JPH0666162B2 - Thin film resistor for strain gauge - Google Patents

Thin film resistor for strain gauge

Info

Publication number
JPH0666162B2
JPH0666162B2 JP63306318A JP30631888A JPH0666162B2 JP H0666162 B2 JPH0666162 B2 JP H0666162B2 JP 63306318 A JP63306318 A JP 63306318A JP 30631888 A JP30631888 A JP 30631888A JP H0666162 B2 JPH0666162 B2 JP H0666162B2
Authority
JP
Japan
Prior art keywords
strain gauge
strain
thin film
oxygen
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63306318A
Other languages
Japanese (ja)
Other versions
JPH02152201A (en
Inventor
秀哉 山寺
康訓 多賀
勝彦 有賀
眞 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63306318A priority Critical patent/JPH0666162B2/en
Priority to DE68911630T priority patent/DE68911630T2/en
Priority to US07/404,209 priority patent/US5001454A/en
Priority to EP89116555A priority patent/EP0359132B1/en
Publication of JPH02152201A publication Critical patent/JPH02152201A/en
Publication of JPH0666162B2 publication Critical patent/JPH0666162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、歪による電気抵抗変化を利用した歪ゲージ用
の薄膜抵抗体に関するものである。
TECHNICAL FIELD The present invention relates to a thin film resistor for a strain gauge that utilizes a change in electrical resistance due to strain.

〔従来技術と問題点〕[Conventional technology and problems]

従来、歪ゲージ用薄膜抵抗体は、大きく分けて、金属ま
たは合金の歪抵抗変化を利用したものと、半導体のピエ
ゾ抵抗効果を利用したものの二種類が用いられてきた
(センサ技術vol.5,No7,49(1985))。前者(例え
ばニッケル(Ni)−クロム(Cr)合金)は、抵抗温
度係数が小さいため温度による出力の変動が小さく、か
つ歪抵抗特性の直線性に優れている。しかし、歪に対す
る抵抗変化の割合、すなわちゲージ率が低いという欠点
があった。その結果、前者は、ゲージ率が低いために、
歪ゲージのS/N比が小さく高感度の増幅器を必要と
し、歪ゲージの小型化が困難であった。一方、後者(例
えばSi)は、ゲージ率は高いが、抵抗温度係数が大き
く、歪抵抗特性の直線性が悪いという欠点があった。そ
の結果、後者は、歪ゲージの出力に直線性を改善するた
めの増幅器や温度補償回路を必要とし、制御系が複雑に
なるという問題があった。さらに、後者は前者と比べて
破壊強度が弱く、高圧用の歪ゲージには不適であった。
Conventionally, two types of thin-film resistors for strain gauges have been used (sensor technology vol.5, which uses the strain resistance change of metals or alloys and those which utilize the piezoresistive effect of semiconductors). No7, 49 (1985)). The former (for example, a nickel (Ni) -chromium (Cr) alloy) has a small temperature coefficient of resistance and thus has a small change in output due to temperature, and has excellent linearity of strain resistance characteristics. However, there is a drawback that the ratio of resistance change to strain, that is, the gauge factor is low. As a result, the former has a low gauge ratio,
The S / N ratio of the strain gauge is small and a highly sensitive amplifier is required, which makes it difficult to downsize the strain gauge. On the other hand, the latter (for example, Si) has a high gauge factor, but has a large temperature coefficient of resistance, and has a drawback of poor linearity of strain resistance characteristics. As a result, the latter requires an amplifier and a temperature compensating circuit for improving the linearity in the output of the strain gauge, which causes a problem that the control system becomes complicated. Furthermore, the latter has a weaker breaking strength than the former and is not suitable for a strain gauge for high pressure.

すなわち、従来は高感度で機械的強度に優れた歪ゲージ
用薄膜抵抗体は存在しなかった。特に高感度で歪抵抗特
性・抵抗温度特性・機械的強度がともに良好な歪ゲージ
用薄膜抵抗体は開発することが困難であるとされてい
た。
That is, heretofore, there has not been a thin film resistor for a strain gauge having high sensitivity and excellent mechanical strength. In particular, it has been considered difficult to develop a thin film resistor for a strain gauge, which has high sensitivity and good strain resistance characteristics, resistance temperature characteristics, and mechanical strength.

〔発明の背景〕[Background of the Invention]

このような状況下、本発明者等は上記問題点を解決すべ
く鋭意努力を重ねた。本発明者等はスパッタリングによ
ってクロム(Cr)と酸素と金属であるアルミニウム
(Al)を混合した薄膜が通常の金属・合金では得られ
ないゲージ率(k=5〜10、通常の金属等は1.5〜
3)を持つことを見出した。したがって、Crは酸素と
金属を含んだ薄膜抵抗体を歪ゲージ材として用いれば、
高感度の歪ゲージ材が得られることに到達した。また、
発明者はCrへの添加剤である酸素とAl等の金属がC
rの結晶粒を微細化するように作用して、Crの伝導電
子の平均自由行程を制御でき、その結果、抵抗温度係数
を低下することができると考えた。
Under such circumstances, the present inventors have made diligent efforts to solve the above problems. The inventors of the present invention have found that a thin film obtained by mixing chromium (Cr), oxygen and aluminum (Al) which is a metal by sputtering cannot be obtained with an ordinary metal / alloy (k = 5 to 10; .5
3) found to have. Therefore, if Cr is a thin film resistor containing oxygen and metal as a strain gauge material,
We have reached the point where a highly sensitive strain gauge material can be obtained. Also,
The inventor has found that oxygen as an additive to Cr and metals such as Al are C
It was considered that the crystal grains of r can be made finer to control the mean free path of conduction electrons of Cr, and as a result, the temperature coefficient of resistance can be lowered.

〔発明の目的〕[Object of the Invention]

本発明は、高感度で機械的強度に優れた歪ゲージ用薄膜
抵抗体、さらには歪抵抗特性および抵抗温度特性にも優
れた歪ゲージ用の薄膜抵抗体を提供することを目的とす
る。
An object of the present invention is to provide a thin film resistor for a strain gauge which has high sensitivity and excellent mechanical strength, and a thin film resistor for a strain gauge which is also excellent in strain resistance characteristics and resistance temperature characteristics.

〔第1発明の説明〕 本第1発明(特許請求の範囲に記載の発明)は、物理的
蒸着法または化学的蒸着法によって形成されたCr60
〜98原子%、酸素2〜30原子%、金属0〜10原子
%が均一に分布した薄膜であって、膜厚が0.01〜10
μmであることを特徴とする歪ゲージ用薄膜抵抗体に関
するものである。
[Explanation of the First Invention] The first invention (the invention described in the claims) is made of Cr60 formed by a physical vapor deposition method or a chemical vapor deposition method.
% To 98 atomic%, 2 to 30 atomic% of oxygen, and 0 to 10 atomic% of metal are uniformly distributed, and the film thickness is 0.01 to 10
The present invention relates to a thin film resistor for a strain gauge having a thickness of μm.

本第1発明に係る歪ゲージ用薄膜抵抗体は、従来ある金
属または合金の歪ゲージに比べ5以上という高いゲージ
率を示す。また、Si等の半導体歪ゲージに比べ歪抵抗
の直線性に優れ、抵抗温度係数も±100ppm/℃以下
と小さい。また、120℃前後の温度に長時間保持して
も抵抗変化率がほとんど変わらず優れた高温耐久性を示
す。さらに、従来の金属抵抗体に近い強度が維持されて
おり、Si等の半導体系抵抗体に比べ著しく高い強度を
示す。このような優れた特性を示す理由ははっきり明ら
かにされていないが、抵抗温度係数が小さい理由とし
て、酸素、および金属がCrの伝導電子の流れを妨げる
散乱体として作用しCrの伝導電子の平均自由行程を制
御していること、Al等の金属を添加することにより組
織が極めて微細であること等によるものと考えられる。
また、Crと添加元素との混合状態が均一なため高温強
度に優れているものと推定される。
The strain gauge thin-film resistor according to the first aspect of the present invention exhibits a high gauge ratio of 5 or more as compared with conventional metal or alloy strain gauges. In addition, the linearity of strain resistance is superior to that of semiconductor strain gauges such as Si, and the temperature coefficient of resistance is as small as ± 100 ppm / ° C or less. Further, even if the temperature is kept at around 120 ° C. for a long time, the rate of change in resistance hardly changes, and excellent high temperature durability is exhibited. Further, the strength close to that of the conventional metal resistor is maintained, and the strength is remarkably higher than that of the semiconductor resistor such as Si. The reason why such excellent characteristics are exhibited is not clearly clarified, but the reason why the temperature coefficient of resistance is small is that oxygen and metal act as scatterers that obstruct the flow of conduction electrons of Cr, and the average of conduction electrons of Cr. It is considered that the free path is controlled and the structure is extremely fine by adding a metal such as Al.
Further, since the mixed state of Cr and the additional element is uniform, it is presumed that the high temperature strength is excellent.

したがって、本発明に係る薄膜抵抗体を用いれば、高ゲ
ージ率で高温耐久性に優れた圧力センサ、ロードセル等
への応用も可能である。
Therefore, if the thin film resistor according to the present invention is used, it can be applied to a pressure sensor, a load cell, etc. having a high gauge ratio and excellent high temperature durability.

〔第2発明の説明〕 以下、本第1発明をより具体化した発明(本第2発明と
する)について詳しく説明する。
[Description of Second Invention] Hereinafter, an invention (hereinafter referred to as a second invention) that is a more specific embodiment of the first invention will be described in detail.

薄膜抵抗体を構成するCrの含有量は、60〜98原子
%で、酸素の含有量は2〜30原子%の範囲で用いる。
これらの範囲外では、高ゲージ率を得るのが困難であ
る。望ましくは15〜20%が良い。また、金属はA
l、チタン(Ti)、タンタル(Ta)、ジルコニウム
(Zr)、インジウム(In)等を用いる。金属の含有
量は、高ゲージ率を保ち良好な歪抵抗特性・抵抗温度特
性を得るために、0〜10原子%の範囲が望ましい。C
r、酸素および金属は、少なくともμmオーダー以下で
ほぼ均一に分布していないと良好な性質は得られない。
The Cr content of the thin film resistor is 60 to 98 atomic%, and the oxygen content is 2 to 30 atomic%.
Outside these ranges, it is difficult to obtain a high gauge factor. It is preferably 15 to 20%. Also, the metal is A
l, titanium (Ti), tantalum (Ta), zirconium (Zr), indium (In), etc. are used. The metal content is preferably in the range of 0 to 10 atomic% in order to maintain a high gauge ratio and obtain good strain resistance characteristics and resistance temperature characteristics. C
Good properties cannot be obtained unless r, oxygen, and metal are distributed at least substantially in the order of μm or less.

膜厚は連続膜を形成でき安定な歪抵抗特性を得るため
に、0.01μm以上で、かつ、膜の内部応力による破壊
を防ぐために10μm以下が望ましい。
The film thickness is preferably 0.01 μm or more in order to form a continuous film and obtain stable strain resistance characteristics, and 10 μm or less in order to prevent damage due to internal stress of the film.

本第2発明に係る薄膜抵抗体の製造方法は通常の薄膜形
成に用いられるイオンプレーティング法、スパッタリン
グ法、蒸着法やプラズマCVD法等のPVD法あるいは
CVD法のいずれを用いてもよい。ただし、Cr、酸素
と金属の混合状態を緻密かつ均一にするためには、スパ
ッタリング法または蒸着法が望ましい。また、Cr、酸
素と金属の混合状態を一層均一にするために、薄膜形成
後、200〜500℃で1〜2時間程度の熱処理を施し
てもよい。薄膜抵抗体中に酸素を含ませるためには、ス
パッタリング等の処理雰囲気中に酸素が含有されていな
ければならない。
The method of manufacturing the thin film resistor according to the second aspect of the present invention may use any of the PVD method and the CVD method such as the ion plating method, the sputtering method, the vapor deposition method and the plasma CVD method used for forming a normal thin film. However, in order to make the mixed state of Cr, oxygen and metal dense and uniform, the sputtering method or vapor deposition method is desirable. Further, in order to make the mixed state of Cr, oxygen and metal more uniform, a heat treatment may be performed at 200 to 500 ° C. for about 1 to 2 hours after forming the thin film. In order to include oxygen in the thin film resistor, oxygen must be contained in the processing atmosphere such as sputtering.

膜の特性が特に優れているのは、酸素量が15〜20at
%の範囲であるが、15at%以上の酸素を膜中に含ませ
るためには不純物として雰囲気中に含まれている酸素量
以上の酸素を雰囲気中に積極的に添加する必要がある。
The characteristic of the film is that the oxygen content is 15 to 20 at.
%, But in order to contain 15 at% or more of oxygen in the film, it is necessary to positively add oxygen to the atmosphere as an impurity in an amount not less than the amount of oxygen contained in the atmosphere.

しかし、雰囲気中に酸素が含まれていなくても、Al、
Ti等の金属を酸化物の形でスパッタリング等を行えば
30at%までの酸素量であれば薄膜中に含ませ得る。
However, even if the atmosphere does not contain oxygen, Al,
When a metal such as Ti is sputtered in the form of an oxide, the oxygen content up to 30 at% can be contained in the thin film.

〔実施例〕〔Example〕

実施例1 第1図に、本実施例によって製作した歪ゲージを示す。 Example 1 FIG. 1 shows a strain gauge manufactured according to this example.

薄膜抵抗体は、二元同時スパッタリング法により形成し
た。まず、コーニング0313ガラス基板1に、トリク
レン煮沸洗浄およびアセトン超音波洗浄を施し、乾燥後
スパッタリング装置内に歪ゲージ用SUS製マスクを介
して配置し、装置内で5×10-6Torrまで真空排気
した。次に、Arガスを上記装置内に5×10-3Tor
r導入し、CrターゲットにDC300W、Al
ターゲットにRF150W(13.56MHz)の電力を印
加し、6分間スパッタリングを行った。このように製作
した抵抗体である歪ゲージ膜2の組成をEPMA、XP
S、厚さを触針式膜厚計によって調査したところ歪ゲー
ジ膜の組成はCr−21at%酸素(O)−4at%アルミ
ニウム(Al)膜厚は0.20μmであった(表)。歪ゲ
ージ膜を形成した基板を大気中に取り出し、電極用マス
クを取り付けた後スパッタリング装置内で前記と同様の
方法で、AuターゲットにDC250Wの電力を印加
し、1分間のスパッタリングを行い、Au電極膜3を0.
1μm形成した。さらに、大気中で300℃、1hrの熱
処理を施した後、Au電極にリード線4を半田付けし
た。このようにして製作した歪ゲージを用いて特性評価
試験を行った。
The thin film resistor was formed by a binary simultaneous sputtering method. First, Corning 0313 glass substrate 1 is subjected to trichlene boil cleaning and acetone ultrasonic cleaning, and after drying, it is placed in a sputtering apparatus through a SUS mask for strain gauges, and vacuum exhausted to 5 × 10 −6 Torr in the apparatus. did. Next, Ar gas was introduced into the above apparatus at 5 × 10 −3 Tor.
Introduced r, DC300W, Al 2 O 3 on Cr target
RF power of 150 W (13.56 MHz) was applied to the target and sputtering was performed for 6 minutes. The composition of the strain gauge film 2 which is a resistor manufactured in this way is set to EPMA, XP.
When S and thickness were examined by a stylus type film thickness meter, the composition of the strain gauge film was Cr-21 at% oxygen (O) -4 at% aluminum (Al) film thickness was 0.20 μm (Table). The substrate on which the strain gauge film was formed was taken out into the air, and after attaching the electrode mask, the DC power of 250 W was applied to the Au target in the sputtering apparatus in the same manner as described above, and sputtering was performed for 1 minute. Membrane 3 to 0.
1 μm was formed. Further, after heat treatment at 300 ° C. for 1 hr in the atmosphere, the lead wire 4 was soldered to the Au electrode. A characteristic evaluation test was performed using the strain gauge manufactured in this manner.

歪ゲージとしての特性評価は、歪抵抗特性、抵抗温度特
性、高温放置試験により行った。第3図は、本実施例に
よって製作した歪ゲージの歪と抵抗変化率の関係を示し
たものである。ゲージ率Kは歪と抵抗変化率の関係を示
す直線の傾きから求めた。抵抗温度特性は、−30℃か
ら120℃まで温度を変化させ、抵抗温度係数TCR
(ppm/℃)を測定した。また高温放置試験は、120
℃で500hr放置した後の抵抗変化率ΔR(%)を測定
した。表に評価結果を示す。
The characteristics of the strain gauge were evaluated by strain resistance characteristics, resistance temperature characteristics, and high temperature storage tests. FIG. 3 shows the relationship between strain and resistance change rate of the strain gauge manufactured according to this example. The gauge factor K was obtained from the slope of a straight line showing the relationship between strain and resistance change rate. The resistance temperature characteristic changes the temperature from -30 ° C to 120 ° C, and the resistance temperature coefficient TCR
(Ppm / ° C) was measured. The high temperature storage test is 120
The resistance change rate ΔR (%) after standing at 500 ° C. for 500 hours was measured. The evaluation results are shown in the table.

実施例2〜4 実施例1と同様の方法で、酸素およびAlの組成を変え
て歪ゲージ膜を形成した。表に、歪ゲージ膜の組成・膜
厚を示す。つぎに、実施例1と同様の方法で電極・リー
ド線を取り付けて、実施例1と同様の評価試験を実施
し、表に評価結果を示す。
Examples 2 to 4 Strain gauge films were formed by changing the composition of oxygen and Al in the same manner as in Example 1. The composition and thickness of the strain gauge film are shown in the table. Next, an electrode / lead wire was attached in the same manner as in Example 1, the same evaluation test as in Example 1 was performed, and the evaluation results are shown in the table.

比較例 実施例1と同様、二元スパッタリング法を用いて、組成
がCr−18at%O−13at%AlおよびCr−26at
%O−11at%Alである薄膜抵抗体ならびに従来使わ
れてきた歪ゲージ材であるNi−CrおよびSiをガラ
ス基板上に歪ゲージ膜として形成した。表に組成・膜厚
を示す。次に、実施例1と同様の方法で電極・リード線
を取り付けて歪ゲージを製作し、実施例1と同様の評価
試験を実施した。表に評価結果を示す。また、Ni−C
r合金の歪抵抗特性を第3図に示す。
Comparative Example Similar to Example 1, the composition was Cr-18 at% O-13 at% Al and Cr-26 at by using the binary sputtering method.
A thin film resistor made of% O-11 at% Al and conventionally used strain gauge materials Ni--Cr and Si were formed as a strain gauge film on a glass substrate. The composition and film thickness are shown in the table. Next, an electrode / lead wire was attached in the same manner as in Example 1 to manufacture a strain gauge, and the same evaluation test as in Example 1 was performed. The evaluation results are shown in the table. Also, Ni-C
The strain resistance characteristics of the r alloy are shown in FIG.

評価 表からわかるように、本実施例1〜4に係るCrと酸素
ならびにCrと酸素とSiで構成される歪ゲージ膜は、
比較例のNi−Cr合金と比べて、3〜5.6倍のゲージ
率を有する。すなわち、本実施例の歪ゲージは従来の金
属抵抗型歪ゲージよりも感度が数倍も優れていることが
明らかである。また、Cr、酸素に対しSiを11%な
らびに13%添加した比較例5、6は抵抗温度係数が劣
っている。これは、本実施例の歪ゲージでは、Crに酸
素とAlが適当量混合していることにより高いゲージ率
を有し、抵抗温度係数の小さい薄膜が形成された効果に
よるものである。
As can be seen from the evaluation table, the strain gauge films composed of Cr and oxygen and Cr, oxygen and Si according to Examples 1 to 4 were
The gauge ratio is 3 to 5.6 times that of the Ni-Cr alloy of the comparative example. That is, it is clear that the strain gauge of this example is several times more sensitive than the conventional metal resistance type strain gauge. In addition, Comparative Examples 5 and 6 in which Si is added at 11% and 13% with respect to Cr and oxygen are inferior in the temperature coefficient of resistance. This is because the strain gauge of the present embodiment has a high gauge ratio due to the proper amount of oxygen and Al mixed with Cr and a thin film having a small resistance temperature coefficient is formed.

さらに、表からわかるようにCrと酸素ならびにCrと
酸素とAlからなる歪ゲージは、比較例 のSiの歪ゲージと比べ、抵抗温度特性・高温耐久性が
優れていることが明らかである。これは、Cr中に酸素
とAlが適当量混合することにより、Crの伝導電子の
平均自由行程が短くなり、抵抗温度係数が小さくなった
ためであると考えられる。また、Crと酸素とAlの混
合状態が均一なために、高温放置しても薄膜は安定であ
った。また第3図から本実施例により製作した歪ゲージ
は直線性を維持したままで歪感度が著しく改善されてい
ることが明らかである。
Further, as can be seen from the table, the strain gauges composed of Cr and oxygen and Cr, oxygen and Al are comparative examples. It is apparent that the resistance temperature characteristic and high temperature durability are superior to those of the Si strain gauge of No. It is considered that this is because the mean free path of conduction electrons of Cr was shortened and the temperature coefficient of resistance was decreased by mixing oxygen and Al in appropriate amounts in Cr. Further, since the mixed state of Cr, oxygen and Al was uniform, the thin film was stable even when left at high temperature. Further, it is apparent from FIG. 3 that the strain gauge manufactured according to this example has a significantly improved strain sensitivity while maintaining the linearity.

また、本実施例1および2に係る歪ゲージはSi等の半
導体系の歪ゲージに比し、強度が著しく優れていた。
In addition, the strain gauges according to Examples 1 and 2 were remarkably excellent in strength as compared with semiconductor strain gauges such as Si.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例において用いた歪ゲージの平面
図、第2図は該歪ゲージの断面図、第3図は実施例1と
比較例1の歪−抵抗変化率の関係を求めた図である。 1…ガラス基板、2…歪ゲージ膜 3…Au電極膜、4…リード線
FIG. 1 is a plan view of a strain gauge used in an example of the present invention, FIG. 2 is a sectional view of the strain gauge, and FIG. 3 is a relationship between strain-resistance change rates of Example 1 and Comparative Example 1. It is a figure. 1 ... Glass substrate, 2 ... Strain gauge film 3 ... Au electrode film, 4 ... Lead wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 眞 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 審査官 飯高 勉 (56)参考文献 特開 昭52−139992(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Makoto Ozaki 1-1, Showa-cho, Kariya city, Aichi prefecture Tsutomu Iitaka, Inspector, Nihon Denso Co., Ltd. (56) Reference JP-A-52-139992 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物理的蒸着法または化学的蒸着法によって
形成された、Cr60〜98原子%、酸素2〜30原子
%、Cr以外の金属0〜10原子%が均一に分布した薄
膜であって、膜厚が0.01〜10μmであることを特
徴とする歪ゲージ用薄膜抵抗体。
1. A thin film formed by a physical vapor deposition method or a chemical vapor deposition method, wherein 60 to 98 atomic% of Cr, 2 to 30 atomic% of oxygen, and 0 to 10 atomic% of a metal other than Cr are uniformly distributed. A thin film resistor for strain gauges having a film thickness of 0.01 to 10 μm.
JP63306318A 1988-09-12 1988-12-02 Thin film resistor for strain gauge Expired - Fee Related JPH0666162B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63306318A JPH0666162B2 (en) 1988-12-02 1988-12-02 Thin film resistor for strain gauge
DE68911630T DE68911630T2 (en) 1988-09-12 1989-09-07 Thin film resistance for strain gauges.
US07/404,209 US5001454A (en) 1988-09-12 1989-09-07 Thin film resistor for strain gauge
EP89116555A EP0359132B1 (en) 1988-09-12 1989-09-07 Thin film resistor for strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306318A JPH0666162B2 (en) 1988-12-02 1988-12-02 Thin film resistor for strain gauge

Publications (2)

Publication Number Publication Date
JPH02152201A JPH02152201A (en) 1990-06-12
JPH0666162B2 true JPH0666162B2 (en) 1994-08-24

Family

ID=17955666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306318A Expired - Fee Related JPH0666162B2 (en) 1988-09-12 1988-12-02 Thin film resistor for strain gauge

Country Status (1)

Country Link
JP (1) JPH0666162B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2838361B2 (en) * 1994-06-06 1998-12-16 大阪府 Pressure sensor integrated pressure sensor
JP3391115B2 (en) * 1994-09-27 2003-03-31 エヌオーケー株式会社 Method for producing chromium-oxygen alloy thin film
JP3292099B2 (en) * 1997-07-31 2002-06-17 松下電工株式会社 Thin film element and method of manufacturing the same
JP3717136B2 (en) * 1998-05-21 2005-11-16 富士写真フイルム株式会社 Gap size detection method, gap size detection laminate, and gap size detection device
JP6850566B2 (en) * 2016-08-31 2021-03-31 公益財団法人電磁材料研究所 Strain resistance film and its manufacturing method, and high temperature strain sensor and its manufacturing method
JP6774861B2 (en) * 2016-12-02 2020-10-28 公益財団法人電磁材料研究所 Strain resistance film and strain sensor for high temperature, and their manufacturing method
JP6850642B2 (en) * 2017-03-10 2021-03-31 公益財団法人電磁材料研究所 Pressure sensor
JP2020008527A (en) * 2018-07-12 2020-01-16 ミネベアミツミ株式会社 Strain gauge, sensor module, and bearing mechanism

Also Published As

Publication number Publication date
JPH02152201A (en) 1990-06-12

Similar Documents

Publication Publication Date Title
US4952904A (en) Adhesion layer for platinum based sensors
US4454495A (en) Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
US4276535A (en) Thermistor
JPH0666162B2 (en) Thin film resistor for strain gauge
US5001454A (en) Thin film resistor for strain gauge
US4100524A (en) Electrical transducer and method of making
US20230147031A1 (en) Strain gauge
JP4622522B2 (en) Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof
JP2562610B2 (en) Thin film resistor for strain gauge
JPH0770367B2 (en) Thin film resistor for strain gauge
US3912611A (en) Film material and devices using same
JPS634321B2 (en)
Bethe et al. Thin-film strain-gage transducers
JPH0350801A (en) Thin-film resistor for strain gage
JP7025995B2 (en) Thin film resistor for strain gauge
JP2001110602A (en) Thin-film resistor forming method and sensor
JPS5999243A (en) Gas sensitive element
JPH06213613A (en) Distortion resistance material and manufacture thereof and thin film distortion sensor
JPH0684602A (en) Thin film resistor material
EP4350313A1 (en) Strain resistance film, physical quantity sensor, and method for manufacturing the strain resistance film
JP4238689B2 (en) Metal resistor and manufacturing method thereof
WO2023053606A1 (en) Temperature-sensitive and strain-sensitive composite sensor
TW201933380A (en) Alloy thin film resistor
JPS60174844A (en) Amorphous alloy for material of strain gauge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees