JPH0536497B2 - - Google Patents

Info

Publication number
JPH0536497B2
JPH0536497B2 JP59031933A JP3193384A JPH0536497B2 JP H0536497 B2 JPH0536497 B2 JP H0536497B2 JP 59031933 A JP59031933 A JP 59031933A JP 3193384 A JP3193384 A JP 3193384A JP H0536497 B2 JPH0536497 B2 JP H0536497B2
Authority
JP
Japan
Prior art keywords
strain gauge
thin film
tcr
composition
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59031933A
Other languages
Japanese (ja)
Other versions
JPS60174844A (en
Inventor
Takeshi Masumoto
Kazuaki Fukamichi
Masami Ishii
Hiroshi Motoyama
Ryohei Yabuno
Tetsuo Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3193384A priority Critical patent/JPS60174844A/en
Publication of JPS60174844A publication Critical patent/JPS60174844A/en
Publication of JPH0536497B2 publication Critical patent/JPH0536497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔発明の対象〕 本発明は電気抵抗温度係数(以下TCRという)
が小さく、電気抵抗が高く、非磁性である、ひず
みゲージに関するものである。
[Detailed Description of the Invention] [Object of the Invention] The present invention relates to temperature coefficient of electrical resistance (hereinafter referred to as TCR)
This relates to strain gauges that have low resistance, high electrical resistance, and are non-magnetic.

〔従来技術〕[Prior art]

この従来の非晶質合金としては、本発明者らの
発明にかかる、特開昭56−77356号「ひずみゲー
ジ材料用非晶質合金」がある。
An example of this conventional amorphous alloy is ``Amorphous Alloy for Strain Gauge Materials'' disclosed in Japanese Patent Application Laid-Open No. 56-77356, which was invented by the present inventors.

これは単ロール法あるいは、双ロール法で製造
され、TCRが小さく、電気抵抗率が高く、かつ
非磁性であり、式NiaSibBc又はNidMeSifBg
(a:65.5〜70.1原子%、b:3〜16原子%、
c:13.9〜31.5%原子%、a+b+c=100、
d:58.6〜73.0原子%、e:0〜7原子%、f:
3〜16原子%、g:11.0〜31.4原子%、d+e+
f+g=100)で示される非晶質合金である。
It is manufactured by a single roll method or a double roll method, has a low TCR, high electrical resistivity, and is non-magnetic, and has the formula NiaSibBc or NidMeSifBg.
(a: 65.5 to 70.1 at%, b: 3 to 16 at%,
c: 13.9-31.5% atomic%, a+b+c=100,
d: 58.6 to 73.0 at%, e: 0 to 7 at%, f:
3 to 16 atom%, g: 11.0 to 31.4 atom%, d+e+
f+g=100).

〔従来技術の問題点及びその技術的分析〕[Problems with conventional technology and their technical analysis]

この種の従来の非晶質合金は、単ロール法ある
いは双ロール法によつて製造されるために、Si量
を増大させていくと溶湯を超急冷しても非晶質化
が困難であり、TCRが小さく、電気抵抗率が高
くかつ非磁性である非晶質合金を得ることが難し
く、更に、ひずみゲージとして使用する場合に形
状が薄板よりなるリボン状であるために、(1) 被
測定位の中での変化を小さくするために小型
で、薄い箔状又は細線とする必要があり、 (2) 接着剤にて貼付けて使用するために、ひずみ
ゲージとしての耐久性信頼性に乏しく、 (3) 大きな振動の無い場所で使用するとか、湿気
の少ない環境で使用する等の、測定機器の使用
場所の制限をうけ、 (4) 電気抵抗が小さいので、実際の使用について
別体として増幅回路を併用する必要があり、 (5) 年数回の、ひずみゲージの精度測定のメンテ
ナンスが必要である、 という問題点があつた。
Conventional amorphous alloys of this type are manufactured by a single-roll or twin-roll process, so if the amount of Si is increased, it is difficult to make them amorphous even if the molten metal is ultra-quenched. It is difficult to obtain an amorphous alloy that has a small TCR, high electrical resistivity, and is nonmagnetic.Furthermore, when used as a strain gauge, the shape is a ribbon made of a thin plate. In order to minimize changes in the measurement position, it must be small and thin foil-like or thin wire; (2) it must be attached with adhesive, so it has poor durability and reliability as a strain gauge; (3) There are restrictions on where the measuring equipment can be used, such as using it in a place without large vibrations or in an environment with low humidity. There were problems in that it required the use of an amplifier circuit, and (5) maintenance was required to measure the accuracy of the strain gauge several times a year.

〔技術的課題〕[Technical issues]

そこで本発明は、Siを多量に含有し、しかも
TCRが小さく、電気抵抗が高く、かつ非磁性で、
ひずみゲージとして、大きな振動、湿度のある環
境においても、その影響をまつたく受けず、感度
が鋭敏で、耐久性、信頼性がありメンテナンスも
余り必要としない、ひずみゲージ材料用非晶質合
金を得ることを、その技術的課題とするものであ
る。
Therefore, the present invention contains a large amount of Si, and
It has a small TCR, high electrical resistance, and is non-magnetic.
We use amorphous alloys for strain gauge materials that are highly sensitive, durable, reliable, and require little maintenance, even in environments with large vibrations and humidity. The technical challenge is to obtain the desired results.

〔技術的手段及びその作用〕[Technical means and their effects]

上記技術的課題を解決するために、講じた技術
的手段は、 (1) 非磁性のNia Sib Bcの組成からなる非晶質
合金薄膜を真空薄膜技術により絶縁体上に成膜
されるひずみゲージ。但し、式中のNiはニツ
ケル、Siは珪素、Bは硼素であり、a、b、c
は各々の元素の原子%を示し、a+b+cは実
質的に100であり、60≦a≦74、16.5≦b、26
≦b+c≦40である。
The technical measures taken to solve the above technical problems are: (1) A strain gauge in which an amorphous alloy thin film consisting of a non-magnetic Nia Sib Bc composition is deposited on an insulator using vacuum thin film technology. . However, in the formula, Ni is nickel, Si is silicon, B is boron, and a, b, c
indicates the atomic percent of each element, a+b+c is substantially 100, 60≦a≦74, 16.5≦b, 26
≦b+c≦40.

(2) 非磁性のNid Me SifBgの組成からなる非晶
質合金薄膜を真空薄膜技術により絶縁体上に成
膜されるひずみゲージ。但し、式中のNiはニ
ツケル、Mは元素記号Al、Tiのうちの1種又
は複数種の元素でSiは珪素、Bは硼素であり、
a、b、cは各々の元素の原子%を示し、d+
e+f+gは実質的に100であり、40≦d≦74、
0<e≦20、16.5≦f、26≦f+g≦40であ
る。
(2) A strain gauge in which an amorphous alloy thin film composed of non-magnetic Nid Me SifBg is deposited on an insulator using vacuum thin film technology. However, in the formula, Ni is nickel, M is one or more of the element symbols Al and Ti, Si is silicon, and B is boron.
a, b, c indicate the atomic percent of each element, d+
e+f+g is essentially 100, 40≦d≦74,
0<e≦20, 16.5≦f, 26≦f+g≦40.

上記(1)、(2)の非晶質合金は、真空蒸着法、
CVD、スパツタ法等の真空成膜技術を用い、 (a) ガラス等のセラミツク基板上、 (b) 適当な絶縁皮膜や絶縁層を形成した金属基板
上 (c) 樹脂や樹脂基板上 (d) その表面が電気的に絶縁された被測定部品上
に製造される。
The above amorphous alloys (1) and (2) can be produced by vacuum evaporation method,
Using vacuum film-forming technology such as CVD or sputtering, it can be deposited on (a) ceramic substrates such as glass, (b) metal substrates with appropriate insulating films or layers, (c) resin or resin substrates (d) It is manufactured on a part to be measured whose surface is electrically insulated.

本発明の合金において、成分組成を限定する理
由は、本発明の第1発明の合金において、 Niが60%未満では、TCRが−50ppm/℃以下
となり、 ひずみゲージとして好ましくなく、 Niが74%を超えると、、TCRが+50ppm/℃以
上となり、 ひずみゲージとして使用が困難であり、 Siが16.5%未満では、Bを増加する必要があ
り、Bの飛散による濃度のバラツキが生じ易く、
安定性が悪くなり、B又は、Siが40%を超える
と、TCRが−50ppm/℃以下となる。
The reason for limiting the component composition in the alloy of the present invention is that in the alloy of the first invention of the present invention, if Ni is less than 60%, the TCR will be -50 ppm/℃ or less, which is not preferable as a strain gauge, and Ni is 74%. If the Si content is less than 16.5%, it is necessary to increase the amount of B, and the concentration tends to vary due to B scattering.
Stability deteriorates, and when B or Si exceeds 40%, TCR becomes -50 ppm/°C or less.

又、本発明の第2合金において、 Niが40%未満ではTCRが−50ppm/℃以下と
なり、ひずみゲージとして好ましくなく Niが74%を超えるとTCRは+50ppm/℃以上
となり、ひずみゲージとして使用が困難であり、 Siが16.5%未満では、Bを増加することによ
り、Bの飛散による濃度のバラツキが生じ易く、 B又は、Siが40%を超えると、TCRが−
50ppm/℃以下となる。
Furthermore, in the second alloy of the present invention, if the Ni content is less than 40%, the TCR will be -50 ppm/℃ or less, making it unsuitable for use as a strain gauge.If the Ni content exceeds 74%, the TCR will be more than +50 ppm/℃, making it unsuitable for use as a strain gauge. If Si is less than 16.5%, increasing B tends to cause concentration variations due to B scattering, and if B or Si exceeds 40%, TCR will be -
50ppm/℃ or less.

又、Al、Tiのなかから選ばれる何れか1種又
は数種以上の元素は、電気抵抗率を高め、対銅熱
起電力を小さくする等の効果があるが、20%以上
多くするとTCRが悪化することがあるので、こ
れらの元素は20%以下にする必要がある。
In addition, one or more elements selected from Al and Ti have the effect of increasing electrical resistivity and reducing the thermoelectromotive force against copper, but if the amount is increased by 20% or more, the TCR will decrease. These elements should be kept below 20% as they may cause deterioration.

次に上記成分組成により製造した、ひずみゲー
ジは、 圧延等の薄板加工を必要としなく、又工程も少
なく、非常に均質で極薄膜(〜1μm)にできる
ので高い電気抵抗をもち、高い感度を得ることが
でき、増巾器も低倍ですみ、測定精度が高く、ま
た基板上に直接成膜することにより、接着材によ
る貼付を行なわないために、信頼性が有り、振動
等の耐環境性の飛躍的向上、検査回数の大巾な削
減、低コスト化、歩留り向上を期待することがで
き、特にスパツタ法やイオンプレーテイング法に
よれば密着強度は著しく向上し、信頼性が著しく
改善されるものである。
Next, the strain gauge manufactured with the above component composition does not require thin plate processing such as rolling, has few steps, and can be made into a very homogeneous and extremely thin film (~1 μm), so it has high electrical resistance and high sensitivity. It requires only a low magnification, has high measurement accuracy, and is reliable because the film is formed directly on the substrate without the need for adhesive, and is resistant to environments such as vibrations. This can be expected to dramatically improve performance, significantly reduce the number of inspections, lower costs, and improve yield.In particular, the sputtering method and ion plating method significantly improve adhesion strength and reliability. It is something that will be done.

更にNiSiB系、NiMSiB系非晶質合金の組成に
よる形成範囲を拡大することができ、従来液体急
冷法によればSi含有率の限界はその形成能により
16原子%であつたが、これ以上かなり広い範囲ま
で非晶質化が可能となり、これに従つてTCR 0
の領域は図に示すように拡張された。図中の(A)は
TCr=0ppm/℃となる組成を示す線で、(B)、(C)
は各々約−50ppm/℃、約+50ppm/℃を示す線
である、(C)及び(B)の線はそのSiとBの含有率の和
が各々ほぼ26、39原子%であり、(B)と(C)間の領域
で示される組成ではひずみゲージとして望ましい
温度特性を満足しているとみてよく十分に実用に
供することができる。
Furthermore, it is possible to expand the formation range of NiSiB-based and NiMSiB-based amorphous alloys depending on their composition.
It was 16 at%, but it became possible to make it amorphous over a considerably wider range, and accordingly TCR was 0.
The area has been expanded as shown in the figure. (A) in the diagram is
(B), (C) are lines showing the composition where TCr=0ppm/℃.
are lines showing approximately -50 ppm/℃ and approximately +50 ppm/℃, respectively. Lines (C) and (B) show that the sum of the Si and B contents is approximately 26 and 39 at%, respectively, and (B The compositions shown in the range between ) and (C) are considered to satisfy the desired temperature characteristics as a strain gauge, and can be sufficiently put to practical use.

また、これらの特性はNiSiB系の主にNiをM
(Al、Tiのうち1種又は2種以上)に0〜20原子
%置換した場合にも同様に現われることが判明し
ている。
In addition, these characteristics are mainly due to Ni in NiSiB system.
It has been found that the same phenomenon occurs when 0 to 20 atomic % of Al and Ti (one or more of Al and Ti) are substituted.

〔本発明による特有の効果〕[Special effects of the present invention]

本発明は次の特有の効果を生じる。すなわち、 (1) 真空薄膜作製技術として例えばスパツタ法を
用いた場合、従来のBを多く含む組成はそのタ
ーゲツト溶融時にBの飛散が多く、ターゲツト
を鋳造する場合のB濃度の再現性が悪く組成の
不良が多く発生するが、Bを減少して、本発明
のSiを増加すれば、Siはターゲツト溶融時に飛
散することがなく、従つて濃度のバラツキが少
なく、良好な再現性でターゲツトが作成でき、 (2) 又BはSiの価格の数十倍するために、Bを多
く含む組成は高価となり、TCRを小さく保つ
ためBを減少して、Siを増加すればコスト面の
効果も極めて大である。
The present invention produces the following unique effects. That is, (1) When a sputtering method is used as a vacuum thin film production technique, for example, a conventional composition containing a large amount of B causes a lot of B to scatter when the target is melted, and the reproducibility of the B concentration when casting the target is poor. However, by decreasing B and increasing Si according to the present invention, Si will not scatter when the target is melted, and therefore the target can be created with less variation in concentration and good reproducibility. (2) Also, since B is several tens of times as expensive as Si, a composition containing a large amount of B will be expensive, and reducing B and increasing Si in order to keep TCR small will be extremely cost effective. It's large.

〔実施例〕〔Example〕

以下、上記技術的手段の一具体例を示す実施例
について説明する。
An example illustrating a specific example of the above technical means will be described below.

スパツタリングにより、ガラス基板(約30mm
径)上にNi67Si24B9よりなる非晶質薄膜を0.5μm
の厚さに成膜し、フオトエツチングによりひずみ
ゲージパターンを作製した、この場合ひずみゲー
ジの各辺の抵抗値は約800Ω、比抵抗は約152μΩ
cmで、TCRは−0.10ppm/℃とほぼ0に近いも
のが得られた。
By sputtering, a glass substrate (approximately 30 mm
0.5 μm thick amorphous thin film made of Ni 67 Si 24 B 9
A strain gauge pattern was created by photo-etching the film to a thickness of
cm, a TCR of -0.10 ppm/°C, which is close to 0, was obtained.

なお非晶質化の確認はX線回折装置にて行なつ
た。成膜時のスパツタリングは2×10-5Torrま
で減圧した後アルゴンガスを3×10-3の圧力で定
常的に流し、RF電源により0.5KWの電力で約40
分間行つた。
The amorphization was confirmed using an X-ray diffraction device. For sputtering during film formation, the pressure is reduced to 2 x 10 -5 Torr, then argon gas is passed steadily at a pressure of 3 x 10 -3 , and an RF power source is used to generate approximately 40
I went for a minute.

このようにして得たNi67Si24B9非晶質合金膜は
従来の接着による信頼性の低下がなく、安定し
た、ひずみゲージ特性をもち、定温から約120℃
の高温まで温度補正を必要としない高感度素子に
最適である。
The Ni 67 Si 24 B 9 amorphous alloy film obtained in this way has stable strain gauge characteristics without deterioration in reliability due to conventional adhesion, and can be heated at approximately 120°C from a constant temperature.
It is ideal for high-sensitivity devices that do not require temperature compensation up to high temperatures.

次に表に各成分組成と、TCR、比抵抗、結晶
化温度の値を示す。
Next, the table shows the composition of each component and the values of TCR, specific resistance, and crystallization temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の非晶質合金の組成におけるTCR
の分布を示し、SiとBとの含有量との関係を示
す。
The figure shows TCR in the composition of the amorphous alloy of the present invention.
The relationship between the Si and B contents is shown.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 非磁性のNia Sic Bcの組成からなる非晶質
合金薄膜を真空薄膜作製技術により絶縁体上に成
膜されるひずみゲージ。但し、式中のNiはニツ
ケル、Siは珪素、Bは硼素であり、a、b、cは
各々の元素の原子%を示し、a+b+cは実質的
に100であり、60≦a≦74、16.5≦b、26≦b+
c≦40である。 2 非磁性のNid Me Sif Bgの組成からなる非
晶質合金薄膜を真空薄膜作製技術により絶縁体上
に成膜されるひずみゲージ。但し、式中のNiは
ニツケル、Mは元素記号Al、Tiのうちの1種又
は複数種の元素で、Siは珪素、Bは硼素であり、
a、b、cは各々の元素の原子%を示し、d+e
+f+gは実質的に100であり、40≦d≦74、0
<e≦20、16.5≦f、26≦f+g≦40である。
[Claims] 1. A strain gauge in which an amorphous alloy thin film having a composition of non-magnetic Nia Sic Bc is formed on an insulator by vacuum thin film production technology. However, in the formula, Ni is nickel, Si is silicon, and B is boron, a, b, and c represent the atomic percent of each element, and a+b+c is substantially 100, 60≦a≦74, 16.5 ≦b, 26≦b+
c≦40. 2. A strain gauge in which an amorphous alloy thin film consisting of a non-magnetic Nid Me Sif Bg composition is formed on an insulator using vacuum thin film fabrication technology. However, in the formula, Ni is nickel, M is one or more elements of the element symbols Al and Ti, Si is silicon, and B is boron.
a, b, c indicate the atomic percent of each element, d+e
+f+g is essentially 100, 40≦d≦74, 0
<e≦20, 16.5≦f, 26≦f+g≦40.
JP3193384A 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge Granted JPS60174844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193384A JPS60174844A (en) 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193384A JPS60174844A (en) 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge

Publications (2)

Publication Number Publication Date
JPS60174844A JPS60174844A (en) 1985-09-09
JPH0536497B2 true JPH0536497B2 (en) 1993-05-31

Family

ID=12344766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193384A Granted JPS60174844A (en) 1984-02-21 1984-02-21 Amorphous alloy for material of strain gauge

Country Status (1)

Country Link
JP (1) JPS60174844A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222137A (en) * 1986-03-24 1987-09-30 Aisin Seiki Co Ltd Diaphragm for pressure sensor
US4812801A (en) * 1987-05-14 1989-03-14 The United States Of America As Represented By The Secretary Of The Air Force Solid state gas pressure sensor
CN100389219C (en) * 2006-06-22 2008-05-21 山东大学 Nickel-silicon-boron intermediate alloy and process for preparing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122000A (en) * 1978-03-13 1979-09-21 Ibm Amorphous magnetic film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122000A (en) * 1978-03-13 1979-09-21 Ibm Amorphous magnetic film

Also Published As

Publication number Publication date
JPS60174844A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
Parker et al. Electrical Resistance‐Strain Characteristics of Thin Evaporated Metal Films
JP4436064B2 (en) Thermistor material and manufacturing method thereof
JPH10270201A (en) Cr-n-based strained resistance film, manufacture therefor and strain sensor
EP0035351A2 (en) Deformable flexure element for strain gage transducer and method of manufacture
JP2015031633A (en) Strain sensor
US8963263B2 (en) Resistant strain gauge
JPS63165725A (en) Strain gauge for pressure sensor
Gregory et al. High temperature strain gages based on reactively sputtered AlNx thin films
US4100524A (en) Electrical transducer and method of making
US5306873A (en) Load cell with strain gauges having low temperature dependent coefficient of resistance
JP2001221696A (en) Temperature-sensitive and strain-sensitive composite sensor
JPH0536497B2 (en)
JPH09162421A (en) Piezoresistance element and its manufacture
JP3933213B2 (en) Cr-based alloy thin film, method for producing the same, and strain gauge
JPS63245962A (en) Strain sensor
Bethe et al. Thin-film strain-gage transducers
Ayerdi et al. Ceramic pressure sensor based on tantalum thin film
US3305816A (en) Ternary alloy strain gauge
Suzuki et al. Thickness dependence of H 2 gas sensor in amorphous SnQ x films prepared by ion-beam sputtering
JP2011117971A (en) Temperature-sensitive strain-sensitive composite sensor
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
Patterson LXXII. On the electrical properties of thin metal films
JPH0276201A (en) Thin film resistor for strain gauge
US3609625A (en) Semiconductor strain gauge
JP2562610B2 (en) Thin film resistor for strain gauge