C, where (B) and (C) are each about -
The lines (C) and (,B) indicate that the sum of the Si and B contents is approximately 26.39 at%, and (B) and (C
It is assumed that the composition shown in the range between ) satisfies the desired temperature characteristics as a strain gauge (it can be put to practical use sufficiently).

また、これらの特性はN15iB系の主にNiをM(C
r+AI+Cu+Fe+V+Ttのうち1種又は2種以
上)に0〜20原子%置換した場合にも同様に現われる
ことが判明している。
In addition, these characteristics are mainly due to Ni in the N15iB system.
It has been found that the same phenomenon occurs when 0 to 20 atom % of one or more of r+AI+Cu+Fe+V+Tt is substituted.

〔本発明による特有の効果〕[Special effects of the present invention]

本発明は次の特有の効果を生じる。すなわち、(11従
来のBを多く含む組成はそのターゲット溶融時にBの飛
散が多く、ターゲットを鋳造する場合のB濃度の再現性
が悪く組成の不良が多く発生するが、Bを減少して、本
発明のSLを増加すれば、Stはターゲット溶融時に飛
散することがな(、従って濃度のバラツキが少なく、良
好な再現性でターゲットが作成でき、 (2)又BはSiの価格の数十倍するために、Bを多く
含む組成は高価となり、TCRを小さく保つためBを減
少して、Stを増加すればコスト面の効果も極めて大で
ある。
The present invention produces the following unique effects. That is, (11) the conventional composition containing a large amount of B causes a lot of B to scatter when the target is melted, and the reproducibility of the B concentration when casting the target is poor, resulting in many composition defects. By increasing the SL of the present invention, St will not scatter when the target is melted (therefore, there will be little variation in concentration, and targets can be created with good reproducibility. In order to double the amount, a composition containing a large amount of B becomes expensive, and if B is reduced and St is increased in order to keep TCR small, the cost effect is extremely large.

(実施例) 以下、上記技術的手段の一具体例を示す実7iff+ 
171について説明する。
(Example) Hereinafter, a practical example 7iff+ showing a specific example of the above technical means will be described.
171 will be explained.

スパッタリングにより、ガラス基板(!−勺30111
11蚤)上にNt、si、B、よりなる非晶質薄膜を0
.5.c+mの厚さに成膜し、フォトエツチングGこよ
りひずみゲージパターンを作製した、この場合ひずみゲ
ージの各辺の抵抗値は約800Ω、比抵抗しよ糸勺15
2μΩGで、TCRは−0,10pp輸/’Cとはルよ
0に近(、%ものが得られた。
By sputtering, a glass substrate (!-30111
11) on which an amorphous thin film consisting of Nt, Si, and B was deposited.
.. 5. A film was formed to a thickness of c + m, and a strain gauge pattern was created by photo-etching.In this case, the resistance value on each side of the strain gauge was approximately 800Ω, and the resistivity was 15
At 2 μΩG, the TCR was -0.10 pp/'C, which is very close to 0.

なお非晶質化の確認はX線回折装置にて行なった。成膜
時のスパッタリングは2 X 10−′Torrまで減
圧した後アルゴンガスを3 X 10−Jの圧力で定常
的に流し、RF電源により0.5に−の電力で約40分
間行った。
Note that amorphization was confirmed using an X-ray diffraction device. Sputtering during film formation was carried out for about 40 minutes by reducing the pressure to 2 x 10-' Torr, then constantly flowing argon gas at a pressure of 3 x 10-J, and using an RF power source of 0.5-.

このようにして得たNi47Si8Bp非晶質合金膜は
従来の接着による信頼性め低下がなく、安定した、ひず
みゲージ特性をもち、低温から約120℃の高温まで温
度補正を必要としない高感度素子に最適である。
The Ni47Si8Bp amorphous alloy film obtained in this way does not suffer from the reliability degradation caused by conventional adhesion, has stable strain gauge characteristics, and is a highly sensitive element that does not require temperature correction from low temperatures to high temperatures of approximately 120°C. Ideal for

次に表に各成分組成と、TCR,比抵抗、結晶化温度の
値を示す。
Next, the table shows the composition of each component and the values of TCR, specific resistance, and crystallization temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の非晶質合金の組成におけるTCHの分布を
示し、SiとBとの含有量との関係を示す。 0 f to zr 20 B 厘+2
The figure shows the distribution of TCH in the composition of the amorphous alloy of the present invention, and shows the relationship between the contents of Si and B. 0 f to zr 20 B rin+2

Claims (1)

【特許請求の範囲】 (11電気抵抗温度係数の絶対値が小さく、電気抵抗が
高く、かつ非磁性であり、真空薄膜作製技術により基板
上にi成されることを特徴とするN1aSibBcなる
式で示される成分組成をもつ、ひずみゲージ材料用非晶
質合金薄膜。但し、式中のNiはニッケル、 Stは硅
素、Bは硼素であり、a、b、cは各々の元素の原子体
積%を示し、a+b+cは実質的に100であり、60
≦a≦74.16.5≦b、26≦b+c≦40である
。 (2、特許請求の範囲第1項に示された合金のうち、N
1の一部を他の元素で置換したNidMeStfBgな
る式で示される成分組成をもつ、ひずみゲージ材料用非
晶質合金薄膜。但し、式中Hは元素記号Cr、A1+C
u+Fe、V+Tiのうちの1種又は複数種の元素で、
d + e + f + gは各々の元素の原子体積%
を示し、d+e+f +gは実質的に100であり、4
0≦d≦74. 0≦e≦20.16.5≦f、26≦
f十g≦40である。
[Claims] (11) A formula N1aSibBc characterized by having a small absolute value of electrical resistance temperature coefficient, high electrical resistance, non-magnetic properties, and being formed on a substrate by vacuum thin film production technology. An amorphous alloy thin film for strain gauge materials having the composition shown below.In the formula, Ni is nickel, St is silicon, B is boron, and a, b, and c represent the atomic volume percent of each element. and a+b+c is substantially 100 and 60
≦a≦74.16.5≦b, 26≦b+c≦40. (2. Among the alloys shown in claim 1, N
An amorphous alloy thin film for strain gauge material, having a composition represented by the formula NidMeStfBg in which part of 1 is replaced with another element. However, in the formula, H is the element symbol Cr, A1+C
One or more elements of u + Fe, V + Ti,
d + e + f + g is the atomic volume % of each element
, d+e+f +g is substantially 100, and 4
0≦d≦74. 0≦e≦20.16.5≦f, 26≦
f10g≦40.
JP3193384A 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge Granted JPS60174844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193384A JPS60174844A (en) 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193384A JPS60174844A (en) 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge

Publications (2)

Publication Number Publication Date
JPS60174844A true JPS60174844A (en) 1985-09-09
JPH0536497B2 JPH0536497B2 (en) 1993-05-31

Family

ID=12344766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193384A Granted JPS60174844A (en) 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge

Country Status (1)

Country Link
JP (1) JPS60174844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812801A (en) * 1987-05-14 1989-03-14 The United States Of America As Represented By The Secretary Of The Air Force Solid state gas pressure sensor
US4821011A (en) * 1986-03-24 1989-04-11 Aisin Seiki Kabushiki Kaisha Pressure sensor
CN100389219C (en) * 2006-06-22 2008-05-21 山东大学 Nickel-silicon-boron intermediate alloy and process for preparing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122000A (en) * 1978-03-13 1979-09-21 Ibm Amorphous magnetic film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122000A (en) * 1978-03-13 1979-09-21 Ibm Amorphous magnetic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821011A (en) * 1986-03-24 1989-04-11 Aisin Seiki Kabushiki Kaisha Pressure sensor
US4812801A (en) * 1987-05-14 1989-03-14 The United States Of America As Represented By The Secretary Of The Air Force Solid state gas pressure sensor
CN100389219C (en) * 2006-06-22 2008-05-21 山东大学 Nickel-silicon-boron intermediate alloy and process for preparing same

Also Published As

Publication number Publication date
JPH0536497B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
Parker et al. Electrical Resistance‐Strain Characteristics of Thin Evaporated Metal Films
JP3642449B2 (en) Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor
US4805296A (en) Method of manufacturing platinum resistance thermometer
CA1156486A (en) Deformable flexure element for strain gage transducer and method of manufacture
JPS5814864B2 (en) Glassy metal alloy temperature sensing element for resistance thermometers
US4100524A (en) Electrical transducer and method of making
EP0032180B1 (en) Amorphous magnetic alloy containing at least co and ti
Aboaf et al. Amorphous magnetic alloys of cobalt‐titanium
JPS60174844A (en) Amorphous alloy for material of strain gauge
CA1094360A (en) Palladium alloys
JP3933213B2 (en) Cr-based alloy thin film, method for producing the same, and strain gauge
US4212688A (en) Alloy for magnetoresistive element and method of manufacturing the same
US4465577A (en) Method and device relating to thin-film cermets
Ayerdi et al. Ceramic pressure sensor based on tantalum thin film
JPH0666162B2 (en) Thin film resistor for strain gauge
JP2022074104A (en) Strain gauge and manufacturing method thereof
JP2562610B2 (en) Thin film resistor for strain gauge
US5521005A (en) Magnetoresistive head
Brunsch Non‐magnetostrictive amorphous soft magnetic thin film material of high magnetization
GB1586857A (en) Resistive films
JPH0276201A (en) Thin film resistor for strain gauge
US3609625A (en) Semiconductor strain gauge
Whiting et al. Multilayered Cu/Cr films as strain gauges
Brunsch Magnetic properties and corrosion resistance of (CoFeB) 100− xCrx thin films
Koike et al. Elastoresistance Effects in Evaporated Bismuth Films