JPS5899741A - Gas sensing element and manufacture thereof - Google Patents

Gas sensing element and manufacture thereof

Info

Publication number
JPS5899741A
JPS5899741A JP19773581A JP19773581A JPS5899741A JP S5899741 A JPS5899741 A JP S5899741A JP 19773581 A JP19773581 A JP 19773581A JP 19773581 A JP19773581 A JP 19773581A JP S5899741 A JPS5899741 A JP S5899741A
Authority
JP
Japan
Prior art keywords
gas
organometallic compound
sensing element
electrodes
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19773581A
Other languages
Japanese (ja)
Other versions
JPS6152418B2 (en
Inventor
Masaki Katsura
桂 正樹
Masayuki Shiratori
白鳥 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19773581A priority Critical patent/JPS5899741A/en
Publication of JPS5899741A publication Critical patent/JPS5899741A/en
Publication of JPS6152418B2 publication Critical patent/JPS6152418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

PURPOSE:To obtain a gas sensing element having a sufficiently high mechanical strength as well as high gas-sensitive characteristics, by providing a metal oxide layer obtained by means of thermal decomposition of an organometallic compound between a gas-sensitive body and an insulating substrate. CONSTITUTION:An insulative substrate 4 has a heating thick film heater 7 provided on one side thereof and Au electrodes 2, 3 provided on the other side by thick-film printing. Between these Au electrodes, a liquid obtained by diluting aluminum hexoate as an organometallic compound with propyl alcohol is applied and dried. Then, the surface of the organometallic compound film 10, between the electrodes 2, 3, is printed with a paste obtained by adding PdO to SnO2 powder having Sb2O3 added thereto and dispersing the same with an organic solvent, by a screen printer. This paste is dried and then baked to form a gas sensing element. As th above-mentioned organometallic compound, such a compound is employed as represented by the general formula: (Me)n(OR)m (wherein Me represents a metallic element, and R represents nitrogen, carbon, hydrogen or oxygen group).

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明はガス検知−子及びその製造方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to improvements in a gas detector and a method for manufacturing the same.

(従来技術およびその問題点) 従来からガス感応体として酸化物半導体を用いた感ガス
素子の例は数多く提案されている。多くの場合酸化物半
導体にはN型が用いられ、還元性ガスとの接触によりそ
の抵抗が減少することを利用してガスを検出する。ニオ
用いる半導体にP!Niの酸化物を用いた場合、還元性
ガスとの接触でその抵抗値が増加する事はいうまでもな
い。この場合、ガスに対する感度を大きくするため半導
体のみならず触媒も用い、ざらにヒータを設けて素子を
高温に保って使用されている。例えば第1図tこ示す如
くヒータとして金属線をガス感応体(1)内にうめ込ん
だ形の素子が知られている。この素子の場合、一対の電
極(2) (3)の片方がヒータを兼用するので素子内
の温度の均一化が峻かしくまた製造上組立が困難であっ
た。また均一加熱でないため長期にわたっての信頼性に
欠ける恐れがあった。一方別な例としてtIs−2図に
示す如く基板(4)としてアルミナ等の絶縁体を用い、
片面にヒータ(7)を設け、反対の面に一対の電極(2
1、(3)およびガス感応体(1)を設けた構造が考え
られる。
(Prior Art and its Problems) Many examples of gas-sensitive elements using oxide semiconductors as gas-sensitive members have been proposed. In most cases, N-type oxide semiconductors are used, and the gas is detected by utilizing the fact that its resistance decreases upon contact with a reducing gas. P for semiconductors using Nio! Needless to say, when Ni oxide is used, its resistance value increases when it comes into contact with a reducing gas. In this case, in order to increase the sensitivity to gas, not only a semiconductor but also a catalyst is used, and a heater is provided to keep the element at a high temperature. For example, as shown in FIG. 1, an element is known in which a metal wire is embedded in a gas sensitive body (1) as a heater. In the case of this element, one of the pair of electrodes (2) and (3) also serves as a heater, making it difficult to equalize the temperature within the element and making assembly difficult. Furthermore, since the heating is not uniform, there is a risk that reliability over a long period of time may be lacking. On the other hand, as another example, as shown in the tIs-2 diagram, an insulator such as alumina is used as the substrate (4),
A heater (7) is provided on one side, and a pair of electrodes (2) are provided on the opposite side.
1, (3) and a structure in which a gas sensitive body (1) is provided.

この場合前述の如く、基板(4)にはアルミナ、マグネ
シア、ムライトなどの耐熱性材料を用いて構成するのが
一般的である。
In this case, as described above, the substrate (4) is generally made of a heat-resistant material such as alumina, magnesia, or mullite.

従来の方式の場合例えば第2図に於けるガス感応体層1
は厚膜印刷法などで@接線基板上に設けられるのが通例
である。このような構成をとると第2図に於けるガス感
応体層の基板への付着強度が不十分で、機械的振動など
で剥離する恐れがあった。また機械的振動がなくともヒ
ータの断続による衝撃のため接着強度が減少する傾向に
あった。
In the case of the conventional method, for example, the gas sensitive layer 1 in FIG.
is usually provided on a tangential substrate using a thick film printing method or the like. With such a configuration, the adhesion strength of the gas sensitive layer shown in FIG. 2 to the substrate was insufficient, and there was a risk of peeling off due to mechanical vibration or the like. Furthermore, even without mechanical vibration, the adhesive strength tended to decrease due to the impact caused by the interruption of the heater.

この様な点を改良するための一つの方法としては厚膜の
焼きつけ温度を上昇させるか、焼成時間を長くしもしく
はその両方を行いガス感応体層厚膜が十分な強度をもっ
て基板と結合させる方法がある。しかしながらこの方法
は厚−を構成するガス感応体粒子の焼結をも促進し、本
来の目的であるガス検知感度を大巾に損うものである。
One way to improve this problem is to raise the baking temperature of the thick film, lengthen the baking time, or both, so that the thick film of the gas sensitive layer can bond to the substrate with sufficient strength. There is. However, this method also promotes sintering of the gas sensitive particles constituting the thickness, which greatly impairs the gas detection sensitivity, which is the original objective.

また他の方法としモ厚膜印刷ペースにガラスなど比較的
低温で溶融する材料を混入し比較的低温で焼きつける方
法も考えられる。しかしな途らこの場合も溶融したガラ
スが感ガス材料の粒子表面を覆ったり、粒子間に侵入し
たりして素子抵抗は上昇し感ガス特性は著しく損われる
Another possible method is to mix a material that melts at a relatively low temperature, such as glass, into the thick film printing paste and bake it at a relatively low temperature. However, in this case as well, the molten glass covers the surface of the particles of the gas-sensitive material or penetrates between the particles, increasing the element resistance and significantly impairing the gas-sensitive characteristics.

(発明の一目的7) 本発明はこの様な点に鑑み従来例の機械的強度が小さい
欠点を改良し、十分な機械強度をもち、かつ高い感ガス
特性を有するガス検知素子およびその製造方法を提供す
る事を目的とする。
(Object 7 of the Invention) In view of the above points, the present invention improves the drawback of the conventional example having low mechanical strength, and provides a gas sensing element having sufficient mechanical strength and high gas-sensitive characteristics, and a method for manufacturing the same. The purpose is to provide.

(発明の概り 本発明は一対の電極が設けられた絶縁基板と、前記絶縁
基板上で電極間に設けられた金属酸化物半導体からなる
ガス感応体と、前記ガス感応体および前記絶縁基板間に
設けられ有機金属化合物の熱分解−より得られる金属酸
化物の薄膜とからなるガス検知素子および絶縁基板上に
一対の電極素膜ける工程と、有機金属化合物の塗布−燥
膜を介して金属酸化物半導体からなるガス感応体を設け
る工程と、前記ガス感応体を焼結すると同時に前記有機
金属化合物の塗布乾燥膜を熱分解して金属酸化物薄膜を
形成する工程とを具備したガス検知素子の製造方法であ
る。
(Overview of the invention) The present invention comprises: an insulating substrate provided with a pair of electrodes; a gas sensitive body made of a metal oxide semiconductor provided between the electrodes on the insulating substrate; A gas detection element consisting of a thin film of metal oxide obtained by thermal decomposition of an organometallic compound and a pair of electrode element films on an insulating substrate, and a process of applying and drying the organometallic compound to form a thin film of metal oxide. A gas sensing element comprising a step of providing a gas sensitive body made of an oxide semiconductor, and a step of sintering the gas sensitive body and at the same time thermally decomposing the coated dried film of the organometallic compound to form a metal oxide thin film. This is a manufacturing method.

つまり本発明は前述の如きji12図に示す従来のガス
検知素子において、ガス感応体と絶縁基板との間に有機
金属化合物の熱分解により得られる金属酸化物層を設け
る事を特徴とするものであり、絶縁基板とガス感応体と
の間で充分な密着強度を有しかつ、優れた感ガス特性が
得られると0うものである。
In other words, the present invention is characterized in that a metal oxide layer obtained by thermal decomposition of an organometallic compound is provided between the gas sensitive body and the insulating substrate in the conventional gas sensing element shown in FIG. It is believed that there is sufficient adhesion strength between the insulating substrate and the gas-sensitive member, and that excellent gas-sensitive characteristics can be obtained.

さらに詳述すればまず本願で用いる有機金属化合物は一
般ic (Me)n(OR)mで表される。なおMeは
金属元素を、几は窒素、炭素、水素、酸素からなる基を
それぞれ示され、本願に詔いては有機金属化合物として
金属アルコール化合物、金属アルコオキシド、ナフテン
酸等を用いる事ができる。
More specifically, the organometallic compound used in the present application is generally represented by ic (Me)n(OR)m. Note that Me represents a metal element, and 几 represents a group consisting of nitrogen, carbon, hydrogen, or oxygen, respectively. In the present application, metal alcohol compounds, metal alkoxides, naphthenic acid, etc. can be used as organometallic compounds.

また通常有機金属化合物は粘度の高い液体であるが、固
体の場合もありうる。これらはプロピルアルコール等の
アルコール類、テトラリン、ターピネオール等の有”機
溶媒によく溶け、自由ζこ希釈できる。必要に応じ希釈
液を加えて適当な粘度Eこなるように有機金属化合物を
調節する。次に絶縁基板にこO有機金属化合物を例えば
スクリーン印刷した後、ペー゛スト状の金属酸化物半導
体からなるガス感応一層を設ける。これを焼成すると、
有機金属化合物の薄い膜は分解しきわめて微細な酸化物
の粒子となり、この粒子がガス感応体および絶縁基板と
の間を機械的に結合した構造をとる。
Further, organometallic compounds are usually liquids with high viscosity, but they can also be solids. These are well soluble in alcohols such as propyl alcohol, organic solvents such as tetralin, terpineol, etc., and can be diluted freely. If necessary, add a diluent to adjust the organometallic compound to an appropriate viscosity. Next, after screen-printing, for example, an organic metal compound on the insulating substrate, a gas-sensitive single layer made of a paste-like metal oxide semiconductor is provided.When this is fired,
The thin film of the organometallic compound decomposes into extremely fine oxide particles, which form a structure in which the gas sensitive body and the insulating substrate are mechanically bonded.

この様な反応は前述の如く比較的低温で起こり、多くの
有機金属の場合、事実上500〜600℃で焼成すれば
十分である。しかも粒子の接合は化学反応によるもので
、単、なる機械的結合でないためきわめて強固である。
As mentioned above, such a reaction occurs at a relatively low temperature, and in the case of many organic metals, sintering at a temperature of 500 to 600°C is sufficient. Moreover, the particles are bonded by a chemical reaction and not simply a mechanical bond, so they are extremely strong.

また焼結温度が比較的低いため、金属酸化物半導体の粒
成長はおこらず、感ガス特性はきわめて高い。
Furthermore, since the sintering temperature is relatively low, grain growth of the metal oxide semiconductor does not occur, and the gas sensitivity properties are extremely high.

しかも上述の有機金属化合物の分解反応で多量のCOl
と鴇0が発生する為、自動的にガス感応体中に気体が出
トりできる気孔が確保される。
Moreover, the decomposition reaction of the organometallic compound mentioned above produces a large amount of CO.
Since 0 is generated, pores from which gas can escape are automatically secured in the gas sensitive body.

さらに一本発明において、ガス感応体の主成分と同一の
金属元素を含む有機金属化合物を用いた場合には、素子
の焼成工程における有機金属化合物が分解する際に有機
金属化合物中の該金属元素とガス感応体の主成分粒子と
の“ぬ、れ”がよく、接着強度が向上する上、焼成後に
おいても有機金属化合物の熱分解にシリ得られた金JI
I酸化合物薄膜とガス感応体とが同一金属元素を含む酸
化物を有する為熱111張係数が近似となり耐剥離性に
優れたものとなる。
Furthermore, in the present invention, when an organometallic compound containing the same metal element as the main component of the gas sensitive material is used, when the organometallic compound is decomposed in the firing process of the element, the metal element in the organometallic compound is The obtained gold JI has good "wetting" with the main component particles of the gas sensitive material, improving adhesive strength, and even after firing, the obtained gold JI
Since the I acid compound thin film and the gas sensitive body have oxides containing the same metal element, their thermal 111 tensile coefficients are similar, resulting in excellent peeling resistance.

また絶縁基板をガス感応体の主成分と同一にする事によ
り(ただし絶縁基板の抵抗値は電子側制御により高抵抗
である)ガス感応体と絶縁基板との熱膨張係数とが近似
し、焼成時や後のヒート・ショックによる剥離を防止す
る事ができる。
In addition, by making the insulating substrate the same as the main component of the gas sensitive body (however, the resistance value of the insulating substrate is high due to electronic control), the thermal expansion coefficients of the gas sensitive body and the insulating substrate are similar, and firing It can prevent peeling due to time and subsequent heat shock.

さらに有機金属化合物の熱分解により得られる金属酸化
合物薄膜の抵抗値がガス感応体の抵抗値より高くした場
合には、ガス感応体と並列に萬抵抗体を接続した事にな
り、見かけ上のガス感度を大きくする事が出来る。
Furthermore, if the resistance value of the metal acid compound thin film obtained by thermal decomposition of an organometallic compound is made higher than the resistance value of the gas sensitive material, it means that a multi-resistance material is connected in parallel with the gas sensitive material. Gas sensitivity can be increased.

次に本発明に一係るガス検知素子の具体的な製造例を示
す。
Next, a specific manufacturing example of the gas sensing element according to the present invention will be shown.

まず素子の大きさに応じて絶縁基板−を切断しこの一方
の面に二対の検出用電極を設ける。また他の面に素子を
加熱するヒータ層を設ける。次にこの絶縁基板の検出電
極側で、少くともガス感応体と絶縁基板との接する部分
に必要に応じて有機解削等で希釈した有機金属化合物を
塗布する。しかる後にこれを室温乾燥し、さらに乾燥器
などで例えば100℃で1時間11!jt乾燥する。こ
のようにして出来た有機金属膜はもはや完全に乾焼しそ
の揮発成分は十分に揮散している。この有機金属化合物
膜の上にガス感応体材料を有機#l媒で分散させたペー
ストを印刷する。この印刷されたガス感応体のペースト
は室温で十分乾燥した後、乾燥器にて例えば100℃1
時間種度乾燥し電気炉等で焼成して各リード線をとりつ
け感ガス−素子を得る。この場合、焼成温度は300℃
〜800℃1度で絶縁基板1こ十分強固に接着したガス
検知素子が得られる。
First, an insulating substrate is cut according to the size of the element, and two pairs of detection electrodes are provided on one surface of the insulating substrate. Further, a heater layer for heating the element is provided on the other surface. Next, on the detection electrode side of this insulating substrate, an organometallic compound diluted by organic abrasion or the like is applied as necessary to at least the portion where the gas sensitive body and the insulating substrate are in contact. Thereafter, this is dried at room temperature, and further dried in a dryer at, for example, 100°C for 1 hour 11! jt Dry. The organometallic film produced in this manner has now been completely dried and its volatile components have been sufficiently volatilized. A paste in which a gas sensitive material is dispersed in an organic #1 medium is printed on this organometallic compound film. After thoroughly drying the printed gas sensitive material paste at room temperature, it is placed in a dryer at 100°C, for example.
After drying for several hours and firing in an electric furnace or the like, each lead wire is attached to obtain a gas-sensitive element. In this case, the firing temperature is 300℃
A gas sensing element sufficiently firmly bonded to one insulating substrate can be obtained at a temperature of ~800°C.

なおガス感応体としては後述実施例において詳述する如
き8nO,系の他にzflQ +Q、5 mo 1 ’
76 Ar101系を用いる事が好ましい。またこの場
合には有機金属化合物としてのヘキサエート亜鉛10〜
40Wtチを60〜90 wt%のプロピルアルコール
に希釈したものを用いる事が好ましい。
In addition to the 8nO system as described in detail in the Examples below, the gas sensitizers include zflQ +Q, 5 mo 1 '
76 It is preferable to use Ar101 type. In this case, zinc hexaate as an organometallic compound is 10~
It is preferable to use 40 Wt diluted with 60 to 90 wt% propyl alcohol.

なお本発明における有機金属化合物の熱分解により得ら
kる金属酸化物薄膜としては3000 K〜20000
 X、のものを形成する事が好ましい。
In the present invention, the metal oxide thin film obtained by thermal decomposition of an organometallic compound has a temperature of 3000 K to 20000 K.
It is preferable to form X.

この様にして製造された本発明に係るガス検知素子の構
造を第3因に断面的に示す。同図に於て1がガス感応体
、2,3が検出用電極、4が絶縁基板、5.6が検出用
リード線、7がヒータ、8゜9がヒーターリード線、1
0が有機金属化合物が分解して生成した金属酸化物薄膜
である。
The structure of the gas detection element according to the present invention manufactured in this way is shown in cross section as the third factor. In the figure, 1 is a gas sensitive body, 2 and 3 are detection electrodes, 4 is an insulating substrate, 5.6 is a detection lead wire, 7 is a heater, 8°9 is a heater lead wire, 1
0 is a metal oxide thin film produced by decomposition of an organometallic compound.

(発明の実施例) 以下本発明の素子の具体的な製法を実施例で示し、また
各実施例による素子の機械的強度と特性を第1表に参考
例と併せて示す。
(Examples of the Invention) The specific manufacturing method of the device of the present invention will be shown in Examples below, and the mechanical strength and characteristics of the device according to each Example are shown in Table 1 together with Reference Examples.

実施例1 絶縁基板としてのアルミナ基板(4)の片面に加熱用厚
膜ヒータ(7)を設け、他の面に厚膜印刷によりAu電
極(2) 、 (3)を設ける。この人U電極間に有機
金属化合物としてのアルミニウムペキサエートをプロピ
ルアルコールにて希釈した液を塗布し室温で1時間乾燥
する。・さらに100℃に設定した乾燥器にて約1時間
乾燥した後、とり出し十分に室温まで冷却する。次に前
記有機金属化合物膜表面に通常のスクリーン印刷器にて
2wt1のsb、o、を添加した8nO,粉にPdOを
8nO!に対し0.5wt−加え有機溶媒にて分散させ
たペーストを前記電極(2バ3)間にまたかる如く印刷
した。
Example 1 A thick film heater (7) is provided on one side of an alumina substrate (4) serving as an insulating substrate, and Au electrodes (2) and (3) are provided on the other side by thick film printing. A solution prepared by diluting aluminum pexaate as an organometallic compound with propyl alcohol is applied between the electrodes and dried at room temperature for 1 hour.・After drying for about 1 hour in a dryer set at 100°C, take it out and cool it sufficiently to room temperature. Next, 2 wt1 of sb, o was added to the surface of the organometallic compound film using an ordinary screen printer, and 8 nO of PdO was added to the powder. A paste prepared by adding 0.5 wt to the paste and dispersing it in an organic solvent was printed so as to extend between the electrodes (2 bars 3).

このペーストを室温で1時間乾燥し、さらに100℃に
て1時間乾燥したのち電気炉にて600℃〜800℃で
焼成した。なおこの素子に各リード線(5) +6)を
とりつけ通電して十分素子が安定した後測定槽ニ入し1
−C4H1゜、Ht、Coが各2000 PPmになる
べく各ガスを注入してその抵抗変化をしらへた。
This paste was dried at room temperature for 1 hour, further dried at 100°C for 1 hour, and then fired at 600°C to 800°C in an electric furnace. Attach each lead wire (5) +6) to this element, turn on the power, and after the element is sufficiently stabilized, put it into the measurement tank.
-C4H1°, Ht, and Co were injected as much as possible to 2000 PPm each to suppress the resistance change.

また接着強度は各種付着強度の異る粘着テープを用意し
得られたガス感応体表面にはりつけ、その一端をもって
180°折り返し平行にひきはがした時、粘着テープに
ガス感応体が付着して剥離゛するか否かで判定した。
In addition, the adhesive strength is determined by preparing adhesive tapes with different adhesion strengths and attaching them to the surface of the resulting gas-sensitive material.When one end of the tape is folded 180 degrees and peeled off in parallel, the gas-sensitive material adheres to the adhesive tape and peels off. The decision was made as to whether or not to do so.

結果を第1表の実施例1−1〜1−3に示す。The results are shown in Examples 1-1 to 1-3 in Table 1.

またこの実施例1において有機金属化合物を用いない以
外は同様にして得た素子を参考例1−1〜1−3として
示す。
Further, elements obtained in the same manner as in Example 1 except that the organometallic compound was not used are shown as Reference Examples 1-1 to 1-3.

実施例2 実IIIA例1、と同一の基板手法を用いて製造し、ガ
ス感応体も同じものとし用いた有機金属化合物は原子比
でMを3mo4F %含むようにアルミニウムヘキサエ
ートを加えた錫ヘキサエートとした。測定法は実施例1
と同様で結果を第1t!の実施例2−1〜2−3に示す
Example 2 The organometallic compound was manufactured using the same substrate method as in Example 1, and the gas sensitive material was the same. The organometallic compound used was tin hexaate to which aluminum hexaate was added so that the atomic ratio of M was 3 mo 4 F %. And so. The measurement method is Example 1
The result is 1st! Examples 2-1 to 2-3.

実施例3 絶縁基板として入l、0.を3mojチ含むSnO,を
用い、これに実施例1と同様にヒータ、電極等を設け、
さらに検出電極間をそれぞれアルミニウムヘキサエート
、錫へキサニー゛ト、ジルコニウムヘキサエート、ナフ
テン酸錫等の有機金属化合物をプロピ4uアルコールで
希釈したものを用い、他は前記実施例1と同様にして本
発明に係るガス検知素子を得その測定結果を実施例3−
1〜3−5として第1表に示す。
Example 3 As an insulating substrate, 1,0. Using SnO containing 3 moj of
Further, between the detection electrodes, organometallic compounds such as aluminum hexaate, tin hexaneate, zirconium hexaate, and tin naphthenate diluted with propylene 4U alcohol were used, and the other conditions were the same as in Example 1. Example 3 - Obtaining the gas detection element according to the invention and presenting its measurement results
They are shown in Table 1 as 1 to 3-5.

以下余白 以下第1表の結果について説明する。Margin below The results shown in Table 1 will be explained below.

なおガス感応体組成はすべての参考例、実施例ともに同
一とし、またガス感度は空気中の素子抵抗を鳥とし、各
ガス中での抵抗をRgasとしたときR(1/Rgas
をもって示した。接着強度はガス感応体に各種接着強度
の異る粘着テープをはりっけこれの一端を折り返し接着
面と平行にひきはがしたときの剥離の有無から接着強度
βを求めた。
The composition of the gas sensitive body is the same in all reference examples and examples, and the gas sensitivity is expressed as R(1/Rgas), where the element resistance in air is Rgas, and the resistance in each gas is Rgas.
It was shown as follows. Adhesive strength β was determined from the presence or absence of peeling when adhesive tapes of various adhesive strengths were applied to the gas sensitive member and one end of the tape was folded back and peeled off parallel to the adhesive surface.

#l1表の結果によれば参考例1−1〜l−3に示す如
くガス感応体のみではきわめて接着力か弱い。またこの
ガス感応体に固結剤をとしてシリカゾル、アルミナゾル
を使、用した壽考例2−1〜2−3と3−1〜3−3で
は若干の付着強度向上が罐められるが、いずれもひびわ
れが面内に生ずるものが多く、かつ付着強度を向上させ
るため焼成温度を上げると各ガスに対する感度が急激に
低下する。これ°に対゛し本発明の実施例ではひびゎれ
が全く生ぜず、焼成温度を高めると付着強度が向上しま
赳ガス感度も十分なものを保つ。′また用いる有機金属
化合物は焼成後電気抵抗が素子抵抗より大なるものが望
ましいが、単独で用いても事実上の支障は生じなかった
According to the results in Table #11, as shown in Reference Examples 1-1 to 1-3, the adhesive strength is extremely weak when using only the gas sensitive material. In addition, in Examples 2-1 to 2-3 and 3-1 to 3-3, in which silica sol or alumina sol was used as a curing agent in this gas sensitive body, a slight improvement in adhesion strength can be seen. In many cases, cracks occur within the surface, and when the firing temperature is raised to improve the bond strength, the sensitivity to each gas decreases rapidly. On the other hand, in the examples of the present invention, no cracking occurs at all, and when the firing temperature is increased, the adhesion strength is improved, and the gas sensitivity is maintained at a sufficient level. 'Furthermore, it is desirable that the organometallic compound used has an electrical resistance greater than the element resistance after firing, but no practical problem occurred even when used alone.

また参考例4−1〜4−3と実施例3−1〜3−5は基
板の主成分をガス感応体の主成分と同一にして、有機金
属化合物を用いた場合と、用いない場合について比較し
である。この結果ガス感応体と同一主成分の基板を用い
ることにより本発明の方法では600℃焼成でも十分な
強度を示したが、従来法ではあまり効果が得られなかっ
た。なお実施例3のガス感度は700℃焼成の場合を示
した。
Further, Reference Examples 4-1 to 4-3 and Examples 3-1 to 3-5 are cases where the main component of the substrate is the same as the main component of the gas sensitive material, and cases where an organometallic compound is used and cases where an organometallic compound is not used. This is a comparison. As a result, the method of the present invention showed sufficient strength even when fired at 600° C. by using a substrate having the same main components as the gas sensitive member, but the conventional method did not have much effect. Note that the gas sensitivity in Example 3 is for the case of firing at 700°C.

さ−らにこの素子に対して一落下テストを行った結果を
第2表に示す。テスト法は素子を重さ200 Fの鉄製
円柱状物体にはりつ−け、高さ1mから約3cm40“
コンクリート上におかれた杉板に落下させたO 以下余白 第2表 〔×はとんど剥離 Δ一部剥離 ○変化なし〕この結果
からも本発明の方法が低い温度の焼成にもかかわらず全
数剥離をおこさなかった。
Furthermore, this device was subjected to a single drop test and the results are shown in Table 2. The test method was to attach the device to a cylindrical iron object weighing 200F, and to measure the height from 1m to approximately 3cm40".
O dropped onto a cedar board placed on concrete Table 2 below (margin) [×: mostly peeled Δ: partially peeled ○no change] From this result, the method of the present invention shows that even though the method of the present invention is fired at a low temperature, No peeling occurred in all cases.

な右上記各実施例はガス感応体として8nOiを主成分
とするものについて述べたが同様な効果がIHtOs 
 t pe、o、  、 ZHOt ’rio、、 ’
101など他の材料を主成分とした時にも得られた。
Although each of the above examples has been described using a gas sensitive material mainly composed of 8nOi, similar effects can be obtained using IHtOs.
t pe, o, , ZHOt 'rio,, '
It was also obtained when other materials such as 101 were used as the main component.

(発明の効果) 以上の結果から明らかな如く、本発明に係るガス検知素
子は剥離、落下等に対し優れた機械的強度と共に優れた
感ガス特性を有し、実用上極めて有効なものと言える。
(Effects of the Invention) As is clear from the above results, the gas sensing element according to the present invention has excellent mechanical strength against peeling, dropping, etc. and excellent gas-sensitive characteristics, and can be said to be extremely effective in practice. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス検知素子の構造例を示す斜視図。 #12図は従来のガス検知素子の他の構造例を示す断面
図。 第3図は本発明に係るガス検知素子の構造例を示す断面
図。 l・・・ガス感応体、2,3・・・電極慣・・・絶縁基
板 io・・・有機金属化合物の熱分解により得られる金属
酸化物の薄膜     − 代理人 弁理士  則近憲佑  (他1名)第  1 
 図           第  2  図ブ 乙 第  3  図
FIG. 1 is a perspective view showing an example of the structure of a conventional gas detection element. Figure #12 is a sectional view showing another example of the structure of a conventional gas detection element. FIG. 3 is a sectional view showing an example of the structure of the gas detection element according to the present invention. 1... Gas sensitive body, 2, 3... Electrode material... Insulating substrate io... Thin film of metal oxide obtained by thermal decomposition of an organometallic compound - Agent: Kensuke Norichika, patent attorney (et al.) 1 person) 1st
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 l)一対の電極が設けられた絶縁基板と、前記絶縁基板
上で電極間に設けられた金属酸化物半導体からなるガス
感応体と、前記ガス感応体および前記絶縁基板間に設け
られ有機金属化合物の熱分解により得られる金属酸化物
の薄膜とからなる事・、を特徴とするガス検知素子。 9.2)絶縁基板上に一対の電極を設ける工程と、有機
金属化合物の塗布乾燥膜を弄して金属酸化物半導体から
なるガス感応体を設ける工程と、前記ガス感応体を焼結
すると同時に前記有機金属化合物の塗布乾燥膜を熱分解
して金−酸化物薄膜を形成する工程とを具備した事を特
徴とするガス検知素子の製造方法。 3)’111’F請求の範囲第1項又は第2項において
有機金属化合物がガス感応体の主成分と同一の金属元素
を含む事を41黴としたガス検知素子又はその製造方法
。 4)4I許請求の範囲181項又は第2項において、有
機金属化合物の熱分解により得られる金属酸化物薄膜の
抵抗値がガス感応体の抵抗値より高い事を特徴とするガ
ス検知素子又はその製造方法。 5)特許請求の範囲第1項又は第2項において絶縁基板
がガス感応体の主成分と同一であり、かつガス感応体よ
り高抵抗な焼結体である事を%像とするガス検知素子又
はその製造方法。
[Scope of Claims] l) an insulating substrate provided with a pair of electrodes, a gas sensitive body made of a metal oxide semiconductor provided between the electrodes on the insulating substrate, and between the gas sensitive body and the insulating substrate; 1. A gas sensing element comprising: a thin film of a metal oxide obtained by thermal decomposition of an organometallic compound; 9.2) A step of providing a pair of electrodes on an insulating substrate, a step of manipulating a coated dry film of an organometallic compound to provide a gas sensitive body made of a metal oxide semiconductor, and simultaneously sintering the gas sensitive body A method for manufacturing a gas sensing element, comprising the step of thermally decomposing the applied dry film of the organometallic compound to form a gold-oxide thin film. 3) '111'F A gas sensing element or a method for manufacturing the same, in which the organometallic compound in claim 1 or 2 contains the same metal element as the main component of the gas sensing element. 4) Claim 181 or 2 of the claim 4, the gas sensing element or its gas sensing element characterized in that the resistance value of the metal oxide thin film obtained by thermal decomposition of an organometallic compound is higher than the resistance value of the gas sensitive member. Production method. 5) A gas sensing element according to claim 1 or 2, wherein the insulating substrate is the same as the main component of the gas sensitive body and is a sintered body having a higher resistance than the gas sensitive body. or its manufacturing method.
JP19773581A 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof Granted JPS5899741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19773581A JPS5899741A (en) 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19773581A JPS5899741A (en) 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5899741A true JPS5899741A (en) 1983-06-14
JPS6152418B2 JPS6152418B2 (en) 1986-11-13

Family

ID=16379464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19773581A Granted JPS5899741A (en) 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5899741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273779A (en) * 1991-12-09 1993-12-28 Industrial Technology Research Institute Method of fabricating a gas sensor and the product fabricated thereby
US5279855A (en) * 1987-07-11 1994-01-18 ROTH-Tecknik GmbH & Co. Forschung fur Automobil und Umwelttechnik Manufacture of inert, catalytic or gas-sensitive ceramic layers for gas sensors
JP2002071611A (en) * 2000-08-30 2002-03-12 Fis Kk Gaseous hydrogen sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279855A (en) * 1987-07-11 1994-01-18 ROTH-Tecknik GmbH & Co. Forschung fur Automobil und Umwelttechnik Manufacture of inert, catalytic or gas-sensitive ceramic layers for gas sensors
US5273779A (en) * 1991-12-09 1993-12-28 Industrial Technology Research Institute Method of fabricating a gas sensor and the product fabricated thereby
JP2002071611A (en) * 2000-08-30 2002-03-12 Fis Kk Gaseous hydrogen sensor

Also Published As

Publication number Publication date
JPS6152418B2 (en) 1986-11-13

Similar Documents

Publication Publication Date Title
US4072771A (en) Copper thick film conductor
US4186367A (en) Thick film varistor and method of producing same
JPS6016041B2 (en) Paste for forming thick film conductors
JPS60205907A (en) Ceramic glass material, capacitor produced thereform and method of producing same
JPH0418261B2 (en)
JPS5899741A (en) Gas sensing element and manufacture thereof
US5562972A (en) Conductive paste and semiconductor ceramic components using the same
JP3018925B2 (en) Electrochemical element
JP2550630B2 (en) Copper paste for conductive film formation
JP3026523B2 (en) Gas sensor
JPS6152422B2 (en)
JPS60137847A (en) Composition for forming thick film
JP2641530B2 (en) Manufacturing method of chip-shaped electronic component
JP2000315421A (en) Copper conductive paste
WO2000069220A1 (en) Hot plate and conductive paste
KR800001624B1 (en) Air firable base metal condoctors
JPS63245809A (en) Finely crushed particle and thick film electronic material composition
JPH01286402A (en) Resistor and its manufacture
JPH0950904A (en) Electrically conductive paste and ntc thermistor using it
JP2829552B2 (en) Gas detection element
JP2503974B2 (en) Conductive paste
JPH0434101B2 (en)
JPH01212342A (en) Gas detector and preparation thereof
JPS59102149A (en) Moisture sensitive material
JPS61225711A (en) Conducting paste