JP2022074104A - Strain gauge and manufacturing method thereof - Google Patents

Strain gauge and manufacturing method thereof Download PDF

Info

Publication number
JP2022074104A
JP2022074104A JP2021176924A JP2021176924A JP2022074104A JP 2022074104 A JP2022074104 A JP 2022074104A JP 2021176924 A JP2021176924 A JP 2021176924A JP 2021176924 A JP2021176924 A JP 2021176924A JP 2022074104 A JP2022074104 A JP 2022074104A
Authority
JP
Japan
Prior art keywords
substrate
thin film
range
strain gauge
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021176924A
Other languages
Japanese (ja)
Inventor
英二 丹羽
Eiji Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Publication of JP2022074104A publication Critical patent/JP2022074104A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

To provide a strain gauge and its manufacturing method that can improve a film formation yield and the uniformity of characteristics.SOLUTION: A strain gauge includes: a thin plate-shaped substrate 1; and a thin film element 2 formed on one main surface 101 of a pair of main surfaces 101 and 102 of the substrate 1 and disposed in a designated manner. The substrate 1 is made of a resin having a rigidity ratio in a range of 200 to 1000×103 Pa m and a coefficient of thermal expansion in a range of 0 ppm/°C to 30 ppm/°C. The thin film element 2 is made of a Cr-N thin film having a nitrogen (N) content in a range of 2 to 8 at%, a temperature coefficient of resistance (TCR) in 0±400 ppm/°C, and a gauge ratio of 3 to 20.SELECTED DRAWING: Figure 1

Description

本発明は、測定対象である起歪構造体の表面に接着して用いるひずみゲージに関する。 The present invention relates to a strain gauge used by adhering to the surface of a strain-causing structure to be measured.

Cr-N薄膜は、ひずみに対する感度を示すゲージ率が約14と大きいこと、窒素の少量添加と熱処理により抵抗温度係数(TCR)をゼロ近傍(<±50ppm/℃)にすることが可能であること、および数10kΩの高抵抗化が可能であることなどを特徴とする新しいひずみセンサ材料である(特許文献1参照)。 The Cr-N thin film has a large gauge ratio of about 14 indicating sensitivity to strain, and the temperature coefficient of resistance (TCR) can be set to near zero (<± 50 ppm / ° C.) by adding a small amount of nitrogen and heat treatment. This is a new strain sensor material characterized by the fact that the resistance can be increased by several tens of kΩ (see Patent Document 1).

従来のひずみゲージ(接着式ひずみセンサ素子)は、センサ材である格子状に成形されたCuNi系やNiCr系合金等の金属箔をポリイミド等樹脂製のベース(基板)に貼り付けた構造を成す。それをひずみならびに各種力学量の計測に利用する場合、さらに測定対象である起歪構造体表面に接着して用いる。そのときベースは電気的な絶縁と形状保持を含む取り扱いの簡便さを提供するために必要とされる。また、ベースがひずみを正しく伝達することも重要であり、そのためにヤング率が小さく伸びの大きい素材が要求され、今日では樹脂が多く用いられている。 The conventional strain gauge (adhesive strain sensor element) has a structure in which a metal foil such as a CuNi-based or NiCr-based alloy formed in a grid pattern, which is a sensor material, is attached to a resin base (base) such as polyimide. .. When it is used for measuring strain and various dynamic quantities, it is further adhered to the surface of the strain-causing structure to be measured. The base is then required to provide ease of handling, including electrical insulation and shape retention. It is also important for the base to transmit strain correctly, which requires a material with a low Young's modulus and a large elongation, and resins are often used today.

ひずみセンサ薄膜を力学量センサとして利用する場合、ベースは用いずに、(起歪構造体が金属等導電体の場合は絶縁体膜を介して)起歪構造体上に直接センサ素子を形成することが可能である。従来のひずみゲージでは「接着」が手作業ゆえ位置ずれが生じやすく、またベースや接着剤によるクリープの影響も懸念されるのに対し、測定対象上に直接形成する薄膜の場合それらの問題を考慮する必要が無い。しかし、測定対象の構造上、穴、菅、複雑形状等の内奥部など、薄膜形成が不可能な場所にひずみセンサを設置する場合は接着による方式を選択する必要がある。そこでCr-N薄膜についても接着方式で利用できる素子の開発のために、ベースとなる基板材料の検討が行われた。 When the strain sensor thin film is used as a dynamic quantity sensor, the sensor element is formed directly on the strain-causing structure (via an insulator film when the strain-causing structure is a conductor such as metal) without using a base. It is possible. In conventional strain gauges, "adhesion" is a manual operation, so misalignment is likely to occur, and there is concern about the effects of creep due to the base and adhesive, but in the case of thin films formed directly on the measurement target, these problems are taken into consideration. There is no need to do it. However, when the strain sensor is installed in a place where thin film formation is impossible, such as a hole, a tube, an inner part of a complicated shape, etc. due to the structure of the measurement target, it is necessary to select the adhesive method. Therefore, in order to develop an element that can be used for the Cr—N thin film by the adhesive method, the base substrate material was studied.

従来のひずみゲージに用いられるポリイミドは樹脂フィルムの中では最も高い耐熱性を有するが、無機材料と比較すると熱膨張係数や熱収縮が大きい。そのためポリイミドを基材とした場合、基材上で局所的な応力の影響が顕著となりクラックが発生しやすいという問題があった。その課題に対する研究の結果、Cr-N薄膜組織(膜質)の緻密化により薄膜自体の強化を促す成膜ガス圧の低減が有効であることを見出し、クラックの低減に成功した。しかしポリイミドにおける熱的な影響は完全に取り除かれたわけではなく、作製した素子に基材の反りや薄膜周囲の基材に部分的な変形が生じやすく、特性およびその安定性への影響が問題となっている。 Polyimide used in conventional strain gauges has the highest heat resistance among resin films, but has a larger coefficient of thermal expansion and heat shrinkage than inorganic materials. Therefore, when polyimide is used as the base material, there is a problem that the influence of local stress on the base material becomes remarkable and cracks are likely to occur. As a result of research on this problem, it was found that it is effective to reduce the film forming gas pressure that promotes the strengthening of the thin film itself by densifying the Cr—N thin film structure (film quality), and succeeded in reducing cracks. However, the thermal effect on polyimide has not been completely eliminated, and the manufactured device is prone to warpage of the base material and partial deformation of the base material around the thin film, which has problems with its characteristics and its stability. It has become.

そこでは、熱膨張係数がCr-N薄膜と近く、耐熱性に優れて熱収縮もなく、強度が十分大きく高い絶縁性があり、さらにひずみ伝達性を持たせるために薄くすることが可能な自立薄板材料としてジルコニアに注目し、それを基材とするひずみゲージの試作と評価を行った結果、基材の厚さが80μm以下であればほぼ従来と同程度の機能を有したまま接着して使用する高感度なひずみゲージを提供できることを明らかにした(特許文献2参照)。 There, the coefficient of thermal expansion is close to that of the Cr-N thin film, it has excellent heat resistance, no thermal shrinkage, sufficient strength and high insulation properties, and it can be made thin to have strain transferability. Focusing on zirconia as a thin plate material, as a result of trial production and evaluation of a strain gauge using it as a base material, if the thickness of the base material is 80 μm or less, it is bonded while having almost the same function as the conventional one. It has been clarified that a highly sensitive strain gauge to be used can be provided (see Patent Document 2).

特許第6159613号公報Japanese Patent No. 6159613 特許第6022881号公報Japanese Patent No. 6022881

Cr-N薄膜ひずみゲージを接着式として用いる場合、ジルコニア基板素子は、曲げに対しては非常に強いが、基板面内方向の直線的な引張や圧縮に対しては弱く、壊れやすい点が問題である。壊れにくい基板材料として、従来用いられている樹脂材料が挙げられる。そこで再度、樹脂材料について検討を行ったが、成膜プロセスにおいて熱処理が必要なことから、耐熱性が最も高いポリイミドが有効であるが、やはり、従来の一般的なポリイミドを基板とする場合には、成膜歩留りおよび特性の均一性に問題があった。 When the Cr-N thin film strain gauge is used as an adhesive type, the zirconia substrate element is very strong against bending, but weak against linear tension and compression in the inward direction of the substrate, and is fragile. Is. Examples of the substrate material that is hard to break include a conventionally used resin material. Therefore, we examined the resin material again, but since heat treatment is required in the film formation process, polyimide with the highest heat resistance is effective. , There was a problem in film formation yield and uniformity of characteristics.

ひずみゲージを使用する場合、測定用回路としてホイートストンブリッジ構造が用いられるが、その時用いられる例えば4個のひずみゲージ素子の特性にばらつきがあると電流ラインの中点電位のゼロバランスが崩れて正しい測定ができず、さらに温度などの外的要因による出力ドリフトが増大するなどの問題の原因にもなる。そのため製造される複数の(多数の)ひずみゲージ素子はそれぞれ、バラツキのない均一な特性を持つことが極めて重要である。そこで、本発明は、樹脂基板を用いる場合の成膜歩留まりおよび特性の均一性の向上を図り得るひずみゲージおよびその製造方法を提供することを目的とする。 When using a strain gauge, a Wheatstone bridge structure is used as the measurement circuit, but if there are variations in the characteristics of the four strain gauge elements used at that time, the zero balance of the midpoint potential of the current line will be lost and correct measurement will be performed. It also causes problems such as increased output drift due to external factors such as temperature. Therefore, it is extremely important that each of the plurality of (many) strain gauge elements manufactured has uniform characteristics without variation. Therefore, an object of the present invention is to provide a strain gauge and a method for manufacturing the strain gauge, which can improve the film formation yield and the uniformity of characteristics when a resin substrate is used.

本発明者は、前記課題を解決すべく検討を重ねた結果、所定の特性を有する樹脂基板と、所定の組成および特性を有するCr-N薄膜からなる接着式ひずみゲージ、ならびに、その成膜方法及び所定の温度で熱処理する製造方法を用いることにより、成膜歩留まりおよび特性の均一性の向上を図り得ることを見出した。本発明のひずみゲージは、剛性比率が200~1000×103Pa・mの範囲に含まれ、かつ、熱膨張係数が0ppm/℃~30ppm/℃の範囲に含まれている樹脂からなる基板と、前記基板上に形成されている薄膜素子と、を備えているひずみゲージであって、前記薄膜素子が、窒素(N)含有量が2~8at%の範囲に含まれ、かつ抵抗温度係数(TCR)が0±400ppm/℃以内であり、かつ、ゲージ率が3~20であるCr-N薄膜からなる。 As a result of repeated studies to solve the above problems, the present inventor has an adhesive strain gauge composed of a resin substrate having a predetermined characteristic, a Cr—N thin film having a predetermined composition and characteristics, and a film forming method thereof. It has been found that the film formation yield and the uniformity of characteristics can be improved by using a manufacturing method in which heat treatment is performed at a predetermined temperature. The strain gauge of the present invention has a substrate made of a resin having a rigidity ratio in the range of 200 to 1000 × 10 3 Pa · m and a thermal expansion coefficient in the range of 0 ppm / ° C. to 30 ppm / ° C. A strain gauge comprising a thin film element formed on the substrate, wherein the thin film element has a nitrogen (N) content in the range of 2 to 8 at% and has a temperature coefficient of resistance (1). It is composed of a Cr—N thin film having a TCR) of 0 ± 400 ppm / ° C. and a gauge ratio of 3 to 20.

前記した本発明のひずみゲージの製造方法は、剛性比率が200~1000×103Pa・mの範囲に含まれ、かつ、熱膨張係数が0ppm/℃~30ppm/℃の範囲に含まれている樹脂からなる基板の主面に指定態様で配置されている、Cr-N薄膜からなる薄膜素子を形成する工程と、前記薄膜素子を180~200℃の範囲の温度で熱処理する工程と、を含んでいる。 The method for manufacturing a strain gauge of the present invention described above includes a rigidity ratio in the range of 200 to 1000 × 10 3 Pa · m and a coefficient of thermal expansion in the range of 0 ppm / ° C. to 30 ppm / ° C. It includes a step of forming a thin film element made of a Cr—N thin film, which is arranged in a designated manner on the main surface of a substrate made of a resin, and a step of heat-treating the thin film element at a temperature in the range of 180 to 200 ° C. I'm out.

本発明によれば、樹脂基板を用いる場合の成膜歩留まりおよび特性の均一性の向上を図り得る接着式ひずみゲージおよびその製造方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided an adhesive strain gauge and a method for manufacturing the same, which can improve the film formation yield and the uniformity of characteristics when a resin substrate is used.

Cr-N薄膜のスパッタリング成膜における熱処理温度の低減方法(入力電力が適度に低い条件での成膜による方法)に関する説明図。Explanatory drawing about the method of reducing the heat treatment temperature in the sputtering film formation of a Cr—N thin film (the method by the film formation under the condition that the input power is moderately low). Cr-N薄膜のスパッタリング成膜における熱処理温度の低減方法(窒素含有量が少なくなる条件での成膜による方法)に関する説明図。Explanatory drawing about the method of reducing the heat treatment temperature in the sputtering film formation of a Cr—N thin film (the method by the film formation under the condition that the nitrogen content is low). 熱処理温度低減手法を用いて200℃以下の温度で熱処理された試料におけるTCRの測定結果を示した図。The figure which showed the measurement result of TCR in the sample which was heat-treated at the temperature of 200 degreeC or less using the heat treatment temperature reduction method. 熱処理温度低減手法を用いて200℃以下の温度で熱処理された試料におけるゲージ率の測定結果を示した図。The figure which showed the measurement result of the gauge ratio in the sample which was heat-treated at the temperature of 200 degreeC or less using the heat treatment temperature reduction method. 本発明のひずみゲージの構成に関する説明図。Explanatory drawing about the structure of the strain gauge of this invention. 実際に作製した薄膜素子のパターン形状を示した図。The figure which showed the pattern shape of the actually manufactured thin film element. 一回の成膜において形成された薄膜素子配列パターンを示した図。The figure which showed the thin film element arrangement pattern formed in one film formation. 表2の作製例について、熱収縮率と断線率の関係を示した図。The figure which showed the relationship between the heat shrinkage rate and the disconnection rate about the production example of Table 2. 表2の作製例について、熱収縮率とTCR不均一性の関係を示した図。The figure which showed the relationship between the heat shrinkage rate and TCR non-uniformity about the production example of Table 2. 表2の作製例について、熱収縮率とGf不均一性の関係を示した図。The figure which showed the relationship between the heat shrinkage rate and Gf non-uniformity about the production example of Table 2. 第1基板と第2基板について、熱処理温度と断線率の関係を示した図。The figure which showed the relationship between the heat treatment temperature and the disconnection rate about a 1st substrate and a 2nd substrate. 第1基板と第2基板について、熱処理温度とTCR不均一性の関係を示した図。The figure which showed the relationship between the heat treatment temperature and the TCR non-uniformity about a 1st substrate and a 2nd substrate. 第1基板と第2基板について、熱処理温度とGf不均一性の関係を示した図。The figure which showed the relationship between the heat treatment temperature and Gf non-uniformity about a 1st substrate and a 2nd substrate. 180℃および200℃で熱処理された試料について、剛性比率と断線率の関係を示した図。The figure which showed the relationship between the rigidity ratio and the disconnection ratio about the sample which was heat-treated at 180 degreeC and 200 degreeC. 図14の剛性比率範囲200~300kPa・mの拡大図。FIG. 14 is an enlarged view of the rigidity ratio range of 200 to 300 kPa · m. 180℃で熱処理された試料および200℃で熱処理された試料のそれぞれの熱膨張係数および断線率の関係に関する説明図。The explanatory view about the relationship between the thermal expansion coefficient and the disconnection rate of the sample heat-treated at 180 ° C. and the sample heat-treated at 200 ° C., respectively. 180℃で熱処理された試料および200℃で熱処理された試料のそれぞれの剛性比率およびTCR不均一性の関係に関する説明図。Explanatory drawing about the relationship between the stiffness ratio and TCR non-uniformity of the sample heat-treated at 180 ° C. and the sample heat-treated at 200 ° C., respectively. 図17の剛性比率範囲200~300kPa・mの拡大図。An enlarged view of the rigidity ratio range of 200 to 300 kPa · m in FIG. 180℃で熱処理された試料および200℃で熱処理された試料のそれぞれの熱膨張係数およびTCR不均一性の関係に関する説明図。Explanatory drawing about the relationship between the coefficient of thermal expansion and TCR non-uniformity of a sample heat-treated at 180 ° C. and a sample heat-treated at 200 ° C., respectively. 180℃で熱処理された試料および200℃で熱処理された試料のそれぞれの剛性比率およびGf不均一性の関係に関する説明図。Explanatory drawing which concerns on the relationship between the stiffness ratio and Gf non-uniformity of a sample heat-treated at 180 degreeC and a sample heat-treated at 200 degreeC. 180℃で熱処理された試料および200℃で熱処理された試料のそれぞれの熱膨張係数およびGf不均一性の関係に関する説明図。Explanatory drawing which concerns on relationship of thermal expansion coefficient and Gf non-uniformity of the sample heat-treated at 180 degreeC and the sample heat-treated at 200 degreeC, respectively. ひずみゲージを構成する基材の特性に関する説明図。Explanatory drawing about the characteristic of the base material constituting a strain gauge. 合成樹脂フィルムの上に成膜された薄膜素子の窒素含有量および抵抗温度係数(TCR)の関係に関する説明図。Explanatory drawing which concerns on the relationship between nitrogen content and temperature coefficient of resistance (TCR) of a thin film element formed on a synthetic resin film. 合成樹脂フィルムの上に成膜された薄膜素子の窒素含有量およびゲージ率(Gf)の関係に関する説明図。The explanatory view about the relationship between the nitrogen content and the gauge ratio (Gf) of the thin film element formed on the synthetic resin film.

課題を解決するための重要なポイントは樹脂材料の「耐熱性」が低い点にあると考えられる。そこで、本発明では次の2つの側面からの改善を試みた。その一つは、ひずみセンサ薄膜の熱処理温度の低減であり、もう一つはその低減した熱処理温度範囲で問題の生じない樹脂基板の探索である。 It is considered that the important point for solving the problem is that the "heat resistance" of the resin material is low. Therefore, in the present invention, improvements have been made from the following two aspects. One is to reduce the heat treatment temperature of the strain sensor thin film, and the other is to search for a resin substrate that does not cause any problem in the reduced heat treatment temperature range.

ひずみセンサとしてのCr-N薄膜における熱処理はTCRを0とする調整のために施されるものであり、従来、ガラス、セラミックス、金属等の基材では200~300℃の熱処理温度が用いられてきた。しかし、樹脂系では耐熱性を有する材料でも、後段で示す試験結果から熱処理温度は200℃以下とする必要があることがわかった。 The heat treatment of the Cr—N thin film as a strain sensor is performed for adjusting the TCR to 0, and conventionally, heat treatment temperatures of 200 to 300 ° C. have been used for substrates such as glass, ceramics, and metals. rice field. However, it was found from the test results shown in the latter stage that the heat treatment temperature should be 200 ° C. or lower even for a resin-based material having heat resistance.

スパッタリング等における薄膜作製時において、熱処理温度を低減させるための方法として次の2つが挙げられる。 The following two methods can be mentioned as a method for reducing the heat treatment temperature at the time of forming a thin film by sputtering or the like.

(1)入力電力が適度に低い条件での成膜(図1参照)(参考文献:丹羽他,第32回「センサ・マイクロマシンと応用システム」シンポジウム論文集,28pm1-A-1 (2015))。 (1) Film formation under moderately low input power (see Fig. 1) (Reference: Niwa et al., Proceedings of the 32nd "Sensor Micromachines and Applied Systems" Symposium, 28pm1-A-1 (2015)) ..

(2)窒素含有量が少ない薄膜を作製すること(図2参照)(参考文献:特許第6159613号公報)。 (2) To prepare a thin film having a low nitrogen content (see FIG. 2) (Reference: Japanese Patent No. 6159613).

これらの手段によって、作製したCr-N薄膜の熱処理前の状態(as-deposited膜)のTCRが負の小さい値となり、TCRをゼロとするための熱処理温度を低くすることができる。 By these means, the TCR of the produced Cr—N thin film before the heat treatment (as-deposited film) becomes a negative small value, and the heat treatment temperature for making the TCR zero can be lowered.

X まず、前記既存の熱処理温度低減手法を用いて200℃以下の温度で熱処理した場合でも、TCRが実際にゼロ近傍(±400ppm/℃以内)でゲージ率が十分大きい、良好な値に収まることを硼珪酸ガラス(0.2mm厚、窒素含有量2.09%および4.20%以外の試料)およびジルコニア基板(0.1mm厚、窒素含有量2.09%および4.20%の試料)を用いた成膜試験により確認した。それらの結果を図3および4に示す。窒素含有量は全て硼珪酸ガラス(0.2mm厚)を基板として同条件で作製した非パターン化(べた膜)のCr-N薄膜について波長分散型X線分析装置(WDS)を用いて分析した。次に、樹脂基板素子について調べるために、図3および4のジルコニア基板素子と同じ条件で薄膜を各基板上に作製し、180℃、200℃、220℃の温度で熱処理を施して試料とし、成膜歩留まりおよび特性の均一性についての評価から、問題の生じない樹脂基板の探索を行った。 X First, even when heat-treated at a temperature of 200 ° C or lower using the existing heat treatment temperature reduction method, the TCR is actually close to zero (within ± 400 ppm / ° C), the gauge ratio is sufficiently large, and it falls within a good value. Borosilicate glass (samples other than 0.2 mm thick, nitrogen content 2.09% and 4.20%) and zirconia substrates (samples 0.1 mm thick, nitrogen content 2.09% and 4.20%). It was confirmed by a film formation test using. The results are shown in FIGS. 3 and 4. All nitrogen contents were analyzed using a wavelength dispersive X-ray analyzer (WDS) for a non-patterned (solid film) Cr—N thin film prepared using borosilicate glass (0.2 mm thick) as a substrate under the same conditions. .. Next, in order to investigate the resin substrate element, a thin film was prepared on each substrate under the same conditions as the zirconia substrate element of FIGS. 3 and 4, and heat-treated at temperatures of 180 ° C, 200 ° C, and 220 ° C to prepare a sample. From the evaluation of the film formation yield and the uniformity of the characteristics, we searched for a resin substrate that does not cause any problems.

これまでの経緯から問題点を考察すると、すでに実用化されているジルコニア基板は、300℃での熱処理の際にも熱による変形が生じないことから耐熱性および形状安定性に優れる点が利点と考えられ、そこに作用する性質として熱収縮がなく、熱膨張係数は比較的小さく、ヤング率が大きい点が考えられる。一方、ポリイミドを基板とする場合、その熱処理温度では熱による変形がみられ、形成した薄膜にクラックが生じるなど成膜が難しく、センサ薄膜の特性のバラツキも大きかった。したがって、これをジルコニア基板の場合と比較して考えると、耐熱性および形状安定性に問題があると考えられる。実際、樹脂の場合、熱収縮があり、熱膨張係数は比較的大きく、ヤング率が小さい。 Considering the problems from the background so far, the zirconia substrate that has already been put into practical use has the advantage of being excellent in heat resistance and shape stability because it does not deform due to heat even during heat treatment at 300 ° C. It is conceivable that there is no heat shrinkage, the coefficient of thermal expansion is relatively small, and the Young's modulus is large. On the other hand, when polyimide is used as a substrate, deformation due to heat is observed at the heat treatment temperature, and it is difficult to form a film such as cracks in the formed thin film, and the characteristics of the sensor thin film vary widely. Therefore, when this is compared with the case of the zirconia substrate, it is considered that there is a problem in heat resistance and shape stability. In fact, in the case of resin, there is thermal shrinkage, the coefficient of thermal expansion is relatively large, and Young's modulus is small.

そこで、耐熱温度が高く、熱収縮が小さい樹脂を基板とする試料を作製し、樹脂基板の熱膨張係数およびヤング率に着目して薄膜素子の製造歩留まりおよび特性バラツキの評価を行った。200℃以上の耐熱性を有するフィルム化が可能な樹脂材料は限られており、それらにおいても、熱収縮率や線膨張係数は比較的大きな値をとるものが多い。樹脂フィルム材料で耐熱性が最も高いポリイミド(PI)から数種とそれに次ぐ耐熱性を持つと言われるポリアミド(PA)について調べた。本発明の検討に際して使用した基板材料およびそれらの特性を表1に示す。表中に示した特性の内、厚さ、耐熱温度、熱収縮率、熱膨張係数、ヤング率は公称値を用いた。 Therefore, we prepared a sample using a resin with a high heat-resistant temperature and small heat shrinkage as a substrate, and evaluated the manufacturing yield and characteristic variation of the thin film element by paying attention to the thermal expansion coefficient and Young's modulus of the resin substrate. Resin materials that can be formed into a film having a heat resistance of 200 ° C. or higher are limited, and even among them, the coefficient of thermal expansion and the coefficient of linear expansion often take relatively large values. We investigated several types of resin film materials, from polyimide (PI), which has the highest heat resistance, and polyamide (PA), which is said to have heat resistance next to it. Table 1 shows the substrate materials used in the study of the present invention and their characteristics. Among the characteristics shown in the table, the nominal values were used for the thickness, heat resistant temperature, heat shrinkage rate, thermal expansion coefficient, and Young's modulus.

また、形状安定性に関しては、厚さが大きいことも有利に作用すると考えられる。実際、後述する実施例からも、同じ材質の樹脂でも厚さが薄いと不良な結果を示し、厚いと良好な結果を示した。そこで、ヤング率だけでなく厚さの要素も重要と考え、それらを含む「剛性」というファクターについて検討を行った。 Further, regarding shape stability, it is considered that a large thickness also has an advantageous effect. In fact, from the examples described later, even if the resin of the same material is thin, poor results are shown, and when the thickness is thick, good results are shown. Therefore, we considered that not only Young's modulus but also the thickness factor was important, and examined the factor of "rigidity" including them.

一般に、板材における引張変形時の剛性kNは次の式で与えられる。 In general, the rigidity k N at the time of tensile deformation in a plate material is given by the following equation.

N=N/δN=E・A/L=E・t・w/L 。 k N = N / δ N = E ・ A / L = E ・ t ・ w / L.

ここで、Nは板材に作用する引張方向の力、δNは板材に生じる引張方向の変形、Eは板材の引張弾性率、Aは引張方向に垂直な断面積(=t×w)、Lは引張方向の板材の長さ、tは板材の厚さ、wは板材の幅(引張方向に垂直な方向の長さ)を示す。後述するように、試験試料の基板形状、成膜領域および薄膜パターン形状は全て同一であることから、それらのwとLは全ての試料で同一であり、基板の剛性に関する差異はE・t(引張弾性率×厚さ)の項だけで決まり、本発明ではその項で表される値を剛性比率と称することとし、熱膨張係数とともにその剛性比率について評価を行った。 Here, N is the tensile force acting on the plate material, δ N is the deformation in the tensile direction that occurs in the plate material, E is the tensile elastic modulus of the plate material, A is the cross-sectional area (= t × w) perpendicular to the tensile direction, and L. Is the length of the plate material in the tensile direction, t is the thickness of the plate material, and w is the width of the plate material (the length in the direction perpendicular to the tensile direction). As will be described later, since the substrate shape, film formation region, and thin film pattern shape of the test sample are all the same, their w and L are the same for all the samples, and the difference in the rigidity of the substrate is Et. It is determined only by the term (tensile elastic modulus x thickness), and in the present invention, the value represented by that term is referred to as the rigidity ratio, and the rigidity ratio is evaluated together with the thermal expansion coefficient.

(ひずみゲージの構成)
図5に示されている本発明の一実施形態としてのひずみゲージは、薄板状の基板1と、基板1の一対の主面101、102のうち一方の主面101に形成された、指定態様で配置されている薄膜素子2と、により構成されている。基板1は、剛性比率が200~1000×103Pa・mの範囲に含まれ、かつ、熱膨張係数が0ppm/℃~30ppm/℃の範囲に含まれている樹脂からなる。薄膜素子2は、窒素(N)含有量が2~8at%の範囲に含まれ、かつ抵抗温度係数(TCR)が0±400ppm/℃以内であり、かつ、ゲージ率が3~20であるCr-N薄膜からなる。
(Structure of strain gauge)
The strain gauge as an embodiment of the present invention shown in FIG. 5 is a designated embodiment formed on a thin plate-shaped substrate 1 and one of the main surfaces 101 and 102 of the substrate 1. It is composed of a thin film element 2 arranged in. The substrate 1 is made of a resin having a rigidity ratio in the range of 200 to 1000 × 10 3 Pa · m and a coefficient of thermal expansion in the range of 0 ppm / ° C. to 30 ppm / ° C. The thin film element 2 has a nitrogen (N) content in the range of 2 to 8 at%, a temperature coefficient of resistance (TCR) of 0 ± 400 ppm / ° C., and a gauge ratio of 3 to 20. -Consists of N thin film.

(ひずみゲージの製造方法)
本発明の一実施形態としてのひずみゲージの製造方法は、(1)成膜工程と(2)熱処理工程とを含んでいる。
(Manufacturing method of strain gauge)
A method for manufacturing a strain gauge as an embodiment of the present invention includes (1) a film forming step and (2) a heat treatment step.

基板上へのCr-N薄膜の作製にはArとともに微量の窒素ガスを導入して成膜を行う反応性スパッタリング法を用い、装置には一般金属用(非強磁性体用、すなわち低磁力の)マグネットを用いたマグネトロン方式の高周波スパッタリング装置を使用した。窒素の添加量は、導入する窒素ガス流量を調節することにより制御した。ターゲットには公称純度99.9%のCr円盤(直径3インチ)を用い、成膜前真空度(背景真空度)、ターゲット-基板間距離(T-S距離)、成膜ガス圧、入力電力および窒素流量比をそれぞれ2×10-5Pa、43mm、5mTorr、10Wおよび0.02~0.12%として成膜を行った。 A reactive sputtering method is used to form a Cr-N thin film on a substrate by introducing a small amount of nitrogen gas together with Ar to form a film, and the device is for general metals (for non-ferromagnetic materials, that is, for low magnetic force). ) A magnetron-type high-frequency sputtering device using a magnet was used. The amount of nitrogen added was controlled by adjusting the flow rate of nitrogen gas to be introduced. A Cr disk (3 inches in diameter) with a nominal purity of 99.9% is used as the target, and the degree of vacuum before film formation (background vacuum degree), the distance between the target and the substrate (TS distance), the film formation gas pressure, and the input power. The film was formed with a nitrogen flow rate ratio of 2 × 10 -5 Pa, 43 mm, 5 mTorr, 10 W and 0.02 to 0.12%, respectively.

試作するCr-N薄膜ひずみゲージ素子の受感部は8回の折返しからなる格子状とし、格子の線幅は40μm、線間隔を50μm、長さ(受感部長)を1mmとした。その素子パターン形成にはフォトリソグラフィー技術とCrエッチング液による腐食整形技術を用いた。薄膜の厚さは約100nmとした。実際に作製した薄膜素子のパターン形状を図6に示す。 The sensitive portion of the prototype Cr—N thin film strain gauge element was formed into a grid consisting of eight folds, the line width of the grid was 40 μm, the line spacing was 50 μm, and the length (sensing portion length) was 1 mm. Photolithography technology and corrosion shaping technology using Cr etching solution were used to form the element pattern. The thickness of the thin film was about 100 nm. FIG. 6 shows the pattern shape of the actually manufactured thin film element.

図7には、薄膜素子配列パターンが示されている。1回の成膜において、50mm×50mmの大きさの基板上の中央部の30mm×30mmの範囲内にCr-N薄膜が形成され、そこから前記パターン形成された素子が横に1~8の8行、縦にA~Eの5列の配列からなる計40個が得られる。 FIG. 7 shows a thin film element arrangement pattern. In one film formation, a Cr—N thin film is formed within a range of 30 mm × 30 mm in the central portion on a substrate having a size of 50 mm × 50 mm, and the patterned elements are laterally 1 to 8 from the Cr—N thin film. A total of 40 pieces are obtained, which consist of an array of 8 rows and 5 columns of A to E vertically.

熱処理は大気中において所定の温度で30分保持して行った。作製した薄膜の所定の位置にNi(ニッケル)薄膜をリフトオフ法により重ねて形成し、これを抵抗測定のための電極とした。この電極に、電源および電圧計につながるリード線をはんだ付けするが、その前に前記40個の配列から素子を個別に切り出した。なお、電極膜としてのNi薄膜は、電極やリード部分でのひずみ検知情報を含まないようにするために比抵抗の小さい電極膜を重ねて形成する必要があることから、受感部以外の電極タブおよびリード部分のCr-N薄膜に重ねて形成した。本発明にかかる薄膜作成、パターン形成、熱処理等の方法、方式、形状、材質および条件等は当該実施形態に限定されるものではない。 The heat treatment was carried out in the air at a predetermined temperature for 30 minutes. A Ni (nickel) thin film was superposed on the prepared thin film at a predetermined position by the lift-off method, and this was used as an electrode for resistance measurement. Lead wires connected to the power supply and the voltmeter were soldered to this electrode, but before that, the elements were individually cut out from the 40 arrangements. Since the Ni thin film as the electrode film needs to be formed by superimposing an electrode film having a small resistivity in order not to include strain detection information in the electrode or the lead portion, the electrode other than the sensitive portion is formed. It was formed by superimposing it on a Cr—N thin film of a tab and a lead portion. The methods, methods, shapes, materials, conditions, etc. of thin film formation, pattern formation, heat treatment, etc. according to the present invention are not limited to the embodiment.

(1.成膜工程)
成膜工程において、基板1の一方の主面101に対して、Crターゲットを用いてスパッタリングを行うことにより、当該基板1の主面101において指定態様で配置されているCr-N薄膜が当該主面に直接的に形成される。スパッタリングに際して、窒素流量比は、例えば、0.02~0.05%の範囲に調節される。基板1の主面101における薄膜素子2の指定態様の配置は、マスキングおよび/またはエッチング等の既存の手法により形成される。
(1. Film formation process)
In the film forming step, the Cr—N thin film arranged in the designated manner on the main surface 101 of the substrate 1 is the main surface 101 of the substrate 1 by sputtering the main surface 101 of the substrate 1 using a Cr target. Formed directly on the surface. During sputtering, the nitrogen flow rate ratio is adjusted to, for example, in the range of 0.02 to 0.05%. The arrangement of the designated embodiment of the thin film element 2 on the main surface 101 of the substrate 1 is formed by an existing method such as masking and / or etching.

(2.熱処理工程)
熱処理工程において、基板1の主面101に形成されたCr-N薄膜が180~200℃の温度範囲で熱処理される。熱処理時間は、Cr-N薄膜が目標とする特性が実現されるように、例えば0.5~4hrの範囲に調節される。これにより、薄膜素子2は、窒素含有量が2.09~4.20at%の範囲に含まれ、抵抗温度係数(TCR)が45.1ppm/℃~370.1ppm/℃の範囲に含まれ、かつ、ゲージ率が16.6~17.9の範囲に含まれているCr-N薄膜からなる薄膜素子が形成される。
(2. Heat treatment process)
In the heat treatment step, the Cr—N thin film formed on the main surface 101 of the substrate 1 is heat-treated in a temperature range of 180 to 200 ° C. The heat treatment time is adjusted to, for example, in the range of 0.5 to 4 hr so that the desired characteristics of the Cr—N thin film are realized. As a result, the thin film device 2 has a nitrogen content in the range of 2.09 to 4.20 at% and a temperature coefficient of resistance (TCR) in the range of 45.1 ppm / ° C. to 370.1 ppm / ° C. Moreover, a thin film element made of a Cr—N thin film having a gauge coefficient in the range of 16.6 to 17.9 is formed.

(実施例および比較例)
第1基板としてポリアミド(商品名:ミクトロン(型番:ML))の薄板状部材が用意された。第2基板としてポリイミド(商品名:ユートピレックス(型番:25S))の薄板状部材が用意された。第3基板としてポリイミド(商品名:カプトン(型番:300V))の薄板状部材が用意された。第4基板としてポリイミド(商品名:カプトン(型番:100V))の薄板状部材が用意された。第5基板としてポリイミド(商品名:アピカル(型番:NPI))の薄板状部材が用意された。第6基板としてポリイミド(商品名:アピカル(型番:AH))の薄板状部材が用意された。第7基板としてポリイミド(商品名:ユーピレックス(型番:75S))の薄板状部材が用意された。参考基板としてジルコニア(商品名:セラフレックス(型番:A))の薄板状部材が用意された。表1には、第1基板、第2基板、第3基板、第4基板、第5基板、第6基板、第7基板および参考基板のそれぞれの厚さ、耐熱温度、ヤング率(引張弾性率)、剛性比率、熱膨張係数および熱収縮率がまとめて示されている。
(Examples and comparative examples)
A thin plate-shaped member of polyamide (trade name: Mictron (model number: ML)) was prepared as the first substrate. As the second substrate, a thin plate-shaped member of polyimide (trade name: Utopirex (model number: 25S)) was prepared. As the third substrate, a thin plate-shaped member of polyimide (trade name: Kapton (model number: 300V)) was prepared. As the fourth substrate, a thin plate-shaped member of polyimide (trade name: Kapton (model number: 100V)) was prepared. As the fifth substrate, a thin plate-shaped member of polyimide (trade name: apical (model number: NPI)) was prepared. As the sixth substrate, a thin plate-shaped member of polyimide (trade name: apical (model number: AH)) was prepared. As the seventh substrate, a thin plate-shaped member of polyimide (trade name: Upirex (model number: 75S)) was prepared. As a reference substrate, a thin plate-shaped member of zirconia (trade name: Ceraflex (model number: A)) was prepared. Table 1 shows the thickness, heat resistant temperature, and Young's modulus (tensile modulus) of the first substrate, the second substrate, the third substrate, the fourth substrate, the fifth substrate, the sixth substrate, the seventh substrate, and the reference substrate, respectively. ), Rigidity ratio, coefficient of thermal expansion and coefficient of thermal contraction are shown together.

Figure 2022074104000002
ひずみゲージの第1作製条件として、成膜工程に際して窒素流量比が0.02%に調節され、かつ、熱処理工程に際してCr-N薄膜の熱処理温度が180℃に調節された。ひずみゲージの第2作製条件として、成膜工程に際して窒素流量比が0.02~0.12%、より好ましくは0.02~0.05%に調節され、かつ、熱処理工程に際してCr-N薄膜の熱処理温度が200℃に調節された。ひずみゲージの第3作製条件として、成膜工程に際して窒素流量比が0.05%に調節され、かつ、熱処理工程に際してCr-N薄膜の熱処理温度が220℃に調節された。窒素流量比は、スパッタリングチャンバにおける窒素ガスの流量F1およびスパッタリングガスであるアルゴンガスの流量F2の合計に対する窒素ガスの流量F1の比F1/(F1+F2)を意味する。成膜工程においてスパッタリングチャンバの気圧が5mTorrに調節された。
Figure 2022074104000002
As the first preparation condition of the strain gauge, the nitrogen flow rate ratio was adjusted to 0.02% in the film forming step, and the heat treatment temperature of the Cr—N thin film was adjusted to 180 ° C. in the heat treatment step. As the second preparation condition of the strain gauge, the nitrogen flow rate ratio is adjusted to 0.02 to 0.12%, more preferably 0.02 to 0.05% in the film forming process, and the Cr—N thin film is adjusted in the heat treatment process. The heat treatment temperature was adjusted to 200 ° C. As the third preparation condition of the strain gauge, the nitrogen flow rate ratio was adjusted to 0.05% in the film forming step, and the heat treatment temperature of the Cr—N thin film was adjusted to 220 ° C. in the heat treatment step. The nitrogen flow rate ratio means the ratio F1 / (F1 + F2) of the flow rate F1 of the nitrogen gas to the total flow rate F1 of the nitrogen gas and the flow rate F2 of the argon gas which is the sputtering gas in the sputtering chamber. In the film forming process, the air pressure in the sputtering chamber was adjusted to 5 mTorr.

第1基板、第2基板、第3基板、第4基板および参考基板のそれぞれが用いられ、第1作製条件にしたがって実施例1、実施例3、実施例5、比較例4および参考例1のひずみゲージ群が作製された。第1基板、第2基板、第3基板、第5基板、第6基板、第7基板および参考基板のそれぞれが用いられ、第2作製条件にしたがって実施例2、実施例4、比較例3、実施例6、比較例5、実施例7および参考例2のひずみゲージ群が作製された。第1基板および第2基板のそれぞれが用いられ、第3作製条件にしたがって比較例1および比較例2のひずみゲージ群が作製された。ひずみゲージ群は、8行5列に配置された40個のひずみゲージにより構成されている。 Each of the first substrate, the second substrate, the third substrate, the fourth substrate and the reference substrate is used, and according to the first production conditions, Example 1, Example 3, Example 5, Comparative Example 4 and Reference Example 1 are used. A strain gauge group was created. Each of the first substrate, the second substrate, the third substrate, the fifth substrate, the sixth substrate, the seventh substrate, and the reference substrate was used, and Example 2, Example 4, and Comparative Example 3 were used according to the second production conditions. Strain gauge groups of Example 6, Comparative Example 5, Example 7 and Reference Example 2 were prepared. Each of the first substrate and the second substrate was used, and the strain gauge groups of Comparative Example 1 and Comparative Example 2 were prepared according to the third fabrication condition. The strain gauge group is composed of 40 strain gauges arranged in 8 rows and 5 columns.

表2には、実施例1~7、比較例1~5および参考例1~2のそれぞれ(以下「各作製例」という。)のひずみゲージ群の作製条件および後述する評価結果がまとめて示されている。 Table 2 summarizes the production conditions of the strain gauge groups of Examples 1 to 7, Comparative Examples 1 to 5 and Reference Examples 1 to 2 (hereinafter referred to as “each production example”) and the evaluation results described later. Has been done.

Figure 2022074104000003
(ひずみゲージの評価)
1回の成膜で同時に同条件にしたがって形成された40個全てのCr-N薄膜ひずみセンサ素子(図7参照)の抵抗値を20MΩまで測定可能なテスターを用いて測定した。その際、薄膜にクラックが生じて測定不能だった素子の個数を全素子数である40で除算した値の百分率を「断線率」とし、成膜歩留まりを評価する指標とした。
Figure 2022074104000003
(Evaluation of strain gauge)
The resistance values of all 40 Cr—N thin film strain sensor elements (see FIG. 7) formed simultaneously under the same conditions in one film formation were measured using a tester capable of measuring up to 20 MΩ. At that time, the percentage of the value obtained by dividing the number of elements that could not be measured due to cracks in the thin film by 40, which is the total number of elements, was defined as the "disconnection rate" and used as an index for evaluating the film formation yield.

抵抗温度計数(TCR)測定のための抵抗測定にはデジタルマルチメーターによる直流四端子法を用い、温度制御可能な恒温槽内での異なる温度において測定された薄膜素子の抵抗値からTCRの値を求めた。ここで、TCRは温度範囲0~50℃における値を意味する。 The DC four-terminal method using a digital multimeter is used for resistance measurement for resistance temperature counting (TCR) measurement, and the TCR value is calculated from the resistance value of the thin film element measured at different temperatures in a temperature-controllable constant temperature bath. I asked. Here, TCR means a value in the temperature range of 0 to 50 ° C.

ゲージ率(Gf)は、起歪体としての50mm×250mm×1.6mm厚の寸法のSUS304製の板に試料を接着して曲げる連続片持ち梁方式を用いてひずみを印加し、正から負にわたる約600με(=0.06%)までのひずみ印加時の抵抗変化から求めた。Gfを計算するのに必要なひずみ量は、同じSUS板起歪体上の等量のひずみが入る位置に接着した市販のひずみゲージ(共和電業製,KFG-2-350-C1-11)を用いて測定した。接着には市販の一般用瞬間接着剤を用いた。 The gauge ratio (Gf) is positive to negative by applying strain using a continuous cantilever method in which a sample is bonded and bent on a plate made of SUS304 with dimensions of 50 mm x 250 mm x 1.6 mm as a strain-causing body. It was obtained from the resistance change when strain was applied up to about 600 με (= 0.06%). The amount of strain required to calculate Gf is a commercially available strain gauge (Kyowa Electric Co., Ltd., KFG-2-350-C1-11) bonded to a position on the same SUS plate-raised strain body where an equal amount of strain enters. Was measured using. A commercially available instant adhesive for general use was used for bonding.

前記のTCRおよびGfは、作製した40個の素子の内、基本的に図7の配列中の1A、2A、1E、2E、3B、4B、3D、4D、5B、6B、5D、6D、7A、8A、7E、8Eの計16個の素子について測定を行った。これらの中で断線により測定不能な素子があった場合は、その隣接する素子を代わりに測定して、合計の測定数は16個となるようにした。TCRおよびGfの値のバラツキ評価の指標として、それぞれ、16個の測定結果における最大値、最小値、平均値から次の式で与えられる「不均一性」を求めた。ここで、|f(x)|はf(x)の絶対値を表す。 Of the 40 elements manufactured, the TCR and Gf are basically 1A, 2A, 1E, 2E, 3B, 4B, 3D, 4D, 5B, 6B, 5D, 6D, 7A in the arrangement of FIG. , 8A, 7E, 8E, a total of 16 elements were measured. If there was an element that could not be measured due to disconnection among these, the adjacent element was measured instead, and the total number of measurements was 16. As an index for evaluating the variation in the values of TCR and Gf, the "non-uniformity" given by the following equation was obtained from the maximum value, the minimum value, and the average value in each of the 16 measurement results. Here, | f (x) | represents the absolute value of f (x).

(不均一性)=|{(最大値)―(最小値)}/(平均値)|。 (Non-uniformity) = | {(maximum value)-(minimum value)} / (average value) |.

前記の試作試験から、所定の特性を示し、ばらつきの小さなひずみゲージを歩留まり良く作製するのに適した、耐熱性に優れた樹脂基板材料を調べた。所定の特性として、図23からわかるように、Cr-N薄膜の窒素含有量2~8at%の範囲において、TCRが±400ppm/℃以内であり、Gfが3~20であり、成膜歩留まりは9割以上、すなわち断線率10%以下であることが好ましく、Cr-N薄膜の特性の不均一性は参考例(実用化されている既存のジルコニア基板素子)の値の2倍以下であることが好ましい。なお、断線とは、基板の変形等によって薄膜素子にクラックが発生し抵抗値が測定できなくなった状態を指す。 From the above-mentioned trial production test, a resin substrate material having excellent heat resistance, which showed predetermined characteristics and was suitable for producing a strain gauge with a small variation with a good yield, was investigated. As can be seen from FIG. 23, the TCR is within ± 400 ppm / ° C., the Gf is 3 to 20, and the film formation yield is in the range of 2 to 8 at% of the nitrogen content of the Cr—N thin film. It is preferably 90% or more, that is, the disconnection rate is 10% or less, and the non-uniformity of the characteristics of the Cr—N thin film is twice or less the value of the reference example (existing zirconia substrate element in practical use). Is preferable. The disconnection refers to a state in which the thin film element is cracked due to deformation of the substrate or the like and the resistance value cannot be measured.

TCRおよびGfの測定に関して、断線数が多い試料については、非断線試料が16個に満たず不均一性検定の全数が異なってしまうこと、および、そのような断線数の多い試料では極端に外れた悪い測定結果を示すものが生じることから妥当な試料を16個そろえることができない場合があることから、適切な評価結果が得られないため評価結果には含めなかった。 Regarding the measurement of TCR and Gf, the number of non-disconnected samples is less than 16 for the sample with a large number of disconnections, and the total number of non-uniformity tests is different, and the sample with such a large number of disconnections is extremely off. Since it may not be possible to prepare 16 valid samples because some of them show bad measurement results, appropriate evaluation results cannot be obtained, so they were not included in the evaluation results.

図8には、熱収縮率に対する断線率が示されている。図9には、TCRの不均一性が示されている。図10には、Gfの不均一性が示されている。いずれも熱収縮率が0.05%において最も悪い結果を示し、一様な傾向を示さなかった。特に、TCRの不均一性においては、最も熱収縮率が大きな0.5%においてむしろ良好な値を示した。これらの結果から、少なくとも0.5%以下の範囲の熱収縮率は断線率、TCRの不均一性およびGfの不均一性に影響を及ぼさないことがわかった。 FIG. 8 shows the disconnection rate with respect to the heat shrinkage rate. FIG. 9 shows the non-uniformity of TCR. FIG. 10 shows the non-uniformity of Gf. All showed the worst results when the heat shrinkage rate was 0.05%, and did not show a uniform tendency. In particular, the non-uniformity of TCR showed a rather good value at 0.5%, which has the largest heat shrinkage rate. From these results, it was found that the heat shrinkage in the range of at least 0.5% or less does not affect the disconnection rate, the non-uniformity of TCR and the non-uniformity of Gf.

図11には、熱膨張係数が小さく、かつ、ヤング率の大きな第1基板(ポリアミド・ミクトロン)および第2基板(ポリイミド・ユーピレックス)のそれぞれについて、熱処理温度に対する断線率が示されている。図11には、断線率に関して好ましい数値範囲の上限が破線で示されている。図12には、第1基板および第2基板のそれぞれのTCRの不均一性が示されている。図12には、TCRの不均一性に関して好ましい数値範囲の上限が破線で示されている。図13には、第1基板および第2基板のそれぞれのGfの不均一性が示されている。図13には、Gfの不均一性に関して好ましい数値範囲の上限が破線で示されている。 FIG. 11 shows the disconnection rate with respect to the heat treatment temperature for each of the first substrate (polyamide / Mixtron) and the second substrate (polyimide / Upirex) having a small coefficient of thermal expansion and a large Young's modulus. In FIG. 11, the upper limit of the preferable numerical range with respect to the disconnection rate is shown by a broken line. FIG. 12 shows the non-uniformity of the TCRs of the first substrate and the second substrate, respectively. In FIG. 12, the upper limit of the preferable numerical range with respect to the non-uniformity of TCR is shown by a broken line. FIG. 13 shows the non-uniformity of Gf of each of the first substrate and the second substrate. In FIG. 13, the upper limit of the preferable numerical range with respect to the non-uniformity of Gf is shown by a broken line.

図13からわかるように、Gfの不均一性について問題はなかった。その一方、図11からわかるように、第1基板は断線率が220℃で急激に大きくなり、好ましい数値範囲から外れた。図12からわかるように、第2基板の熱処理温度が200℃以下であればTCRの不均一性が好ましい数値範囲に含まれるものの、熱処理温度が220℃では好ましい数値範囲から外れた。 As can be seen from FIG. 13, there was no problem with the non-uniformity of Gf. On the other hand, as can be seen from FIG. 11, the disconnection rate of the first substrate sharply increased at 220 ° C., which was out of the preferable numerical range. As can be seen from FIG. 12, when the heat treatment temperature of the second substrate is 200 ° C. or lower, the non-uniformity of TCR is included in the preferable numerical range, but when the heat treatment temperature is 220 ° C., it is out of the preferable numerical range.

図14には、180℃で熱処理された試料および200℃で熱処理された試料のそれぞれについての剛性比率に対する断線率が示されている。図15には、図14の剛性比率範囲200~300kPa・mが拡大されて示されている。図16には、180℃で熱処理された試料および200℃で熱処理された試料のそれぞれについての熱膨張係数に対する断線率が示されている。図14~図16からわかるように、180℃で熱処理された第4基板の試料と200℃で熱処理された第3基板の試料は断線率が好ましい数値範囲の上限値を超えた。図16からわかるように、180℃で熱処理された第4基板および第3基板は熱膨張係数が同じであるにもかかわらず、前者の断線率は97.5%であるのに対して、後者の断線率は0%であった。 FIG. 14 shows the disconnection rate with respect to the rigidity ratio of each of the sample heat-treated at 180 ° C. and the sample heat-treated at 200 ° C. In FIG. 15, the rigidity ratio range of 200 to 300 kPa · m in FIG. 14 is enlarged and shown. FIG. 16 shows the disconnection rate for each of the sample heat-treated at 180 ° C. and the sample heat-treated at 200 ° C. with respect to the coefficient of thermal expansion. As can be seen from FIGS. 14 to 16, the disconnection rate of the sample of the fourth substrate heat-treated at 180 ° C. and the sample of the third substrate heat-treated at 200 ° C. exceeded the upper limit of the preferable numerical range. As can be seen from FIG. 16, although the fourth substrate and the third substrate heat-treated at 180 ° C. have the same coefficient of thermal expansion, the disconnection rate of the former is 97.5%, whereas that of the latter is 97.5%. The disconnection rate was 0%.

180℃で熱処理された第4基板の試料に関する断線率は熱膨張係数の影響によるのではなく、図14からわかるように剛性比率が小さいことに起因していると考えられる。したがって、図15からわかるように、200kPa・mを下回るような剛性比率を有する基板は好ましくないことがわかった。また、図14および図15から、200℃で熱処理された試料の断線率は剛性比率に対しては一様な変化を示さず、剛性比率が好ましくない大きな断線率の原因ではないことがわかる。一方、図16において、200℃で熱処理された試料の断線率は熱膨張係数の増加に伴って増大し、27ppm/℃では好ましい数値範囲の上限値を超える程度に大きな値となった。したがって200℃で熱処理された試料の断線率は熱膨張係数に依存し、およそ15ppm/℃を超えると好ましい数値範囲の上限値を超える程度に大きな値となることがわかった。 It is considered that the disconnection rate of the sample of the fourth substrate heat-treated at 180 ° C. is not due to the influence of the coefficient of thermal expansion but due to the small rigidity ratio as can be seen from FIG. Therefore, as can be seen from FIG. 15, it was found that a substrate having a rigidity ratio of less than 200 kPa · m is not preferable. Further, from FIGS. 14 and 15, it can be seen that the disconnection rate of the sample heat-treated at 200 ° C. does not show a uniform change with respect to the rigidity ratio, and the rigidity ratio is not the cause of the unfavorable large disconnection rate. On the other hand, in FIG. 16, the disconnection rate of the sample heat-treated at 200 ° C. increased with the increase of the coefficient of thermal expansion, and at 27 ppm / ° C., it became a large value to the extent that it exceeded the upper limit of the preferable numerical range. Therefore, it was found that the disconnection rate of the sample heat-treated at 200 ° C. depends on the coefficient of thermal expansion, and when it exceeds about 15 ppm / ° C., it becomes a large value to the extent that it exceeds the upper limit of the preferable numerical range.

図17には、180℃で熱処理された試料および200℃で熱処理された試料のそれぞれについての剛性比率に対するTCRの不均一性が示されている。図18には、図17の剛性比率範囲200~300kPa・mが拡大されて示されている。図19には、180℃で熱処理された試料および200℃で熱処理された試料のそれぞれについての熱膨張係数に対するTCRの不均一性が示されている。図17~図19から、200℃で熱処理された試料についても、図14~図16で示された結果と同様の結果が得られた。また、図20および図21からわかるように、Gfの不均一性に関しては、180℃で熱処理された試料および200℃で熱処理された試料のいずれも、剛性比率および熱膨張係数のどちらに対してもこれらの範囲では問題はなかった。 FIG. 17 shows the non-uniformity of TCR with respect to the stiffness ratio for each of the sample heat-treated at 180 ° C. and the sample heat-treated at 200 ° C. In FIG. 18, the rigidity ratio range of 200 to 300 kPa · m in FIG. 17 is enlarged and shown. FIG. 19 shows the non-uniformity of TCR with respect to the coefficient of thermal expansion for each of the sample heat-treated at 180 ° C. and the sample heat-treated at 200 ° C. From FIGS. 17 to 19, the same results as those shown in FIGS. 14 to 16 were obtained for the samples heat-treated at 200 ° C. Further, as can be seen from FIGS. 20 and 21, regarding the non-uniformity of Gf, both the sample heat-treated at 180 ° C. and the sample heat-treated at 200 ° C. have a relative rigidity ratio and a coefficient of thermal expansion. However, there was no problem in these ranges.

以上の結果から、断線率が10%以下で薄膜特性の不均一性が参考例(実用化されている既存のジルコニア基板素子)の値の2倍以下となるひずみゲージ用基板特性の条件は、180~200℃の温度範囲で熱処理された場合、熱膨張係数が0~30ppm/℃、かつ、剛性比率が200~1000×103Pa・mの範囲に含まれることがわかった。各基板の特性および前記範囲境界が図22に示されている。 From the above results, the conditions for the substrate characteristics for strain gauges are that the disconnection coefficient is 10% or less and the non-uniformity of the thin film characteristics is less than twice the value of the reference example (existing zirconia substrate element in practical use). It was found that when the heat treatment was performed in the temperature range of 180 to 200 ° C., the coefficient of thermal expansion was 0 to 30 ppm / ° C. and the rigidity ratio was in the range of 200 to 1000 × 10 3 Pa · m. The characteristics of each substrate and the range boundaries are shown in FIG.

図22には、第1基板、第2基板、第3基板、第4基板、第5基板、第6基板、第7基板および参考基板のそれぞれの剛性比率および熱膨張係数の組み合わせを表わすプロットが1から7までの丸付き数字および白丸により示されている。図22に示されている剛性比率-熱膨張係数における第1指定範囲S1は、剛性比率が200~1000×103Pa・mの範囲に含まれ、かつ、熱膨張係数が0ppm/℃~30ppm/℃の範囲に含まれていることを意味している。図22に示されている剛性比率-熱膨張係数における第2指定範囲S2は、剛性比率が227.5~682.5×103Pa・mの範囲に含まれ、かつ、熱膨張係数が3~27ppm/℃の範囲に含まれていることを意味している。図22から、第1基板、第2基板、第3基板、第5基板および第7基板のそれぞれの剛性比率および熱膨張係数の組み合わせを表わすプロットが、第1指定範囲S1および第2指定範囲S2に含まれていることがわかる。その一方、図22から、第4基板、第6基板および参考基板のそれぞれの剛性比率および熱膨張係数の組み合わせを表わすプロットが、第1指定範囲S1および第2指定範囲S2から外れていることがわかる。 FIG. 22 is a plot showing the combination of the rigidity ratio and the coefficient of thermal expansion of each of the first substrate, the second substrate, the third substrate, the fourth substrate, the fifth substrate, the sixth substrate, the seventh substrate, and the reference substrate. It is indicated by a circled number from 1 to 7 and a white circle. The first designated range S1 in the rigidity ratio-coefficient of thermal expansion shown in FIG. 22 includes a rigidity ratio in the range of 200 to 1000 × 10 3 Pa · m and a coefficient of thermal expansion of 0 ppm / ° C. to 30 ppm. It means that it is included in the range of / ° C. The second designated range S2 in the rigidity ratio-coefficient of thermal expansion shown in FIG. 22 is included in the range of the rigidity ratio of 227.5 to 682.5 × 10 3 Pa · m and has a coefficient of thermal expansion of 3. It means that it is contained in the range of about 27 ppm / ° C. From FIG. 22, plots showing the combination of the rigidity ratio and the coefficient of thermal expansion of each of the first substrate, the second substrate, the third substrate, the fifth substrate, and the seventh substrate are shown in the first designated range S1 and the second designated range S2. It can be seen that it is contained in. On the other hand, from FIG. 22, the plot showing the combination of the rigidity ratio and the coefficient of thermal expansion of the fourth substrate, the sixth substrate and the reference substrate is out of the first designated range S1 and the second designated range S2. Understand.

前記条件の樹脂基板を用いることによって、既存のジルコニア基板Cr-N薄膜ひずみゲージ素子における、基板が壊れやすいという問題が解決され、さらに、表3からわかるように、第1基板および第2基板が、参考基板(ジルコニア基板)とほぼ同様に断線せずに歩留まり良くCr-N薄膜を成膜でき、かつ、TCRおよびGfの不均一性(バラツキ)が同等以上に改善されることが明らかになった。実用上、本発明により非常に大きな改善がなされ、従来よりも扱いやすく、特性バラツキやドリフトの問題が少ない高感度で温度に安定なひずみゲージが提供可能になる。 By using the resin substrate under the above conditions, the problem that the substrate is fragile in the existing zirconia substrate Cr—N thin film strain gauge element is solved, and further, as can be seen from Table 3, the first substrate and the second substrate are As with the reference substrate (zirconia substrate), it has been clarified that a Cr—N thin film can be formed with good yield without disconnection, and that the non-uniformity (variation) of TCR and Gf is improved to the same level or higher. rice field. Practically, the present invention has made a great improvement, and it is possible to provide a strain gauge that is easier to handle than the conventional one, has less problems of characteristic variation and drift, has high sensitivity, and is stable to temperature.

熱処理温度が200℃を超えると断線率が高くなって成膜歩留まりが悪くなることやTCRの不均一性が増大して特性の不安定性の要因になるので好ましくない。熱処理温度の下限は温度の影響が低下することから特に制限はないが、特性が大きく異なることがない160℃でも好ましく、さらに180℃がより好ましい。また、熱膨張係数が30ppm/℃を超えると、やはり断線率が高くなって成膜歩留まりが悪くなることやTCRの不均一性が増大して特性の不安定性の要因になるので好ましくない。さらに、剛性比率が200×103Pa・mを下まわると断線率が急激に高くなって成膜歩留まりが極端に悪くなるので好ましくない。一方、剛性比率が大きすぎても断線率や特性の均一性に問題は生じないが、ヤング率が小さい樹脂フィルム基板の場合、厚さが増大することになるためゲージ率が正しく測定できなくなる。本発明では、試験した樹脂フィルム中最大のヤング率13GPaと最大のフィルム厚75μmから約1000×10Pa・mを超えると好ましくないと考えられる。 If the heat treatment temperature exceeds 200 ° C., the disconnection rate increases, the film formation yield deteriorates, and the non-uniformity of TCR increases, which causes instability of the characteristics, which is not preferable. The lower limit of the heat treatment temperature is not particularly limited because the influence of the temperature is reduced, but 160 ° C., which does not significantly differ in characteristics, is preferable, and 180 ° C. is more preferable. Further, if the coefficient of thermal expansion exceeds 30 ppm / ° C., the disconnection rate also increases, the film formation yield deteriorates, and the non-uniformity of TCR increases, which causes instability of the characteristics, which is not preferable. Further, when the rigidity ratio is less than 200 × 10 3 Pa · m, the disconnection rate sharply increases and the film formation yield becomes extremely poor, which is not preferable. On the other hand, if the rigidity ratio is too large, there is no problem in the disconnection rate and the uniformity of the characteristics, but in the case of a resin film substrate having a small Young's modulus, the thickness increases and the gauge rate cannot be measured correctly. In the present invention, it is considered unfavorable if the Young's modulus of 13 GPa, which is the maximum among the resin films tested, and the film thickness of 75 μm, which is the maximum, exceeds about 1000 × 10 3 Pa · m.

樹脂基板の薄膜特性として窒素含有量に対する抵抗温度係数およびゲージ率の値を図23および図24にそれぞれ示す。樹脂基板においても、図3および4に示したジルコニア基板(参考例)およびガラス基板の場合と同様、抵抗温度係数は調査した全窒素含有量にわたってゼロ近傍の値を示し、ゲージ率は窒素量の増大に伴って減少する傾向が得られた。本発明で取り上げた熱処理温度低減手法に従う場合のCr-N薄膜は、窒素含有量2~8at%において抵抗温度係数(TCR)が±400ppm/℃以内、ゲージ率(Gf)が3~20を示すものであり、この手法と条件および前記特性の基板を用いることで、前記、目的のひずみゲージの提供が可能となる。
As the thin film characteristics of the resin substrate, the values of the temperature coefficient of resistance and the gauge ratio with respect to the nitrogen content are shown in FIGS. 23 and 24, respectively. In the resin substrate as well, as in the case of the zirconia substrate (reference example) and the glass substrate shown in FIGS. 3 and 4, the temperature coefficient of resistance shows a value near zero over the total nitrogen content investigated, and the gauge ratio is the nitrogen content. There was a tendency to decrease with increasing. When the Cr—N thin film according to the heat treatment temperature reduction method described in the present invention is followed, the Cr—N thin film exhibits a resistance temperature coefficient (TCR) within ± 400 ppm / ° C. and a gauge ratio (Gf) of 3 to 20 at a nitrogen content of 2 to 8 at%. By using this method and conditions and a substrate having the above-mentioned characteristics, it is possible to provide the above-mentioned target strain gauge.

Figure 2022074104000004
表2には、各作製例のひずみゲージ群の断線率の評価結果が示されている。ひずみゲージ群を構成する複数個(40個のうち断線していないもの)の薄膜素子の電気抵抗値がテスターにより計測され、すべての薄膜素子の個数に対する、当該電気抵抗値が測定不能であった薄膜素子の個数の比が断線率として評価された。表2から、実施例1~5のそれぞれのひずみゲージ群の断線率は、比較例1~4のそれぞれのひずみゲージ群よりも著しく低く、かつ、参考例1および参考例2のそれぞれのひずみゲージ群の断線率と同程度以下であることがわかる。
Figure 2022074104000004
Table 2 shows the evaluation results of the disconnection rate of the strain gauge group of each production example. The electric resistance values of a plurality of thin film elements (out of 40 pieces that were not broken) constituting the strain gauge group were measured by a tester, and the electric resistance values could not be measured for all the thin film elements. The ratio of the number of thin film elements was evaluated as the disconnection rate. From Table 2, the disconnection rate of each strain gauge group of Examples 1 to 5 is significantly lower than that of each strain gauge group of Comparative Examples 1 to 4, and the strain gauges of Reference Example 1 and Reference Example 2 are respectively. It can be seen that it is less than or equal to the disconnection rate of the group.

表2には、各作製例のひずみゲージ群の抵抗温度係数TCR(平均値)およびその不均一性の評価結果が示されている。表2から、実施例1~5のそれぞれのひずみゲージ群のTCRが-186.1~370.1[ppm/℃]の範囲に含まれ、この点では比較例2、比較例3、参考例1および参考例2のそれぞれのひずみゲージ群と共通していることがわかる。その一方、実施例1~5のそれぞれのひずみゲージ群のTCR不均一性が参考例1および参考例2のそれぞれのひずみゲージ群と同様に0.263~1.916の範囲に含まれ、比較例2および3のそれぞれのひずみゲージ群よりも低いことがわかる。 Table 2 shows the resistance temperature coefficient TCR (mean value) of the strain gauge group of each production example and the evaluation results of its non-uniformity. From Table 2, the TCR of each strain gauge group of Examples 1 to 5 is included in the range of -186.1 to 370.1 [ppm / ° C.], and in this respect, Comparative Example 2, Comparative Example 3, and Reference Example. It can be seen that it is common to each strain gauge group of 1 and Reference Example 2. On the other hand, the TCR non-uniformity of each strain gauge group of Examples 1 to 5 is included in the range of 0.263 to 1.916 as in each strain gauge group of Reference Example 1 and Reference Example 2, and is compared. It can be seen that it is lower than the respective strain gauge groups of Examples 2 and 3.

表2には、各作製例のひずみゲージ群のゲージ率Gf(平均値)およびその不均一性の評価結果が示されている。表2から、実施例1~5のそれぞれのひずみゲージ群のGfが16.6~19.0の範囲に含まれ、比較例2および3のそれぞれのひずみゲージ群と同程度であることがわかる。また、実施例1~5のそれぞれのひずみゲージ群のGfの不均一性が0.076~0.121の範囲に含まれ、比較例2および3のそれぞれのひずみゲージ群よりも低く、さらには参考例1および参考例2のそれぞれのひずみゲージ群よりも低いことがわかる。 Table 2 shows the gauge ratio Gf (mean value) of the strain gauge group of each production example and the evaluation results of the non-uniformity thereof. From Table 2, it can be seen that the Gf of each strain gauge group of Examples 1 to 5 is included in the range of 16.6 to 19.0, which is similar to that of the respective strain gauge groups of Comparative Examples 2 and 3. .. Further, the non-uniformity of Gf of each strain gauge group of Examples 1 to 5 is included in the range of 0.076 to 0.121, which is lower than that of the strain gauge groups of Comparative Examples 2 and 3, and further. It can be seen that it is lower than the strain gauge groups of Reference Example 1 and Reference Example 2.

図23には、基板1として合成樹脂(第1基板)のフィルムの上に成膜された薄膜素子2の窒素含有量および抵抗温度係数(TCR)の関係が示されている。図23から、窒素含有量2~10.5%の範囲において、薄膜素子2の抵抗温度係数がゼロ近傍の値を示していることがわかる。 FIG. 23 shows the relationship between the nitrogen content and the temperature coefficient of resistance (TCR) of the thin film element 2 formed on the film of the synthetic resin (first substrate) as the substrate 1. From FIG. 23, it can be seen that the temperature coefficient of resistance of the thin film element 2 shows a value near zero in the range of the nitrogen content of 2 to 10.5%.

図24には、基板1として合成樹脂(第1基板)のフィルムの上に成膜された薄膜素子2の窒素含有量およびゲージ率(Gf)の関係が示されている。図24から、窒素含有量2~10.5%の範囲において、薄膜素子2のゲージ率が窒素含有量の増大に伴って減少する傾向があることがわかる。 FIG. 24 shows the relationship between the nitrogen content and the gauge ratio (Gf) of the thin film element 2 formed on the film of the synthetic resin (first substrate) as the substrate 1. From FIG. 24, it can be seen that the gauge ratio of the thin film element 2 tends to decrease as the nitrogen content increases in the range of the nitrogen content of 2 to 10.5%.

1‥基板、2‥薄膜素子、101‥基板の上面(主面)、102‥基板の下面(主面)。 1 ... Substrate, 2 ... Thin film element, 101 ... Top surface of the substrate (main surface), 102 ... Bottom surface of the substrate (main surface).

Claims (3)

剛性比率が200~1000×103Pa・mの範囲に含まれ、かつ、熱膨張係数が0ppm/℃~30ppm/℃の範囲に含まれている樹脂からなる基板と、
前記基板上に形成されている薄膜素子と、
を備えているひずみゲージであって、
前記薄膜素子が、窒素(N)含有量が2~8at%の範囲に含まれ、かつ抵抗温度係数(TCR)が0±400ppm/℃以内であり、かつ、ゲージ率が3~20であるCr-N薄膜からなる
ことを特徴とするひずみゲージ。
A substrate made of a resin having a rigidity ratio in the range of 200 to 1000 × 10 3 Pa · m and a coefficient of thermal expansion in the range of 0 ppm / ° C to 30 ppm / ° C.
The thin film element formed on the substrate and
Is a strain gauge equipped with
Cr in which the thin film element has a nitrogen (N) content in the range of 2 to 8 at%, a temperature coefficient of resistance (TCR) of 0 ± 400 ppm / ° C., and a gauge ratio of 3 to 20. -A strain gauge characterized by being composed of an N thin film.
請求項1に記載のひずみゲージにおいて、
前記基板が、剛性比率が227.5~682.5×103Pa・mの範囲に含まれ、かつ、熱膨張係数が3~27ppm/℃の範囲に含まれている樹脂からなり、
前記薄膜素子が、窒素含有量が2.09~4.20at%の範囲に含まれ、抵抗温度係数(TCR)が-186.1~370.1ppm/℃の範囲に含まれ、かつ、ゲージ率が16.6~19.0の範囲に含まれているCr-N薄膜からなる
ことを特徴とするひずみゲージ。
In the strain gauge according to claim 1,
The substrate is made of a resin having a rigidity ratio in the range of 227.5 to 682.5 × 10 3 Pa · m and a coefficient of thermal expansion in the range of 3 to 27 ppm / ° C.
The thin film element has a nitrogen content in the range of 2.09 to 4.20 at%, a temperature coefficient of resistance (TCR) in the range of -186.1 to 370.1 ppm / ° C., and a gauge ratio. Is a strain gauge comprising a Cr—N thin film contained in the range of 16.6 to 19.0.
剛性比率が200~1000×103Pa・mの範囲に含まれ、かつ、熱膨張係数が0ppm/℃~30ppm/℃の範囲に含まれている樹脂からなる基板の主面に指定態様で配置されている、Cr-N薄膜からなる薄膜素子を形成する工程と、
前記薄膜素子を180~200℃の範囲の温度で熱処理する工程と、
を含んでいる、請求項1記載のひずみゲージの製造方法。
Arranged in a designated manner on the main surface of a resin substrate having a rigidity ratio in the range of 200 to 1000 × 10 3 Pa · m and a coefficient of thermal expansion in the range of 0 ppm / ° C to 30 ppm / ° C. The process of forming a thin film element made of a Cr—N thin film,
A step of heat-treating the thin film element at a temperature in the range of 180 to 200 ° C.
1. The method for manufacturing a strain gauge according to claim 1.
JP2021176924A 2020-10-30 2021-10-28 Strain gauge and manufacturing method thereof Pending JP2022074104A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020183064 2020-10-30
JP2020183064 2020-10-30

Publications (1)

Publication Number Publication Date
JP2022074104A true JP2022074104A (en) 2022-05-17

Family

ID=81604508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021176924A Pending JP2022074104A (en) 2020-10-30 2021-10-28 Strain gauge and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2022074104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176723A1 (en) * 2022-03-14 2023-09-21 ミネベアミツミ株式会社 Strain gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176723A1 (en) * 2022-03-14 2023-09-21 ミネベアミツミ株式会社 Strain gauge

Similar Documents

Publication Publication Date Title
JP6022881B2 (en) Strain gauge
JP6084393B2 (en) Strain sensor and strain measurement method
WO2019148726A1 (en) Resistive strain sensor
JP2018091848A (en) Strain resistance film and strain sensor, and manufacturing method of them
Kayser et al. High-temperature thin-film strain gauges
US5508676A (en) Strain gauge on a flexible support and transducer equipped with said gauge
CN102826602B (en) Thermistor material, temperature sensor, and manufacturing method thereof
CN107267944B (en) High-temperature film half-bridge resistance strain gauge with temperature self-compensation function and preparation method thereof
EP0035351A2 (en) Deformable flexure element for strain gage transducer and method of manufacture
JP2011069823A (en) Method of manufacturing sensor device without using passivation and the sensor device
JP5295779B2 (en) Precision force transducer with strain gauge elements
KR100959005B1 (en) A pressure measuring sensor and manufacturing process
CN116337145B (en) Nano-film temperature and pressure composite sensor and preparation method and application thereof
JP2022074104A (en) Strain gauge and manufacturing method thereof
US5306873A (en) Load cell with strain gauges having low temperature dependent coefficient of resistance
JP2019192740A (en) Strain resistance film, strain sensor, and manufacturing method thereof
JP2585681B2 (en) Metal thin film resistive strain gauge
JP6977157B2 (en) Sheet resistance and thin film sensor
JP4988938B2 (en) Temperature sensitive strain sensor
Bethe et al. Thin-film strain-gage transducers
CN112710405B (en) Temperature sensor
JPH0320682B2 (en)
Arshak et al. Analysis of thick film strain resistors on stainless steel and ceramic substrates
JP2001110602A (en) Thin-film resistor forming method and sensor
JP2018091705A (en) Strain resistance film and strain sensor for high temperature, and manufacturing method of them