JPS5999243A - Gas sensitive element - Google Patents

Gas sensitive element

Info

Publication number
JPS5999243A
JPS5999243A JP20770682A JP20770682A JPS5999243A JP S5999243 A JPS5999243 A JP S5999243A JP 20770682 A JP20770682 A JP 20770682A JP 20770682 A JP20770682 A JP 20770682A JP S5999243 A JPS5999243 A JP S5999243A
Authority
JP
Japan
Prior art keywords
gas
catalyst layer
sensitive element
sensitive
gas sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20770682A
Other languages
Japanese (ja)
Other versions
JPS6152420B2 (en
Inventor
Tadashi Sakai
忠司 酒井
Osamu Takigawa
修 滝川
Masayuki Shiratori
白鳥 昌之
Masaki Katsura
桂 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20770682A priority Critical patent/JPS5999243A/en
Publication of JPS5999243A publication Critical patent/JPS5999243A/en
Publication of JPS6152420B2 publication Critical patent/JPS6152420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

PURPOSE:To obtain a gas sensitive element having good responsiveness and excellent durability by forming thin films having specific thicknesses with a carrier consisting of Al2O3, etc. and a catalyst layer contg. a specific amt. of catalyst metal, such as Pt. CONSTITUTION:The surface of an Al2O3 substrate 1 is polished to a specular surface and a pair of comb-shaped electrodes 2 consisting of Au, etc. ate provided thereon by screen printing, etc. A heater 3 consisting of RuO2, etc. is provided on the rear of the substrate 1. A target consisting of SuO2 doped with Sb<5+> is used and a gas sensitive body 4 having 25nm film thickness is formed by a sputtering method between the electrodes 2. A target formed by mixing 1- 80wt% catalyst metal, such as Pt, with Al2O3 power is used and a catalyst layer 5 having 5-1,000nm film thickness is formed by a sputtering method on the body 4. A gas sensitive element having good responsiveness and excellent durability is thus obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は感ガス素子、特に触媒層を有する感ガス素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas-sensitive element, particularly to a gas-sensitive element having a catalyst layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、各種のガスに接触して抵抗値の変化する例え
ばS nOt系酸化物半導体等のガス感応体を用いた感
ガス素子について各種の研究がなされている。このよう
な感ガス素子においては、ガスに対する検出感度をあげ
るため等の目的で触媒を用いるが、この触媒を用いる感
ガス素子の1つの構造として、ガス感応体上に触媒層を
設けたものがある。
2. Description of the Related Art Conventionally, various studies have been conducted on gas-sensitive elements using gas-sensitive materials such as SnOt-based oxide semiconductors whose resistance changes upon contact with various gases. In such a gas-sensitive element, a catalyst is used for the purpose of increasing the detection sensitivity to gas, and one structure of a gas-sensitive element using this catalyst is one in which a catalyst layer is provided on a gas-sensitive member. be.

このような触媒層としては一般にA−〇、01等の担体
にPi等の触媒金属を混入した厚膜が用いられている。
As such a catalyst layer, a thick film in which a catalytic metal such as Pi is mixed into a carrier such as A-0 or 01 is generally used.

しかしながら厚膜はペースト状の原料の塗布・焼結工程
を経て形成されるため、非常に再現性が悪く感ガス素子
の特性のバラツク場合があるという問題点がちった。さ
らにとの厚膜は厚さが10 μtn程度のオーダーとな
ってしまうため、ガス検出の際の応答速度が比較的遅い
という欠点があった。また通常感ガス素子はヒータを具
備し、ガス感応体を加熱しながらガス検出を行なうが、
この様に膜厚が厚いと触媒層内に温度勾配が生じ熱応力
が発生しやすく、これに伴ない触媒層にクラック等の生
ずる恐れがあった。さらに触媒層の膜厚が厚いと熱容量
等の関係でガス感応体の正確な温反設定が困難であり、
感ガス素子の特性にバラツキが生じてしまうという問題
点もあった。
However, since the thick film is formed through a process of applying and sintering a paste-like raw material, there is a problem that the reproducibility is very poor and the characteristics of the gas-sensitive element may vary. Furthermore, since the thickness of the thick film is on the order of 10 .mu.tn, there is a drawback that the response speed during gas detection is relatively slow. In addition, gas-sensitive elements are usually equipped with a heater and detect gas while heating the gas-sensitive element.
When the film is thick like this, a temperature gradient occurs in the catalyst layer, which tends to generate thermal stress, and there is a risk that cracks or the like may occur in the catalyst layer. Furthermore, if the catalyst layer is thick, it is difficult to accurately set the temperature reaction of the gas sensitive body due to heat capacity, etc.
There was also the problem that variations occurred in the characteristics of the gas-sensitive elements.

以上の様な厚膜の触媒層を用いた場合の欠点を解消すべ
く、触媒金属からなる薄膜を触媒層として用いることが
研究されている。薄膜はスパッタリング法、蒸着法等に
よシ焼結工程を経ないで形成され、再現性良くかつ膜厚
も数nm程度まで薄くすることができるので前述のよう
な欠点は解消できるものの新たな問題点が生ずる。
In order to overcome the drawbacks of using a thick catalyst layer as described above, research has been conducted into using a thin film made of a catalytic metal as the catalyst layer. Thin films are formed by sputtering, vapor deposition, etc. without going through a sintering process, and the film thickness can be reduced to a few nanometers with good reproducibility, so although the above-mentioned drawbacks can be overcome, new problems arise. A dot is produced.

すなわち感ガス素子使用時の高温下で触媒金属が凝集、
再結晶し、触媒能力が低下してしまうという問題点であ
る。これは、ガス感応体にガスが接触するように触媒層
は多孔質層となっているが、このように凝集、再結晶し
てしまうと多孔質の状態が保てなくなってしまうからで
ある。
In other words, the catalytic metal aggregates under high temperatures when the gas-sensitive element is used.
The problem is that it recrystallizes and reduces its catalytic ability. This is because the catalyst layer is a porous layer so that the gas comes into contact with the gas sensitive member, but if it aggregates and recrystallizes in this way, it will no longer be able to maintain its porous state.

〔発明の目的〕 本発明は以上の点を考慮してなされたもので、応答性が
良く耐久性にも優れた感ガス素子を提供することを目的
とする。
[Object of the Invention] The present invention has been made in consideration of the above points, and an object of the present invention is to provide a gas-sensitive element having good responsiveness and excellent durability.

〔発明の概要〕[Summary of the invention]

本発明は、基板と基板上に設けられ測定対象ガスに接触
して抵抗値の変化するガス感応体と、このガス感応体に
設けられた一対の電極と、このガス感応体表面に設けら
れた触媒層とを有する感ガス素子において、前記触媒層
が、A403 、 S A02゜Z r02のうち少な
くとも一種からなる担体と、前記触媒層に対し1重量%
〜80重量%のPt、Pd。
The present invention includes a substrate, a gas sensitive element provided on the substrate and whose resistance value changes upon contact with a gas to be measured, a pair of electrodes provided on the gas sensitive element, and a gas sensitive element provided on the surface of the gas sensitive element. In the gas-sensitive element having a catalyst layer, the catalyst layer includes a carrier made of at least one of A403 and S A02゜Z r02, and 1% by weight based on the catalyst layer.
~80% by weight Pt, Pd.

−Rhのうち少なくとも一種からなる触媒金属とを含み
、膜厚5nm〜11000nの薄膜からなる感ガス素子
である。なお本発明において基板としてはA403 、
8 A3 N4 、 BN 、 81o2等のセラミッ
ク基板等の耐熱性かつ絶縁性の基板を用い、電極として
はAu、Pt等を用い、スクリーン印刷法、スパッタリ
ング法、蒸着法等によ膜形成する。この電極はガス感応
体上で対向して設けられ、ガス感応体と基板との間、ガ
ス感応体と触媒層との間どちらに設けても良い。
- A gas-sensitive element comprising a thin film with a thickness of 5 nm to 11,000 nm and containing a catalyst metal consisting of at least one type of Rh. In the present invention, the substrate is A403,
A heat-resistant and insulating substrate such as a ceramic substrate such as 8A3N4, BN, 81o2, etc. is used, and the electrode is made of Au, Pt, etc., and a film is formed by a screen printing method, a sputtering method, a vapor deposition method, or the like. These electrodes are provided facing each other on the gas sensitive member, and may be provided either between the gas sensitive member and the substrate or between the gas sensitive member and the catalyst layer.

また測定対象ガスはCO,メタン等の還元性ガスであり
ガス感応体としては、一般に用いられる5nOt系、 
ZnO系、 Fe1OB系等の測定対象ガスに接触して
その抵抗値の変化する酸化物半導体を用いる。このSn
O,系、ZnO系、Fe103系酸化物半導体は、それ
ぞれ5not、 ZnO、Fe、01を主成分とし、必
要に応じNb”、 Sb”、 Sb” 、A13”、C
r3+等の副成分が添加されたものである。このガス感
応体は、スパッタリング法、蒸着法、塗布焼結、有機化
合物の熱分解法等によ膜形成される。
The gas to be measured is a reducing gas such as CO or methane, and the gas sensitive material is a commonly used 5nOt system,
An oxide semiconductor, such as ZnO-based or Fe1OB-based, whose resistance value changes when it comes into contact with the gas to be measured is used. This Sn
The main components of the O, ZnO, and Fe103 oxide semiconductors are 5not, ZnO, Fe, and 01, respectively, and Nb'', Sb'', Sb'', A13'', and C as necessary.
It contains subcomponents such as r3+. This gas sensitive body is formed into a film by a sputtering method, a vapor deposition method, a coating sintering method, a thermal decomposition method of an organic compound, or the like.

次に本発明における触媒層の組成比及び膜厚について述
べる。
Next, the composition ratio and film thickness of the catalyst layer in the present invention will be described.

触媒層は、Pd、Pt、几h#hのうち少なくとも一種
の触媒金属と、人−620B 、 S 10. 、 Z
r□、のうち少なくとも一種の担体とからなる。この触
媒金属は、ガス応答性、ガス選択性等の感ガス特性を向
上するために用いられるものであシ、担体は感ガス素子
使用時における触媒金属の凝集等による感ガス特性の低
下を防止するために用いられるものである。
The catalyst layer includes at least one catalyst metal selected from Pd, Pt, and Pt, and 620B, S10. , Z
r□, and at least one type of carrier. This catalytic metal is used to improve gas-sensitive characteristics such as gas responsiveness and gas selectivity, and the carrier prevents deterioration of gas-sensitive characteristics due to agglomeration of the catalytic metal when using a gas-sensitive element. It is used to

この触媒金属の含有量は、1重量%未満では触媒層の触
媒能力が充分には発揮されず、80重量%を越えると触
媒層が絶縁性を保てなくなる。ガス検出は、ガス感応体
の抵抗値の変化を測定して行なうが、ガス感応体上に設
けられる触媒層の絶縁性が保たれていないと、ガス感応
体自体の抵抗値のみではなく、ガス感応体と触媒層との
抵抗値を測定することになり、ガス検出の精度が低下す
る。また触媒層の抵抗値がガス感応体の抵抗値よシ小と
なると、ガス感応体の抵抗値の測定が困難となシ実質的
にガス検出が不可能となってしまう。
If the content of this catalytic metal is less than 1% by weight, the catalytic ability of the catalyst layer will not be fully exhibited, and if it exceeds 80% by weight, the catalyst layer will not be able to maintain its insulation properties. Gas detection is performed by measuring changes in the resistance value of the gas sensitive body, but if the insulation of the catalyst layer provided on the gas sensitive body is not maintained, not only the resistance value of the gas sensitive body itself but also the gas Since the resistance value between the sensitive body and the catalyst layer is measured, the accuracy of gas detection decreases. Furthermore, if the resistance value of the catalyst layer becomes smaller than the resistance value of the gas sensitive body, it becomes difficult to measure the resistance value of the gas sensitive body, and it becomes virtually impossible to detect the gas.

以上のような理由で触媒層中の触媒金属の重量比を触媒
層に対し1重量%〜80重量%に限定する。
For the above reasons, the weight ratio of the catalyst metal in the catalyst layer is limited to 1% to 80% by weight relative to the catalyst layer.

このような触媒層を設けた本発明の感ガス素子において
は、触媒層とガス感応体を別々に製造するため、それぞ
れに最適の製造条件を設定することができ、感ガス素子
製造時の自由度が増す。また、ガス感応体中に触媒金属
を混入した場合は、感ガス素子の使用につれその分散状
態が変化し、ガス感応体の抵抗値等の特性が変化してし
まう恐れがあるが、担体に触媒金属を混入した触媒層を
設けた本発明の場合この恐れはない。
In the gas-sensitive element of the present invention provided with such a catalyst layer, since the catalyst layer and the gas-sensitive element are manufactured separately, it is possible to set optimal manufacturing conditions for each, and there is freedom in manufacturing the gas-sensitive element. The degree increases. Furthermore, if a catalytic metal is mixed into the gas-sensitive element, its dispersion state may change as the gas-sensitive element is used, and the characteristics such as the resistance value of the gas-sensitive element may change. This fear does not exist in the case of the present invention in which a catalyst layer containing a metal is provided.

次に触媒層の膜厚について述べる。Next, the thickness of the catalyst layer will be described.

膜厚が5nm未満では触媒層の触媒能力が充分には発揮
されず11000nを越えると測定対象ガスに対する応
答速度が遅くなってしまうからである。
This is because if the film thickness is less than 5 nm, the catalytic ability of the catalyst layer will not be fully exhibited, and if it exceeds 11,000 nm, the response speed to the gas to be measured will become slow.

この応答速度には、測定対象ガスに接触した場合の立ち
あがり速度と、測定対象ガスが除去された場合の復帰速
度とがあるが、膜厚が11000nを越えると両者とも
に遅くなってしまう。特にCOを測定対象ガスとするよ
うな危険を知らせる装置に用いるような場合、応答速度
、特に立ちあがシ速吸が遅いとガス検出が遅れてしまい
非常に危険である。以上のような理由で触媒層の膜厚を
5nm〜11000n K限定する。
This response speed includes a rise speed when it comes into contact with the gas to be measured and a speed to return when the gas to be measured is removed, but both become slow when the film thickness exceeds 11000 nm. Particularly when used in a device that warns of danger such as CO as a gas to be measured, if the response speed is slow, especially when standing up and inhaling quickly, gas detection will be delayed, which is very dangerous. For the above reasons, the thickness of the catalyst layer is limited to 5 nm to 11,000 nm.

また触媒層には、蒸着法、スパッタリング法等により焼
結工程な経ずに形成された薄膜を用いる。
Further, for the catalyst layer, a thin film formed by a vapor deposition method, a sputtering method, or the like without a sintering process is used.

ペースト状の触媒層原料を塗布し焼結する厚膜を用いた
場合は102μm程度のオーダの膜厚しか得ることがで
きず、本発明における所望の膜厚6〜11000nの触
媒層を得ることができない。また焼結工程を経て形成さ
れる厚膜な用いた場合、焼結時の熱歪みが残シ、耐久性
が悪くなってしまう。
When using a thick film in which a paste-like catalyst layer raw material is applied and sintered, a film thickness of only about 102 μm can be obtained, and it is difficult to obtain a catalyst layer with a desired film thickness of 6 to 11,000 nm in the present invention. Can not. Furthermore, when a thick film formed through a sintering process is used, thermal distortion during sintering remains, resulting in poor durability.

またガス感応体の特性を劣化させないため等で焼結温度
に制限があり、十分な強度が得られず耐久性が悪くなっ
てしまう。以上のような理由で薄膜を触媒層として用い
る。
In addition, there is a limit to the sintering temperature in order not to deteriorate the characteristics of the gas sensitive material, and sufficient strength cannot be obtained, resulting in poor durability. For the reasons mentioned above, a thin film is used as the catalyst layer.

このような触媒層の形成法としては組成比の制御が容易
であシ、かつ触媒層中の触媒金属の分散が微細かつ均一
となるスパッタリング法を用いることが好ましい。スパ
ッタリング法により触媒層を形成する場合、ターゲット
として触媒金属と担体な所望の比率で含有した材料を用
いても良いし、ターゲットとして触媒金属とAl1 、
8 r 、 Zrのうち少なくとも一種とを含んでなる
材料を用い薄膜形成後、酸素存在雰囲気下で加熱酸化を
行ない、触媒層を形成することもできる、また、ターゲ
ットとして触媒金属とkA + 8 + + Z rの
うち少なくとも一−−mとを含んでなる材料を用込、酸
素存在雰囲気薄膜形成後、大気中等で加熱処理を行なう
ことが好ましい。ターゲットとして触媒金属と担体とを
含む材料を用いた場合も同様である。このようにスパッ
タリング法に用いるターゲットは原料粉体の混合体でも
よいし、合金として用いてもよいし、また単一材料のタ
ーゲツト材の表面の一部を他の材料でコーティングした
ものを夕〜ゲットとして用いてもよい。さらに、二元ス
パッタリング法を用いて行なってもよく、この場合同じ
ターゲットで種々の組成を実現できる。
As a method for forming such a catalyst layer, it is preferable to use a sputtering method, which allows easy control of the composition ratio and allows fine and uniform dispersion of the catalyst metal in the catalyst layer. When forming a catalyst layer by a sputtering method, a material containing a catalyst metal and a carrier in a desired ratio may be used as a target, or a material containing a catalyst metal and a carrier in a desired ratio may be used as a target.
After forming a thin film using a material containing at least one of Zr and Zr, a catalyst layer can be formed by heating and oxidizing it in an atmosphere containing oxygen. It is preferable to use a material containing at least 1--m of +Zr, and after forming a thin film in an oxygen-containing atmosphere, to perform a heat treatment in the air or the like. The same applies when a material containing a catalyst metal and a carrier is used as the target. In this way, the target used in the sputtering method may be a mixture of raw material powders, an alloy, or a target material made of a single material with a part of its surface coated with another material. It can also be used as a target. Furthermore, it may be carried out using a binary sputtering method, in which case various compositions can be realized with the same target.

また一般に感ガス素子は、ガス感応体を加熱するための
ヒータを備えているが、触媒層を薄膜化したことにより
熱容量が小さくなるため、ヒータの出力を抑えることが
できるので、ヒータの寿命ものび、ひいては感ガス素子
の寿命ものびることとなる。
In addition, gas-sensitive elements are generally equipped with a heater to heat the gas-sensitive element, but by making the catalyst layer thinner, the heat capacity becomes smaller, so the output of the heater can be suppressed, which extends the lifespan of the heater. This will extend the life of the gas-sensitive element.

さらに触媒層はガス感応体と測定対象ガスとの接触をさ
またげないようにポーラスな状態であることが要求され
る。触媒層が十分薄い場合、例えば膜厚10nm以下で
は通常のスパッタリング法を用いても薄膜は島状に成長
するので実質的にポーラスな状態が実現される。また、
例えばAr * 02 +N等103M To r r
程度の高いガス圧下でスパッタリングを行なうことによ
シ、形成された触媒層中にガスが閉じこめられ、とのガ
スを加熱によ)除去することによシボ−ラスな状態を実
現することもできる。さらに、ターゲットにPVA等の
有機物を混合しスパッタリングを行ない、有機物が混入
した触媒層を形成した後、加熱によシ有機物を除去しポ
ーラスな状態を実現することもできる。
Furthermore, the catalyst layer is required to be in a porous state so as not to prevent contact between the gas sensitive body and the gas to be measured. When the catalyst layer is sufficiently thin, for example, when the film thickness is 10 nm or less, the thin film will grow in the form of islands even if a normal sputtering method is used, so that a substantially porous state will be realized. Also,
For example, Ar * 02 +N etc. 103M To r r
By performing sputtering under high gas pressure, gas is trapped in the formed catalyst layer, and by removing the gas (by heating), a shibbolus state can be achieved. . Furthermore, it is also possible to mix an organic material such as PVA into the target and perform sputtering to form a catalyst layer containing the organic material, and then remove the organic material by heating to achieve a porous state.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば応答性が良く、耐久
性にも慶れた感ガス素子を提供することができる。
As explained above, according to the present invention, it is possible to provide a gas-sensitive element with good responsiveness and excellent durability.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を以下説明する。 Examples of the present invention will be described below.

第1図は本発明の実施例を示すための図であり、感ガス
素子の断面図である。
FIG. 1 is a diagram showing an embodiment of the present invention, and is a sectional view of a gas-sensitive element.

7閣X 4 fl X 0.3−のA沼208基板(1
)の表面を鏡面研摩し、スクリーン印刷法を用い准(i
ffl (21としてAuからなる一対のくし形電極を
設ける。AA20゜基板(1)の裏面にはスクリーン印
刷法にょJ) RLI02からなるヒータ(3)を設け
る。電極(2)及びヒータ(3)にはそれぞれリード(
2)’、 (3)/を設ける。また電極を蒸着法等によ
る薄膜とした場合は、リード接続部を厚膜としリード接
続部における基板との接着強度を増すこともできる。次
に、5no2にsb5+をドーピングしたターゲットを
用い、スパッタリング法によシ膜厚25nmのガス感応
体(4)を電極(2)間に形成する。続いてAA203
粉体に1重量%のptを混合し成形したターゲットを用
いスパッタリング法によシ膜厚5nmの触媒層(5)を
ガス感応体(4)上に形成する。スパッタリングは例え
ば0.01 WHg以上のAr、O,混合雰囲気中で行
ない、薄膜形成後大気中500Cに昇温し、Aも03の
酸化安定化を行なう。
7 cabinets x 4 fl x 0.3-A Swamp 208 board (1
) was polished to a mirror finish, and screen printing was used to print the standard (i)
ffl (A pair of comb-shaped electrodes made of Au are provided as 21.A heater (3) made of RLI02 is provided on the back surface of the AA20° substrate (1) by screen printing method). The electrode (2) and heater (3) each have a lead (
2)', (3)/ is provided. Further, when the electrode is made into a thin film by vapor deposition or the like, the lead connection part can be made into a thick film to increase the adhesive strength with the substrate at the lead connection part. Next, a gas sensitive material (4) having a thickness of 25 nm is formed between the electrodes (2) by sputtering using a target in which 5no2 is doped with sb5+. Next is AA203
A catalyst layer (5) having a thickness of 5 nm is formed on the gas sensitive body (4) by sputtering using a target formed by mixing 1% by weight of PT with powder. Sputtering is performed, for example, in a mixed atmosphere of Ar, O, and more than 0.01 WHg, and after forming a thin film, the temperature is raised to 500 C in the air, and A is also stabilized by oxidation of 03.

この実施例においては触媒層の形成にA、、e、O,と
Ptを混合したターゲットを用いたが、A4とPiとの
混合物をターゲットとしてスパッタリングを行ない局と
ptが微細に分散した薄膜を形成した後、大気中例えば
500C程度で1時間程度保持してaを酸化し、AA、
 0.とPtからなる触媒層な形成してもよい。またA
4とPtとの混合物をターゲットとして用い、例えば酸
素50%、アルゴン50%の雰囲気中でスパッタリング
を行ないAA20.とPiからなる薄膜の触媒層を形成
しても良い。一般に酸化物に比べ金属の方がスパッタリ
ング速度が早いのでA、、et OsとPtの混合物を
ターゲットとして用いた場合は、Ptの量を所望の組成
比よシ少なめにすることが望ましい。またptと届の混
合物をターゲットとして用い、酸素存在雰囲気中でスパ
ッタリングを行なう場合も、酸素濃度が大きいとAA、
03の方がスパッタリング速度が遅く々る。
In this example, a target containing a mixture of A, e, O, and Pt was used to form the catalyst layer, but sputtering was performed using a mixture of A4 and Pi as a target to form a thin film in which carbon and pt were finely dispersed. After forming, a is kept in the atmosphere at about 500C for about 1 hour to oxidize a, and AA,
0. A catalyst layer consisting of Pt and Pt may also be formed. Also A
Using a mixture of AA20.4 and Pt as a target, sputtering is performed in an atmosphere of 50% oxygen and 50% argon, for example. A thin film catalyst layer consisting of and Pi may be formed. In general, metals have a faster sputtering speed than oxides, so when a mixture of A, etOs and Pt is used as a target, it is desirable to reduce the amount of Pt to a desired composition ratio. Also, when sputtering is performed in an atmosphere containing oxygen using a mixture of PT and nitrate as a target, if the oxygen concentration is high, AA,
03 has a slower sputtering speed.

以上のようにして形成された本発明の感ガス素子の特性
を第2図乃至第4図に示す。
The characteristics of the gas-sensitive element of the present invention formed as described above are shown in FIGS. 2 to 4.

第2図はCOガス200ppm雰囲気中におけるガス応
答特性を示した図であ、6、coガス200ppm雰囲
中におけるガス感応体の抵抗値の飽和値に対する抵抗値
の時間による変化を示した。比較例−1として塗布・焼
結によシPt−Pd −A120B (P t/A右0
3−1/100 (重量比)、Pt/Pd = 2/1
 (原子比))の組成で数百μm程度の膜厚の触媒層を
、5no2系のガス感応体表面に設けたものを容易し、
同様の測定を行なった。実施例、比較例−1とも素子温
度は1000程度とした。
FIG. 2 is a diagram showing the gas response characteristics in a 200 ppm CO gas atmosphere, and shows the change in resistance value over time with respect to the saturation value of the resistance value of the gas sensitive body in a 200 ppm CO gas atmosphere. As comparative example-1, Pt-Pd-A120B (Pt/A right 0
3-1/100 (weight ratio), Pt/Pd = 2/1
(atomic ratio)) and a catalyst layer with a film thickness of about several hundred μm is easily provided on the surface of a 5no2 gas sensitive material.
Similar measurements were made. The element temperature was set at about 1000 in both Example and Comparative Example-1.

本発明の実施例(曲線a)の場合が1分根度で抵抗値が
飽和し安定した値となるのに比べ、比較例−1(曲線b
)の場合は3分経過後においても抵抗値が飽和せず、徐
々に飽和値に近づいていることがわかる。従って本発明
の感ガス素子の方がガス応答性に優れている。
In the case of the example of the present invention (curve a), the resistance value saturates and becomes a stable value at 1 minute root degree, whereas in the case of comparative example-1 (curve b
), it can be seen that the resistance value does not saturate even after 3 minutes and gradually approaches the saturation value. Therefore, the gas-sensitive element of the present invention has better gas responsiveness.

また第8図に感度の経時変化を示す。Furthermore, Fig. 8 shows the change in sensitivity over time.

感ガス素子はガス検出時の素子温度を1000とし、大
気雰囲気での抵抗値Ra I r測定後、COガス20
0ppm雰雰囲気9仕 Ra i r/Rga sをガス感度として算出した。
For the gas-sensitive element, the element temperature at the time of gas detection was set to 1000, and after measuring the resistance value Ra I r in the air atmosphere, the CO gas was set at 20
0 ppm atmosphere 9 series Ra ir/Rga s was calculated as gas sensitivity.

この測定は2時間ごとに行ない、Rgas測定後400
C1分間のヒートクリーニングを行なった。
This measurement is performed every 2 hours, and after measuring Rgas
Heat cleaning was performed for C1 minute.

比較のため前述の比較例−1と、比較例−2としてこの
実施例と同様の構成で触媒層をPtのみからなる膜厚5
nmのスパッタリングによる薄膜としたものを用意し、
同様の測定を行なった。
For comparison, the above-mentioned Comparative Example-1 and Comparative Example-2 have the same structure as this example, but the catalyst layer is made of only Pt and has a thickness of 5.
Prepare a thin film by sputtering of nm size,
Similar measurements were made.

第8図から明らかなように、本発明の実施例(曲線a)
から1000時間を越えても安定なのに比べ、比較例−
1(曲線b)及び比較例−2(曲線C)においては数百
時間程度で感度が低下してしまうことがわかる。
As is clear from FIG. 8, the embodiment of the present invention (curve a)
Compared to the comparative example-
1 (curve b) and Comparative Example-2 (curve C), it can be seen that the sensitivity decreases after about several hundred hours.

このように本発明の感ガス素子は耐久性に非常に優れて
いることがわかる。
Thus, it can be seen that the gas-sensitive element of the present invention has extremely excellent durability.

また第4図に素子温度の変化によるCOガス2QOpp
m中のRa i r/Bug a sの変化を示す、比
較のため前述の比較例−2でも同様の測定を行なった。
In addition, Fig. 4 shows CO gas 2QOpp due to changes in element temperature.
Similar measurements were also conducted in Comparative Example 2 described above for comparison, showing the change in Rai r/Bug a s in m.

本発明の場合は800Cでも十分な感度が得られるのに
対し、比較例−2の場合は素子温度の上昇とともに感度
が低下していることがわかる。
In the case of the present invention, sufficient sensitivity is obtained even at 800 C, whereas in the case of Comparative Example-2, the sensitivity decreases as the element temperature increases.

一般に感ガス素子のガス選択性は、素子温度によυ大き
く変化し、100C程度の低温ではCOガスに対するガ
ス選択性に優れ、素子温度が高くなるにつれ、メタンガ
ス等に対するガス選択性が優れるようになる。従って本
発明の感ガス素子は広範囲の素子温度領域で高感度を保
持できるので、ガス選択性の調整可能な範囲が大きくな
シ、感ガス素子を用いたガス検出装置の設計が容易とな
る。また一般に感ガス素子においては感度の低下を防止
するため高温状態に保持しヒートクリーニングを行なう
が、本発明ではaooc程度の高温でも感度の低下がな
いので、ヒートクリーニングを行なわなくても良いとい
う効果も得ることができる。
In general, the gas selectivity of a gas-sensitive element varies greatly depending on the element temperature.At a low temperature of about 100C, it has excellent gas selectivity for CO gas, and as the element temperature increases, it has excellent gas selectivity for methane gas, etc. Become. Therefore, since the gas-sensitive element of the present invention can maintain high sensitivity over a wide range of element temperature, the range in which gas selectivity can be adjusted is wide, and a gas detection device using the gas-sensitive element can be easily designed. In addition, in general, gas-sensitive elements are kept at a high temperature and subjected to heat cleaning in order to prevent a decrease in sensitivity, but in the present invention, there is no decrease in sensitivity even at a high temperature of about AOOC, so there is no need to perform heat cleaning. You can also get

次に触媒層中の触媒金属の量による特性の変化を調べた
。前述の実施例において触媒層中のPtの量を変化させ
Ra i rを測定し、第5図に示した。
Next, we investigated changes in properties depending on the amount of catalyst metal in the catalyst layer. In the above-mentioned example, Ra ir was measured by changing the amount of Pt in the catalyst layer, and the results are shown in FIG.

第5図から明らかなようにPtが80重量%を超えると
急激に抵抗値が下がってしまうことがわかる。これはP
iが80重量%をこえると触媒層が導電性を有するよう
になるためであり、このように抵抗値が低下してしまう
とガス感応体の抵抗値の変化が測定しにくくなシ測定対
象ガスに対する感度が低下してしまう。
As is clear from FIG. 5, when Pt exceeds 80% by weight, the resistance value decreases rapidly. This is P
This is because when i exceeds 80% by weight, the catalyst layer becomes conductive, and if the resistance value decreases in this way, it becomes difficult to measure changes in the resistance value of the gas sensitive element. The sensitivity to this decreases.

次に前述の実施例と同様の構成で触媒層の厚さのみを変
化したものについて感ガス素子の応答特性の変化を調べ
た。COガス200ppm中の抵抗値の飽和値に対する
、COガス導入後80秒経過後の抵抗値の割合を第6図
に示した。
Next, changes in the response characteristics of the gas-sensitive element were investigated using the same configuration as in the above-mentioned example, but with only the thickness of the catalyst layer changed. FIG. 6 shows the ratio of the resistance value 80 seconds after introduction of the CO gas to the saturation value of the resistance value in 200 ppm of CO gas.

第6図から明らかな様に触媒層が11000nを越える
と急激に応答特性が悪くなっていることがわかる。
As is clear from FIG. 6, when the catalyst layer exceeds 11,000 nm, the response characteristics deteriorate rapidly.

次に各種の触媒金属及び担体を用いた感ガス素子のCO
ガス及びH2ガスに対する感度を測定した。
Next, CO of gas-sensitive elements using various catalytic metals and carriers.
The sensitivity to gas and H2 gas was measured.

各々の感ガス素子においてはガス感応体として膜厚25
nmの81102 (Nb  ドープ)系を用イ、触1
 層(7)厚さは5nmとし、ガス感応体、触媒層とも
にスパッタリング法で設けた。比較例として触媒層を触
媒金属のみとし、他の条件は同じの感ガス素子において
も同様に測定を行なった。この結果を下表に示す。以下
太白 この表から明らかなように、本発明の実施例の場合はC
Oガスに対する感度が大きく、Htガスに対する感度が
小さいことがわかる。従ってCOガスを測定対象ガスと
する場合、本発明は特に有効となる。比較例ではCO感
度が小さくH2感度が大きいので、COガスを測定対象
ガスとする感ガス素子として用いることは困難である。
Each gas-sensitive element has a film thickness of 25 mm as a gas-sensitive body.
Using the 81102 nm (Nb doped) system, the contact 1
Layer (7) had a thickness of 5 nm, and both the gas sensitive material and the catalyst layer were provided by sputtering. As a comparative example, measurements were conducted in the same manner on a gas-sensitive element in which the catalyst layer was made of only a catalyst metal and the other conditions were the same. The results are shown in the table below. As is clear from this table below, in the case of the embodiment of the present invention, C
It can be seen that the sensitivity to O gas is large and the sensitivity to Ht gas is small. Therefore, the present invention is particularly effective when CO gas is the gas to be measured. In the comparative example, the CO sensitivity is low and the H2 sensitivity is high, so it is difficult to use it as a gas-sensitive element for measuring CO gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す感ガス素子の断面図、第
2図は抵抗変化率曲線図、第8図は感度変化率曲線図、
第4図は感度一温度特性曲線図、第5図はRa1r −
Pt量時特性曲線図第6図は抵抗変化率曲線図。 1・・・基板 2・・・電極 4・・・ガス感応体 6・・・触媒層 代理人 弁理士 則 近 憲 佑 (ほか1名)第  
1  図 第  2  図 特開(nt;n) 第  3  図 第  4  図 A崖 (°C) 第  5  図 PL  外伐) 第  6  図 臘か(nrn)
FIG. 1 is a sectional view of a gas-sensitive element showing an embodiment of the present invention, FIG. 2 is a resistance change rate curve, and FIG. 8 is a sensitivity change rate curve.
Figure 4 is a sensitivity-temperature characteristic curve, and Figure 5 is Ra1r -
FIG. 6 is a diagram showing a characteristic curve with respect to the amount of Pt. FIG. 6 is a diagram showing a resistance change rate curve. 1...Substrate 2...Electrode 4...Gas sensitive body 6...Catalyst layer Agent Patent attorney Noriyuki Chika (and 1 other person) No.
1 Figure 2 Unexamined publication (nt; n) Figure 3 Figure 4 Figure A cliff (°C) Figure 5 PL Outer excavation) Figure 6 臘か (nrn)

Claims (1)

【特許請求の範囲】[Claims] 基板と、この基板上に設けられ測定対象ガスに接触して
抵抗値の変化するガス感応体と、このガス感応体に設け
られた一対の電極と、このガス感応体表面に設けられた
触媒層とを有する感ガス素子にオイテ、前記触媒層が、
A40s 、 S 102 、 Zr0tのうち少なく
とも一種からなる担体と、前記触媒層に対し1重量−〜
80重量%のPt、Pd、Rhのうち少なくとも一種か
らなる触媒金属とを含み、膜厚5nm〜11000nの
薄膜からなることを特徴とする感ガス素子。
A substrate, a gas sensitive element provided on the substrate and whose resistance value changes upon contact with the gas to be measured, a pair of electrodes provided on the gas sensitive element, and a catalyst layer provided on the surface of the gas sensitive element. A gas-sensitive element having a catalyst layer,
A carrier made of at least one of A40s, S102, and Zr0t, and 1 weight to the catalyst layer.
1. A gas-sensitive element comprising a thin film having a thickness of 5 nm to 11,000 nm and containing 80% by weight of a catalyst metal consisting of at least one of Pt, Pd, and Rh.
JP20770682A 1982-11-29 1982-11-29 Gas sensitive element Granted JPS5999243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20770682A JPS5999243A (en) 1982-11-29 1982-11-29 Gas sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20770682A JPS5999243A (en) 1982-11-29 1982-11-29 Gas sensitive element

Publications (2)

Publication Number Publication Date
JPS5999243A true JPS5999243A (en) 1984-06-07
JPS6152420B2 JPS6152420B2 (en) 1986-11-13

Family

ID=16544213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20770682A Granted JPS5999243A (en) 1982-11-29 1982-11-29 Gas sensitive element

Country Status (1)

Country Link
JP (1) JPS5999243A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254047A (en) * 1986-04-25 1987-11-05 Figaro Eng Inc Manufacture of low alcohol sensitive gas sensor
JPH0254157A (en) * 1988-08-18 1990-02-23 Toshiba Corp Gas sensor
US5086286A (en) * 1989-07-28 1992-02-04 Kurabe Industrial Co., Ltd. Gas-sensitive device
JP2002323467A (en) * 2001-04-25 2002-11-08 Denso Corp Thin-film gas sensor and method of manufacturing the same
WO2003006977A2 (en) * 2001-07-10 2003-01-23 Robert Bosch Gmbh Layered composite and micromechanical sensor element, in particular gas sensor element comprising said layered composite
JP2018054593A (en) * 2016-09-21 2018-04-05 大阪瓦斯株式会社 Gas sensor and gas detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254047A (en) * 1986-04-25 1987-11-05 Figaro Eng Inc Manufacture of low alcohol sensitive gas sensor
JPH0254157A (en) * 1988-08-18 1990-02-23 Toshiba Corp Gas sensor
US5086286A (en) * 1989-07-28 1992-02-04 Kurabe Industrial Co., Ltd. Gas-sensitive device
JP2002323467A (en) * 2001-04-25 2002-11-08 Denso Corp Thin-film gas sensor and method of manufacturing the same
WO2003006977A2 (en) * 2001-07-10 2003-01-23 Robert Bosch Gmbh Layered composite and micromechanical sensor element, in particular gas sensor element comprising said layered composite
WO2003006977A3 (en) * 2001-07-10 2003-04-03 Bosch Gmbh Robert Layered composite and micromechanical sensor element, in particular gas sensor element comprising said layered composite
JP2018054593A (en) * 2016-09-21 2018-04-05 大阪瓦斯株式会社 Gas sensor and gas detection device

Also Published As

Publication number Publication date
JPS6152420B2 (en) 1986-11-13

Similar Documents

Publication Publication Date Title
Fleischer et al. Gallium oxide thin films: a new material for high-temperature oxygen sensors
US5086286A (en) Gas-sensitive device
US4276535A (en) Thermistor
EP0579639A1 (en) Tin oxide gas sensors
JPS5999243A (en) Gas sensitive element
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JPH0666162B2 (en) Thin film resistor for strain gauge
JPH0315976B2 (en)
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP4002969B2 (en) Combustible gas sensor
JP4136755B2 (en) PTC thermistor made of ternary alloy material
JP2562610B2 (en) Thin film resistor for strain gauge
RU2049993C1 (en) Sensitive element of partial pressure transducer of no 002 of gas mixtures
TWI295371B (en) Stabilization method for signal of resistive oxygen sensor using cerium oxide
JPS5840140B2 (en) Kanenseigaskenchisoshi
JPS5840139B2 (en) Kanenseigaskenchisoshi
JPS6152423B2 (en)
JPS5853484B2 (en) thin film resistor
JPS5899741A (en) Gas sensing element and manufacture thereof
KR100654890B1 (en) Method of manufacturing thin film type gas sensor
JP2002055073A (en) Gas sensor
JPH05223769A (en) Nitride oxide gas detector element
You Preparation and characterization of ceramic sensors for use at elevated temperatures
JPS6196704A (en) Manufacture of resistor