WO2000069220A1 - Hot plate and conductive paste - Google Patents

Hot plate and conductive paste Download PDF

Info

Publication number
WO2000069220A1
WO2000069220A1 PCT/JP2000/002873 JP0002873W WO0069220A1 WO 2000069220 A1 WO2000069220 A1 WO 2000069220A1 JP 0002873 W JP0002873 W JP 0002873W WO 0069220 A1 WO0069220 A1 WO 0069220A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
hot plate
bismuth
noble metal
particles
Prior art date
Application number
PCT/JP2000/002873
Other languages
French (fr)
Japanese (ja)
Inventor
Yanling Zhou
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to EP00922932A priority Critical patent/EP1185144A1/en
Publication of WO2000069220A1 publication Critical patent/WO2000069220A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits

Definitions

  • the present invention relates to a hot plate and a conductive paste using a ceramic substrate.
  • a heating device called a hot plate In the semiconductor manufacturing process, for example, when heating and drying a silicon wafer that has undergone a photosensitive resin coating step, a heating device called a hot plate is usually used.
  • a ceramic substrate such as alumina is generally used.
  • a resistor as a conductor pattern layer is formed in a predetermined pattern on one side of the alumina substrate, and a terminal connection pad is formed on a part of the resistor.
  • Such a conductor pattern layer is formed by printing and applying a silver paste for an alumina substrate to a substrate, and then heating and baking. After that, terminal pins are soldered to the pads, and the terminal pins are connected to the power supply via wiring. Then, a silicon wafer to be heated is placed on the upper surface of the hot plate, and by applying a current to the resistor in this state, the silicon wafer is heated to 1 oo ° C or more. I have.
  • a glass frit based on lead borosilicate 1 weight 0 /. ⁇ 10 weights. / 0, binder 1% to 1 0% by weight, solvent 1 0 wt 1% to 3 0% by weight as I contains is generally used (JP-4 one 3 0 0 2 4 No. 9).
  • glass frit which is a sub-component, is required to ensure suitable adhesion to the conductor pattern layer.
  • the above-mentioned conventional lead-based paste is directly applied to a ceramic plate, the following inconvenience occurs.
  • the heat in the paste baking causes the oxide in the paste to act on the ceramic, and for example, if the ceramic is aluminum nitride, a reaction that generates a large amount of gas such as nitrogen gas occurs. I will.
  • the main cause for this is thought to be the high lead oxide content in the glass frit.
  • the high-pressure nitrogen gas generated during paste baking passes through the grain boundaries of the silver particles and tries to escape to the outside. As a result, blisters are likely to occur in the conductor pattern layer, and the accuracy of the formed pattern deteriorates.
  • An object of the present invention is to provide a hot plate provided with a conductive pattern layer having little swelling and excellent adhesion, and a conductive paste suitable for manufacturing the hot plate.
  • a first aspect of the present invention provides a hot plate using a ceramic substrate provided with a conductor layer.
  • the conductor layer is composed of bismuth or bismuth oxide, glass frit, and noble metal particles.
  • the conductor layer contains bismuth or bismuth oxide, which is more easily oxidized and reduced than the oxide contained in the glass frit.
  • the occurrence of blisters is suppressed even if the amount of glass frit is large.
  • the amount of glass frit added can be increased (to 1% by weight or more based on the noble metal particles), the adhesion of the conductor layer is also improved.
  • a second aspect of the present invention provides a hot plate having a conductor layer having a bismuth or bismuth oxide content of 18% by weight or less. This is 18 weight. /. Over In such a case, the bismuth oxide and the noble metal particles are separated, and a uniform resistance cannot be obtained.
  • a third aspect of the present invention provides a hot plate, wherein the ceramic substrate is a nitride ceramic substrate or a carbide ceramic substrate.
  • Nitride ceramic substrates and carbide ceramic substrates have excellent thermal conductivity and react with glass frit to generate gas.
  • an aluminum nitride substrate having excellent heat resistance and high thermal conductivity among nitride ceramic substrates a practical hot plate that can withstand use at high temperatures can be obtained.
  • the carbide ceramic substrate a silicon carbide substrate can be used as the carbide ceramic substrate.
  • a fourth aspect of the present invention provides a hot plate having a conductor layer having a glass frit containing zinc borosilicate. It is presumed that glass frit containing zinc borosilicate reacts with nitrides and carbides in the ceramic substrate to generate nitrogen gas, and bismuth or bismuth oxide suppresses such a reaction. Therefore, even if the conductor layer is formed using a material containing this as a component, a large amount of gas is not generated, and blistering is less likely to occur in the conductor layer.
  • a fifth aspect of the present invention provides a hot plate having a conductor layer containing as a noble metal particle at least one selected from gold particles, silver particles, platinum particles and palladium particles.
  • Gold particles, silver particles, platinum particles and palladium particles are relatively resistant to oxidation even when exposed to high temperatures and exhibit a sufficiently large resistance value, so that a conductor layer suitable as a resistor for heat generation can be easily obtained. Can be.
  • a sixth aspect of the present invention provides a hot plate having a conductor layer made of bismuth or bismuth oxide, glass frit, noble metal particles, and an organic vehicle.
  • a seventh aspect of the present invention provides a hot plate, wherein the content of bismuth or bismuth oxide in the conductor layer is 18% by weight or less.
  • FIG. 1 is a schematic sectional view of a hot-air tune unit according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a main part of a hot plate unit according to one embodiment.
  • the hot plate unit 1 shown in FIG. 1 includes a casing 2 and a hot plate 3.
  • the casing 2 is a metal member having a bottom and has an opening 4 having a circular cross section on an upper side thereof.
  • the casing 2 is not limited to the bottomed one, and may be a bottomless one.
  • the hot plate 3 is attached to the opening 4 via a seal ring 14.
  • the hot plate 3 of the present embodiment composed of the ceramic substrate 9 is a low-temperature hot plate 3 for drying a silicon wafer W1 coated with a photosensitive resin at 50 ° C. to 300 ° C. .
  • a nitride ceramic substrate having excellent heat resistance and high thermal conductivity is preferably selected.
  • an aluminum nitride substrate, a silicon nitride substrate, a boron nitride substrate It is preferable to select a titanium nitride substrate.
  • This ceramic substrate 9 has a thickness of about 1 mn! It has a disk shape of about 10 Omm, and is designed to have a slightly smaller diameter than the outer dimensions of the casing 2.
  • a wiring resistance 10 as a conductor layer or a conductor pattern layer is formed concentrically or spirally on the lower surface side of the ceramic substrate 9.
  • a pad 10 a is formed at an end of the wiring resistance 10.
  • the wiring resistance 10 and the pad 10a are made of a conductive paste (noble metal base) P on the surface of the ceramic substrate 9. After printing 1, it is heated and baked.
  • the opposite side of the conductor pattern layer, that is, the upper surface side is the heating surface of the silicon wafer W1.
  • the wiring resistance 10 and the pad 10a of the present embodiment derived from the noble metal paste P1 contain noble metal particles as a main component, and further contain subcomponents such as glass frit.
  • the noble metal particles used in the present embodiment are preferably scaly noble metal particles having an average particle diameter of 6 ⁇ m or less.
  • the scaly noble metal particles are preferably at least one selected from gold particles (Au particles), silver particles (Ag particles), platinum particles (Pt particles), and palladium particles (Pd particles). This is because these precious metals are relatively hard to oxidize even when exposed to high temperatures and have a sufficiently large resistance value to generate heat when energized. These precious metals may be used alone or in combination of two, three or four as described below. Ag-Au, Ag-Pt, Ag-Pd, Au-Pt, Au-Pd, Pt-Pd, Ag-Au-Pt, Ag-Au-Pd, Au-Pt -Pd, Ag-Au-Pt-Pd may be used in combination. As shown in FIGS.
  • a base end of a terminal pin 12 made of a conductive material is soldered to each of the hats 10a.
  • electrical continuity between each terminal pin 12 and the wiring resistance 10 is achieved.
  • a socket 6 a at the end of the lead wire 6 is fitted to the end of each terminal pin 12. Therefore, when a current is supplied to the wiring resistance 10 via the lead wire 6 and the terminal pin 12, the temperature of the wiring resistance 10 rises, and the entire hot plate 3 is heated.
  • a mixture is prepared by adding a sintering aid such as yttria and a binder to the ceramic powder, if necessary, and the mixture is uniformly kneaded with three rolls. Using this kneaded material as a material, a plate-shaped formed body with a thickness of 1 to 10 Omm is produced by breath molding. I do.
  • a sintering aid such as yttria and a binder
  • Drilling is performed by punching or drilling on the produced formed body to form a pin insertion hole (not shown).
  • the formed body after the drilling step is dried, pre-baked and main-baked to be completely sintered, thereby producing a substrate 9 made of a ceramic sintered body.
  • the firing step is preferably performed by a hot press device, and its temperature is preferably set to about 150 ° C. to 2000 ° C.
  • the ceramic substrate 9 is cut into a circular shape having a predetermined diameter (230 in this embodiment) and is subjected to surface grinding using a puff polishing device.
  • a precious metal paste P1 prepared in advance is uniformly applied to the lower surface of the ceramic substrate 9 by screen printing.
  • the noble metal paste P1 used here contains, in addition to the noble metal particles, bismuth or bismuth oxide, glass frit, a resin binder, and a solvent.
  • the reason why bismuth (B i) or its oxide (bismuth oxide: Bi 2 ⁇ 3 ) was added to the noble metal paste P 1 is as follows. That is, when these substances are added, it is considered that the reaction between the glass frit and aluminum nitride or silicon carbide is suppressed, and the occurrence of blistering is suppressed as compared with the conventional one, and the wiring resistance 10 and This is because the test results show that the adhesion of the pad 10a is also improved. Bismuth and its oxides are relatively easily oxidized and reduced compared to other oxides, and this property contributes to suppressing blistering and improving adhesion in some way. And at the moment are speculated.
  • bismuth oxide reacts with aluminum nitride during paste baking to generate alumina and nitrogen gas, that is, acts as an oxidizing agent for aluminum nitride.
  • bismuth is easily oxidized to be bismuth oxide when exposed to air, it may be indirectly understood that this is also an oxidizing agent for aluminum nitride.
  • silicon nitride is selected as a substrate material. Bismuth oxide It reacts with silicon nitride during baking to generate silica and nitrogen gas, which acts as an oxidizing agent for silicon nitride. Similarly, it can be understood that bismuth is also indirectly an oxidizing agent for silicon nitride.
  • Bismuth or bismuth oxide is present in small amounts in the precious metal paste P1, specifically 0.1 weight. /. ⁇ 10 weight. /.
  • the content is preferably about 1% to 5% by weight, more preferably about 1% to 5% by weight, and particularly preferably about 2% to 3% by weight. If the content is too small, the effect of the addition cannot be sufficiently expected, and this does not lead to prevention of blistering and remarkable improvement in adhesion. Conversely, if the content of the above substances is too large, the reaction for generating nitrogen gas is promoted, and in some cases, there is a possibility that blisters may be induced.
  • the amount of the glass frit is preferably not more than a fraction of the amount of the noble metal particles. The reason is that if the glass frit component in the noble metal paste P1 is at this level, the amount of generated nitrogen gas is not so large, and the adhesion of the wiring resistance 10 and the pad 10a is not impaired. is there. Further, if the conductive component in the noble metal paste P1 increases, the specific resistance of the wiring resistance 10 can be reduced.
  • the noble metal particles in the noble metal paste P1 are 60 weight. /. About 80% by weight, 1 weight of glass frit. /. About 10% by weight.
  • the Garasufuri' bets, borosilicate zinc (S i 0 2: B 2 0:,: Z N_ ⁇ 2) is preferably used those containing, but especially, the borosilicate zinc as a base containing (i.e. as a main component) Use is more preferred. More specifically, it is desirable to use zinc borosilicate as a base, to which a small amount of oxide is added. Specific examples of oxides include aluminum oxide (A ⁇ J), yttrium oxide (Y 2 O j, lead oxide (PbO), cadmium oxide (C d ⁇ ), chromium oxide (COJ, copper oxide (CuO)). The oxides listed here may be added alone to zinc borosilicate, or may be added in combination of two or more. Oxide is used as an oxidizing agent for substrate materials. In order to act, they are reduced.
  • the weight ratio of the various oxides listed above is preferably about 1/20 to 1/5 times the weight ratio of zinc borosilicate. If the weight ratio is too small, the abundance of the oxide in the glass frit will increase, and it may not be possible to sufficiently prevent blistering due to nitrogen gas. Conversely, if the weight ratio is too large, the abundance of the oxide in the glass frit will decrease, and the adhesion of the wiring resistance 10 may not be sufficiently improved.
  • resin binder as organic vehicle in noble metal paste P1. /. About 15% by weight, and about 10% to 30% by weight of a solvent.
  • resin binder include celluloses such as ethyl cellulose.
  • the solvent is a component added for the purpose of improving printability and dispersibility, and specific examples thereof include acetates, cellosolves such as butyl sorbitol, and carbitols such as butyl carbitol.
  • the solvents listed here may be used alone or as a mixture of two or more.
  • the solvent in the noble metal paste P1 evaporates, and the wiring resistance 10 and the pads 10a are baked on the ceramic substrate 9.
  • the molten glass frit tends to move in a direction approaching the surface of the ceramic substrate 9, and conversely, the noble metal particles tend to move in a direction away from the surface of the ceramic substrate 9.
  • Hot plate unit 1 is completed.
  • the hot plate unit 1 has no blisters and has a high tensile strength resistor. Further, since the resistance value of the resistor has a small variation, the heating surface of the hot plate is heated to a uniform temperature.
  • the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Further, the degreased compact was fired by hot press at 160 ° C. for 3 hours to obtain an aluminum nitride substrate as the ceramic substrate 9. The pressure of the hot press was set to 150 kg / cm 2 .
  • a paste application step was performed.
  • eight kinds of Snaps were prepared according to the above procedure, using a noble metal paste P1 having the following composition and setting the thickness at the time of application to about 25 m (see Table 1). ).
  • the noble metal particles only one flaky silver particle having an average particle size of 5 ⁇ m was used.
  • the amount of silver particles added to the silver paste as the noble metal paste P 1 was 65 weight for samples 2 and 7. /. Was set to 70% by weight.
  • the amount of bismuth added was set to 3% by weight for samples 1, 3, 4, and 5 (ie, Examples 1, 3, 4, and 5) and to 2% by weight for sample 2 (ie, Example 2).
  • the other samples (Comparative Examples 1, 2, and 3) were set to 0% by weight.
  • Ethyl cellulose is selected as the resin binder, and butyl carb is used as the solvent.
  • the addition amount of the noble metal paste P1 was set to 5% by weight and 15% by weight, respectively.
  • beta borosilicate zinc 8 OWT%, the A 1 2 0 3 1 Owt% , including C r 2 0 3 1 Owt% ⁇ :. borosilicate zinc 9 0 wt%, 5 wt% of P B_ ⁇ , Contains 5 wt% of CdO.
  • Comparative Example 3 blistering was observed, and the pattern formation accuracy was poor.
  • Comparative Examples 1 and 2 although no blistering was observed, the tensile strength was about half of the value of the tensile strength of each of Examples 1 to 5. In other words, it was proved that the addition of a small amount of bismuth was extremely effective in improving the tensile strength.
  • Example 6 the silicon nitride powder (average particle size 1. 1 / im) 4 5 parts by weight, Y 2 0 3 (flat Hitoshitsubu ⁇ 0. 4 / im) 2 0 parts by weight, A 1 2 0 3 ( .
  • a kneaded product obtained by uniformly kneading the mixture thus obtained was put into a press mold and pressed to produce a plate-shaped formed body.
  • the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Further, the degreased molded body was subjected to hot press firing at 160 ° C. for 3 hours to obtain a silicon nitride substrate as the ceramic substrate 9. It should be noted that the pressure of the hot press was set to 1 5 0 k gZ cm 2. After that, the substrate was cut out and the surface was ground, and then a paste application step was performed.
  • the noble metal paste P 1 has the following composition, and The thickness at the time of application was set to about 25 m to produce Sanal 9.
  • bismuth oxide was used instead of bismuth.
  • Zn_ ⁇ is 5.6 parts by weight, 1) 0 0.6 parts by weight, • B i 2 0 3: 2. 1 part by weight,
  • Example 6 Then, by heating the applied noble metal paste P1 at a temperature of about 750 ° C. for a predetermined time, the wiring resistance 10 and the pad 10a were baked, and the hot plate 3 of Example 6 was completed.
  • Examples 7 and 8 in 45 parts by weight of silicon carbide powder (average particle size: 1.1 / xm), 0.5 parts by weight of C (force), an acrylic resin binder (trade name, manufactured by Mitsui Chemicals, Inc.) : SA-545, acid value 1.0) 8 parts by weight were mixed.
  • a kneaded product obtained by uniformly kneading the mixture thus obtained was placed in a press mold and pressed to produce a plate-shaped formed body.
  • the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Further, the degreased compact was fired by hot press at 1900 ° C. for 3 hours to obtain a silicon nitride substrate as ceramic substrate 9. The pressure of the hot press was set to 150 kg gZc rrr '. Further, the silicon nitride substrate was fired in the air to provide an Sio 2 layer on the surface.
  • samples 10 and 11 were obtained by performing the first paste coating process using the noble metal paste P 1 having the following composition (that is, pastes A and B). Produced. Paste A>
  • Example 6 With respect to the samples 9, 10, and 11 of the obtained Examples 6, 7, and 8, the same comparative test as that of Examples 1 to 5 and Comparative Examples 1 to 3 was performed. As a result, in Examples 6 and 7, no swelling was observed in the wiring resistance 10 and the pad 10a. In Example 8, in addition to blistering, the temperature difference on the heated surface was as large as 5 ° C.
  • the occurrence of blisters can be suppressed without reducing the amount of glass frit added, and the adhesion can be improved. Therefore, a highly reliable hot plate 3 with excellent pattern formation accuracy can be obtained.
  • Examples 1 to 5 an aluminum nitride substrate having particularly excellent heat resistance and high thermal conductivity is used as the ceramic substrate 9. Therefore, a practical hot plate 3 that can withstand use at high temperatures can be obtained.
  • Spherical precious metal particles may be used instead of scaly precious metal particles.
  • it is not limited to using only one kind of precious metal particles, and two kinds (for example, scale-like ones and spherical ones) or more may be used as needed.
  • the ceramic substrate 9 made of aluminum nitride or silicon nitride is not limited to one manufactured by a press molding method, but may be one manufactured by a sheet molding method using a doctor blade device, for example.
  • the sheet forming method for example, the wiring resistance 10 can be provided between the stacked sheets, so that the hot plate 3 for high temperature can be manufactured relatively easily.
  • the conductor pattern layer is not limited to the wiring resistance 10 ⁇ pad 1 Oa exemplified in the embodiment, but may be another conductor pattern layer, that is, a conductor pattern layer that is not a heating resistor.
  • the noble metal base P1 As a method of applying the noble metal base P1 to the ceramic substrate 9, not only a screen printing method but also, for example, a stamping method and other methods. •
  • the above oxides are not only contained in the noble metal paste P1 as a separate component from the glass frit, but are also contained in the noble metal paste P1 as added to the glass frit as a sub-component of the glass frit. May be. However, the oxide contained as a sub-component of the glass frit is preferable in that it is uniformly dispersed in the noble metal paste P1.

Abstract

A hot plate comprising a conductive pattern layer having little blisters and excellent adhesion. The hot plate (3) includes conductive pattern layers (10, 10a) provided on a nitride ceramic substrate (9) and made of bismuth, a bismuth oxide, glass frit, and noble metal particles.

Description

明細書 ホットプレート及び導体ペースト  Description Hot plate and conductor paste
発明の分野 Field of the invention
本発明は、 セラミック基板を使用したホットプレート及び導体ペーストに関す るものである。 背景技術  The present invention relates to a hot plate and a conductive paste using a ceramic substrate. Background art
半導体製造プロセスにおいて、 例えば感光性樹脂塗布工程を経たシリコンゥェ ハを加熱乾燥させる場合、 通常、 ホッ トプレートと呼ばれる加熱装置が用いられ る。  In the semiconductor manufacturing process, for example, when heating and drying a silicon wafer that has undergone a photosensitive resin coating step, a heating device called a hot plate is usually used.
ホットプレートの形成材料としては、 アルミナ等のセラミック製の基板が一般 的に用いられる。 アルミナ基板の片側面には、 導体パターン層としての抵抗体が 所定パターンに形成され、 その抵抗体の一部には端子接続用パッドが形成される 。 なお、 このような導体パターン層は、 アルミナ基板用の銀ペース トを基板に印 刷塗布した後、 加熱して焼き付けることにより形成される。 その後、 パッドには 端子ピンがはんだ付けされ、 その端子ピンは配線を介して電源に接続される。 そ して、 ホッ トプレートの上面側に被加熱物であるシリコンウェハを載置し、 この 状態で抵抗体に通電することにより、 シリコンウェハが 1 o o °c以上に加熱され るようになっている。  As a material for forming the hot plate, a ceramic substrate such as alumina is generally used. A resistor as a conductor pattern layer is formed in a predetermined pattern on one side of the alumina substrate, and a terminal connection pad is formed on a part of the resistor. Such a conductor pattern layer is formed by printing and applying a silver paste for an alumina substrate to a substrate, and then heating and baking. After that, terminal pins are soldered to the pads, and the terminal pins are connected to the power supply via wiring. Then, a silicon wafer to be heated is placed on the upper surface of the hot plate, and by applying a current to the resistor in this state, the silicon wafer is heated to 1 oo ° C or more. I have.
なお、 導体パターン層の形成のための導体ペーストとしては、 銀粒子 6 0重量 %〜 8 0重量0 /。と、 ほう珪酸鉛をベースとするガラスフリット 1重量0/。〜 1 0重 量。 /0と、 バインダ 1重量%〜 1 0重量%と、 溶剤 1 0重量1 %〜 3 0重量%とを含 んだものが一般的に用いられている (特開平 4一 3 0 0 2 4 9号参照) 。 特に、 副成分であるガラスフリットは、 導体パターン層に好適な密着性を確保させるう えで必要とされる。 ところが、 上記従来の鉛系のペーストをそのままセラミック板に適用した場合 、 以下のような不都合が生じる。 即ち、 ベ一スト焼き付け時の熱によって、 セラ ミックに対してペースト中の酸化物が作用し、 例えば前記セラミックが窒化アル ミニムであるならば窒素ガス等のガスを多量に発生させる反応が起こつてしまう 。 これをもたらす主な原因は、 ガラスフリッ ト中に酸化鉛が多く含まれることに よるものと考えられている。 この場合、 ペース ト焼き付け時に発生した高圧の窒 素ガスは、 銀粒子の粒界を通り抜けて、 むりやり外部に出ようとする。 その結果 、 導体パターン層にふくれが起こりやすくなり、 形成されるパターンの精度が悪 化する。 As the conductive paste for forming the conductor pattern layers, the silver particles 6 0 wt% to 8 0 wt 0 /. And a glass frit based on lead borosilicate 1 weight 0 /. ~ 10 weights. / 0, binder 1% to 1 0% by weight, solvent 1 0 wt 1% to 3 0% by weight as I contains is generally used (JP-4 one 3 0 0 2 4 No. 9). In particular, glass frit, which is a sub-component, is required to ensure suitable adhesion to the conductor pattern layer. However, when the above-mentioned conventional lead-based paste is directly applied to a ceramic plate, the following inconvenience occurs. That is, the heat in the paste baking causes the oxide in the paste to act on the ceramic, and for example, if the ceramic is aluminum nitride, a reaction that generates a large amount of gas such as nitrogen gas occurs. I will. The main cause for this is thought to be the high lead oxide content in the glass frit. In this case, the high-pressure nitrogen gas generated during paste baking passes through the grain boundaries of the silver particles and tries to escape to the outside. As a result, blisters are likely to occur in the conductor pattern layer, and the accuracy of the formed pattern deteriorates.
ところで、 仮にペースト中におけるガラスフリットの添加量を極めて少なくす れば、 酸化鉛による悪影響が低減され、 ある程度ふくれの発生が抑制されるもの と予想される。 その反面、 このようにすると今度は導体パターン層の密着性が悪 化する可能性が高くなる。 発明の開示  By the way, if the amount of glass frit in the paste is extremely reduced, it is expected that the adverse effect of lead oxide will be reduced and the occurrence of blistering will be suppressed to some extent. On the other hand, however, this increases the possibility that the adhesion of the conductor pattern layer will deteriorate. Disclosure of the invention
本発明の目的は、 ふくれが少なくかつ密着性に優れた導体パターン層を備えた ホットプレート、 及びその製造に好適な導体ペーストを提供することにある。 上記の目的を達成するために、 本発明の第 1の態様は、 導体層を備えるセラミ ック基板を使用したホットプレートを提供する。 導体層は、 ビスマスまたはビス マス酸化物、 ガラスフリット及び貴金属粒子からなる。 これにより、 導体層中に は、 ガラスフリットに含まれている酸化物に比べて容易に酸化 '還元される性質 のあるビスマス、 またはビスマス酸化物が含まれている。 そして、 この種の物質 を含む導体層の場合、 ガラスフリツ 卜の添加量が多くてもふくれの発生が抑制さ れる。 また、 ガラスフリ ッ トの添加量を多くする (貴金属粒子に対して 1重量% 以上にする) ことができる結果、 導体層の密着性も改善される。  An object of the present invention is to provide a hot plate provided with a conductive pattern layer having little swelling and excellent adhesion, and a conductive paste suitable for manufacturing the hot plate. In order to achieve the above object, a first aspect of the present invention provides a hot plate using a ceramic substrate provided with a conductor layer. The conductor layer is composed of bismuth or bismuth oxide, glass frit, and noble metal particles. As a result, the conductor layer contains bismuth or bismuth oxide, which is more easily oxidized and reduced than the oxide contained in the glass frit. In the case of a conductor layer containing such a substance, the occurrence of blisters is suppressed even if the amount of glass frit is large. In addition, as the amount of glass frit added can be increased (to 1% by weight or more based on the noble metal particles), the adhesion of the conductor layer is also improved.
本発明の第 2の態様は、 ビスマスまたはビスマス酸化物の含有量は 1 8重量% 以下である導体層を有するホッ トプレートを提供する。 これは、 1 8重量。 /。を超 えると、 ビスマス酸化物と貴金属粒子とが分離してしまい、 均一な抵抗値が得ら れないからである。 A second aspect of the present invention provides a hot plate having a conductor layer having a bismuth or bismuth oxide content of 18% by weight or less. This is 18 weight. /. Over In such a case, the bismuth oxide and the noble metal particles are separated, and a uniform resistance cannot be obtained.
本発明の第 3の態様は、 セラミック基板は窒化物セラミック基板または炭化物 セラミック基板であるホットプレートを提供する。 窒化物セラミック基板や炭化 物セラミック基板は熱伝導性に優れ、 またガラスフリットと反応してガスを発生 しゃすい。 窒化物セラミック基板のなかでもとりわけ耐熱性に優れかつ熱伝導率 が高い窒化アルミニウム基板を用いることにより、 高温での使用にも耐えうる実 用的なホットプレートを得ることができる。 また、 炭化物セラミック基板として は、 炭化珪素基板を使用することができる。  A third aspect of the present invention provides a hot plate, wherein the ceramic substrate is a nitride ceramic substrate or a carbide ceramic substrate. Nitride ceramic substrates and carbide ceramic substrates have excellent thermal conductivity and react with glass frit to generate gas. By using an aluminum nitride substrate having excellent heat resistance and high thermal conductivity among nitride ceramic substrates, a practical hot plate that can withstand use at high temperatures can be obtained. Further, as the carbide ceramic substrate, a silicon carbide substrate can be used.
本発明の第 4の態様は、 ほう珪酸亜鉛を含むガラスフリッ トを有する導体層を 有するホットプレー卜を提供する。 ほう珪酸亜鉛を含むガラスフリットはセラミ ック基板における窒化物や炭化物と反応して窒素ガスを発生させ、 また、 ビスマ スまたはビスマスの酸化物はこのような反応を抑制するものと推定される。 従つ て、 これを成分とする材料を用いて導体層を形成したとしても、 ガスは多量に発 生せず、 導体層にふくれが起こりにくくなる。  A fourth aspect of the present invention provides a hot plate having a conductor layer having a glass frit containing zinc borosilicate. It is presumed that glass frit containing zinc borosilicate reacts with nitrides and carbides in the ceramic substrate to generate nitrogen gas, and bismuth or bismuth oxide suppresses such a reaction. Therefore, even if the conductor layer is formed using a material containing this as a component, a large amount of gas is not generated, and blistering is less likely to occur in the conductor layer.
本発明の第 5の態様は、 金粒子、 銀粒子、 白金粒子及びパラジウム粒子のうち から選ばれる少なくとも 1種を貴金属粒子として含む導体層を有するホットプレ ートを提供する。 金粒子、 銀粒子、 白金粒子及びパラジウム粒子は、 高温に晒さ れても比較的酸化しにくく、 しかも充分大きな抵抗値を示すので、 発熱のための 抵抗体として好適な導体層を容易に得ることができる。  A fifth aspect of the present invention provides a hot plate having a conductor layer containing as a noble metal particle at least one selected from gold particles, silver particles, platinum particles and palladium particles. Gold particles, silver particles, platinum particles and palladium particles are relatively resistant to oxidation even when exposed to high temperatures and exhibit a sufficiently large resistance value, so that a conductor layer suitable as a resistor for heat generation can be easily obtained. Can be.
本発明の第 6の態様は、 ビスマスまたはビスマス酸化物、 ガラスフリット、 貴 金属粒子及び有機ビヒクルからなる導体層を有するホットプレートを提供する。 本発明の第 7の態様は、 導体層中のビスマスまたはビスマス酸化物の含有量は 1 8重量%以下であるホットプレートを提供する。 図面の簡単な説明  A sixth aspect of the present invention provides a hot plate having a conductor layer made of bismuth or bismuth oxide, glass frit, noble metal particles, and an organic vehicle. A seventh aspect of the present invention provides a hot plate, wherein the content of bismuth or bismuth oxide in the conductor layer is 18% by weight or less. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形態のホットァレートュニットの概略的な断面図。 図 2は一実施形態のホッ トプレートュニッ トの要部拡大断面図。 発明を実施するための最良の形態 FIG. 1 is a schematic sectional view of a hot-air tune unit according to an embodiment of the present invention. FIG. 2 is an enlarged sectional view of a main part of a hot plate unit according to one embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を具体化した一実施形態のホットプレートユニッ ト 1を図 1, 図 2に基づき詳細に説明する。  Hereinafter, a hot plate unit 1 according to an embodiment of the present invention will be described in detail with reference to FIGS.
図 1に示されるホットプレートュニット 1は、 ケ一シング 2及びホットプレー ト 3を備えている。 ケーシング 2は有底状の金属製部材であって、 断面円形状の 開口部 4をその上部側に備えている。 なお、 ケーシング 2は有底状のものに限定 されず、 底無し状のものであってもよい。 当該開口部 4にはシールリング 1 4を 介してホットプレート 3が取り付けられる。 ケーシング 2の底部 2 aの外周部に は電流供給用のリ一ド線 6を挿通するためのリード線引出用孔 7が形成され、 各 リード線 6はそこからケーシング 2の外部に引き出されている。  The hot plate unit 1 shown in FIG. 1 includes a casing 2 and a hot plate 3. The casing 2 is a metal member having a bottom and has an opening 4 having a circular cross section on an upper side thereof. The casing 2 is not limited to the bottomed one, and may be a bottomless one. The hot plate 3 is attached to the opening 4 via a seal ring 14. On the outer periphery of the bottom 2 a of the casing 2, there are formed lead-out holes 7 for inserting lead wires 6 for supplying current, and each lead 6 is drawn out of the casing 2 from there. I have.
セラミック基板 9からなる本実施形態のホットプレート 3は、 感光性樹脂が塗 布されたシリコンウェハ W 1を 5 0 °C〜3 0 0 °Cにて乾燥させるための低温用ホ ットプレート 3である。  The hot plate 3 of the present embodiment composed of the ceramic substrate 9 is a low-temperature hot plate 3 for drying a silicon wafer W1 coated with a photosensitive resin at 50 ° C. to 300 ° C. .
前記セラミック基板 9としては、 耐熱性に優れかつ熱伝導率が高いという性質 を有する窒化物セラミック基板を選択することがよく、 具体的には窒化アルミ二 ゥム基板、 窒化珪素基板、 窒化ホウ素基板、 窒化チタン基板を選択することが好 ましい。 これらの中でも、 特に窒化アルミニウム基板を選択することが望ましく 、 次いで窒化珪素基板を選択することが望ましい。 その理由は、 これらのものは 、 上記の窒化物セラミックのなかでも熱伝導率が高い部類に属するからである。 このセラミック基板 9は、 厚さ約 1 mn!〜 1 0 O mm程度の円盤状であって、 ケーシング 2の外形寸法より若干小径となるように設計されている。  As the ceramic substrate 9, a nitride ceramic substrate having excellent heat resistance and high thermal conductivity is preferably selected. Specifically, an aluminum nitride substrate, a silicon nitride substrate, a boron nitride substrate It is preferable to select a titanium nitride substrate. Among these, it is particularly desirable to select an aluminum nitride substrate, and then it is desirable to select a silicon nitride substrate. The reason is that these belong to a class having a high thermal conductivity among the above-mentioned nitride ceramics. This ceramic substrate 9 has a thickness of about 1 mn! It has a disk shape of about 10 Omm, and is designed to have a slightly smaller diameter than the outer dimensions of the casing 2.
図 1, 図 2に示されるように、 セラミック基板 9の下面側には、 導体層または 導体パターン層としての配線抵抗 1 0が同心円状ないし渦巻き状に形成されてい る。 配線抵抗 1 0の端部にはパッド 1 0 aが形成されている。 配線抵抗 1 0及び パッ ド 1 0 aは、 セラミック基板 9の表面に導体ペースト (貴金属べ一スト) P 1を印刷した後、 それを加熱して焼き付けたものである。 なお、 本実施形態のホ ットプレート 3では、 導体パターン層の反対側、 即ち上面側をシリコンウェハ W 1の加熱面としている。 このような構成の利点は、 ホットプレート 3に温度ムラ が生じにくくなり、 シリコンウェハ W1を均一に加熱できるようになることであ る。 As shown in FIGS. 1 and 2, a wiring resistance 10 as a conductor layer or a conductor pattern layer is formed concentrically or spirally on the lower surface side of the ceramic substrate 9. A pad 10 a is formed at an end of the wiring resistance 10. The wiring resistance 10 and the pad 10a are made of a conductive paste (noble metal base) P on the surface of the ceramic substrate 9. After printing 1, it is heated and baked. In the hot plate 3 of the present embodiment, the opposite side of the conductor pattern layer, that is, the upper surface side is the heating surface of the silicon wafer W1. The advantage of such a configuration is that temperature unevenness is less likely to occur on the hot plate 3, and the silicon wafer W1 can be heated uniformly.
貴金属ペースト P 1に由来する本実施形態の配線抵抗 1 0及びパッド 1 0 a は、 貴金属粒子を主成分として含み、 さらにガラスフリット等の副成分を含んで いる。 本実施形態において使用される貴金属粒子は、 好ましくは平均粒径が 6 μ m以下かつ鱗片状の貴金属粒子であることがよい。  The wiring resistance 10 and the pad 10a of the present embodiment derived from the noble metal paste P1 contain noble metal particles as a main component, and further contain subcomponents such as glass frit. The noble metal particles used in the present embodiment are preferably scaly noble metal particles having an average particle diameter of 6 μm or less.
鱗片状の貴金属粒子は、 金粒子 (Au粒子) 、 銀粒子 (Ag粒子) 、 白金粒子 (P t粒子) 及びパラジウム粒子 (P d粒子) のうちから選ばれる少なくとも 1 種であることが好ましい。 これらの貴金属は高温に晒されても比較的酸化しにく く、 通電により発熱させるにあたって充分大きな抵抗値を示すからである。 これ らの貴金属は、 単独で用いられてもよいほか、 2種、 3種または 4種を下記のご とく組み合わせて用いてもよい。 即ち、 Ag— Au, Ag— P t, Ag— P d, Au - P t , Au - P d, P t - P d , Ag-Au-P t, Ag— Au— P d, Au-P t -P d, Ag—Au— P t— P dの組み合わせにして用いてもよレヽ。 図 1, 図 2に示されるように、 前記各ハッ ド 1 0 aには、 導電性材料からなる 端子ピン 1 2の基端部がはんだ付けされている。 その結果、 各端子ピン 1 2と配 線抵抗 1 0との電気的な導通が図られている。 各端子ピン 1 2の先端部には、 リ ード線 6の先端部にあるソケット 6 aが嵌着されている。 従って、 リード線 6及 び端子ピン 1 2を介して配線抵抗 1 0に電流を供給すると、 配線抵抗 1 0の温度 が上昇し、 ホットプレート 3全体が加熱される。  The scaly noble metal particles are preferably at least one selected from gold particles (Au particles), silver particles (Ag particles), platinum particles (Pt particles), and palladium particles (Pd particles). This is because these precious metals are relatively hard to oxidize even when exposed to high temperatures and have a sufficiently large resistance value to generate heat when energized. These precious metals may be used alone or in combination of two, three or four as described below. Ag-Au, Ag-Pt, Ag-Pd, Au-Pt, Au-Pd, Pt-Pd, Ag-Au-Pt, Ag-Au-Pd, Au-Pt -Pd, Ag-Au-Pt-Pd may be used in combination. As shown in FIGS. 1 and 2, a base end of a terminal pin 12 made of a conductive material is soldered to each of the hats 10a. As a result, electrical continuity between each terminal pin 12 and the wiring resistance 10 is achieved. A socket 6 a at the end of the lead wire 6 is fitted to the end of each terminal pin 12. Therefore, when a current is supplied to the wiring resistance 10 via the lead wire 6 and the terminal pin 12, the temperature of the wiring resistance 10 rises, and the entire hot plate 3 is heated.
次に、 このホットプレート 3を製造する手順の一例を簡単に説明する。  Next, an example of a procedure for manufacturing the hot plate 3 will be briefly described.
セラミックの粉体に、 必要に応じてィットリァ等の焼結助剤やバインダーを添 加してなる混合物を作製し、 これを 3本ロールにより均一に混練する。 この混練 物を材料として、 厚さ 1〜 1 0 Ommの板状の生成形体をブレス成形により作製 する。 A mixture is prepared by adding a sintering aid such as yttria and a binder to the ceramic powder, if necessary, and the mixture is uniformly kneaded with three rolls. Using this kneaded material as a material, a plate-shaped formed body with a thickness of 1 to 10 Omm is produced by breath molding. I do.
作製された生成形体に対してパンチングまたはドリリングによる穴あけを行 い、 図示しないピン挿通孔を形成する。 次いで、 穴あけ工程を経た生成形体を乾 燥、 仮焼成及び本焼成して完全に焼結させることにより、 セラミック焼結体製の 基板 9を作製する。 焼成工程はホットプレス装置によって行われることが好まし く、 その温度は 1 5 0 0 °C〜 2 0 0 0 °C程度に設定されることが好ましレ、。 この 後、 セラミック基板 9を所定径 (本実施形態では 2 3 0匪 ø ) の円形状に切り出 し、 これをパフ研磨装置を用いて表面研削加工する。  Drilling is performed by punching or drilling on the produced formed body to form a pin insertion hole (not shown). Next, the formed body after the drilling step is dried, pre-baked and main-baked to be completely sintered, thereby producing a substrate 9 made of a ceramic sintered body. The firing step is preferably performed by a hot press device, and its temperature is preferably set to about 150 ° C. to 2000 ° C. Thereafter, the ceramic substrate 9 is cut into a circular shape having a predetermined diameter (230 in this embodiment) and is subjected to surface grinding using a puff polishing device.
上記工程を経た後、 あらかじめ調製しておいた貴金属ペースト P 1を、 セラミ ック基板 9の下面側にスクリーン印刷により均一に塗布する。  After the above steps, a precious metal paste P1 prepared in advance is uniformly applied to the lower surface of the ceramic substrate 9 by screen printing.
ここで使用される貴金属ペース ト P 1は、 貴金属粒子のほかに、 ビスマスまた はビスマス酸化物、 ガラスフリ ッ ト、 樹脂バインダ、 溶剤を含んでいる。  The noble metal paste P1 used here contains, in addition to the noble metal particles, bismuth or bismuth oxide, glass frit, a resin binder, and a solvent.
貴金属ペースト P 1中にビスマス (B i ) またはその酸化物 (酸化ビスマス : B i 23) を添加した理由は、 次のとおりである。 即ち、 これらの物質を添加す ると、 ガラスフリツトと窒化アルミニウムや炭化珪素との反応が抑制されると考 えられ、 従来のものに比べてふくれの発生が抑制されるとともに、 配線抵抗 1 0 及びパッド 1 0 aの密着性も改善される、 という試験結果を得ているからである 。 なお、 ビスマスやその酸化物は他の酸化物に比べて比較的容易に酸化 '還元さ れる性質があり、 この性質がふくれ発生の抑制及び密着性の改善に何らかのかた ちで寄与しているものと、 現時点では推測されている。 The reason why bismuth (B i) or its oxide (bismuth oxide: Bi 23 ) was added to the noble metal paste P 1 is as follows. That is, when these substances are added, it is considered that the reaction between the glass frit and aluminum nitride or silicon carbide is suppressed, and the occurrence of blistering is suppressed as compared with the conventional one, and the wiring resistance 10 and This is because the test results show that the adhesion of the pad 10a is also improved. Bismuth and its oxides are relatively easily oxidized and reduced compared to other oxides, and this property contributes to suppressing blistering and improving adhesion in some way. And at the moment are speculated.
ここで、 基板材料として例えば窒化アルミニウムを選択した場合、 酸化ビスマ スは、 ペースト焼き付け時に窒化アルミニウムと反応してアルミナ及び窒素ガス を発生させる、 いわば窒化アルミニウムに対する酸化剤として作用する。 また、 ビスマスは空気に晒されることで容易に酸化されて酸化ビスマスとなるため、 こ れも間接的には窒化アルミニウムに対する酸化剤になると把握して差し支えない また、 基板材料として例えば窒化珪素を選択した場合、 酸化ビスマスは、 ベー スト焼き付け時に窒化珪素と反応してシリカ及び窒素ガスを発生させる、 いわば 窒化珪素に対する酸化剤として作用する。 同様にビスマスも間接的には窒化珪素 に対する酸化剤になると把握できる。 Here, when, for example, aluminum nitride is selected as the substrate material, bismuth oxide reacts with aluminum nitride during paste baking to generate alumina and nitrogen gas, that is, acts as an oxidizing agent for aluminum nitride. In addition, since bismuth is easily oxidized to be bismuth oxide when exposed to air, it may be indirectly understood that this is also an oxidizing agent for aluminum nitride.In addition, for example, silicon nitride is selected as a substrate material. Bismuth oxide It reacts with silicon nitride during baking to generate silica and nitrogen gas, which acts as an oxidizing agent for silicon nitride. Similarly, it can be understood that bismuth is also indirectly an oxidizing agent for silicon nitride.
ビスマスまたは酸化ビスマスは、 貴金属ペース ト P 1中に少量、 具体的には 0 . 1重量。/。〜 1 0重量。 /。程度含まれていることが好ましく、 1重量%〜5重量% 程度含まれていることがより好ましく、 2重量%〜3重量%程度含まれてぃるこ とが特に好ましい。 この含有量が少なすぎると、 添加の効果を充分に期待するこ とができず、 ふくれの防止及び密着性の顕著な改善につながらない。 逆に、 上記 物質の含有量があまりに多すぎると、 窒素ガスを発生させる反応が促進され、 場 合によってはかえつてふくれを誘発させるおそれがある。  Bismuth or bismuth oxide is present in small amounts in the precious metal paste P1, specifically 0.1 weight. /. ~ 10 weight. /. The content is preferably about 1% to 5% by weight, more preferably about 1% to 5% by weight, and particularly preferably about 2% to 3% by weight. If the content is too small, the effect of the addition cannot be sufficiently expected, and this does not lead to prevention of blistering and remarkable improvement in adhesion. Conversely, if the content of the above substances is too large, the reaction for generating nitrogen gas is promoted, and in some cases, there is a possibility that blisters may be induced.
ガラスフリツ トの量は、 貴金属粒子の量の数分の 1以下であることが好ましい 。 その理由は、 貴金属ペースト P 1中のガラスフリット成分がこの程度であれば 、 窒素ガスの発生量もそれほど多くはなく、 配線抵抗 1 0及びパッド 1 0 aの密 着性も損なわれないからである。 また、 貴金属ペース ト P 1における導電成分が 多くなれば、 配線抵抗 1 0の比抵抗を低くすることも可能だからである。 本実施 形態では、 具体的にいうと、 貴金属ペースト P 1中において貴金属粒子が 6 0重 量。/。〜 8 0重量%ほど含まれ、 ガラスフリッ トが 1重量。/。〜 1 0重量%ほど含ま れている。  The amount of the glass frit is preferably not more than a fraction of the amount of the noble metal particles. The reason is that if the glass frit component in the noble metal paste P1 is at this level, the amount of generated nitrogen gas is not so large, and the adhesion of the wiring resistance 10 and the pad 10a is not impaired. is there. Further, if the conductive component in the noble metal paste P1 increases, the specific resistance of the wiring resistance 10 can be reduced. In the present embodiment, specifically, the noble metal particles in the noble metal paste P1 are 60 weight. /. About 80% by weight, 1 weight of glass frit. /. About 10% by weight.
ガラスフリッ トとしては、 ほう珪酸亜鉛 (S i 02 : B 20 :, : Z n〇2) を含む ものの使用が好ましく、 特には、 ほう珪酸亜鉛をベースとして (即ち主成分とし て) 含むものの使用がより好ましい。 より具体的にいうと、 ほう珪酸亜鉛をべ一 スとし、 それに対し少量の酸化物を添加したものの使用が望ましい。 酸化物の具 体例としては、 酸化アルミニウム (A 〇J 、 酸化イットリウム (Y 2 O j 、 酸化鉛 (P b O ) 、 酸化カドミウム (C d〇) 、 酸化クロム (C O J 、 酸化 銅 (C u O) がある。 ここに列挙した酸化物は、 ほう珪酸亜鉛に対して、 1種の み添加されていてもよく、 2種以上組み合わせて添加されていてもよい。 なお、 ペースト焼き付け時においてこれらの酸化物は、 基板材料に対する酸化剤として 作用するため、 自らは還元される。 The Garasufuri' bets, borosilicate zinc (S i 0 2: B 2 0:,: Z N_〇 2) is preferably used those containing, but especially, the borosilicate zinc as a base containing (i.e. as a main component) Use is more preferred. More specifically, it is desirable to use zinc borosilicate as a base, to which a small amount of oxide is added. Specific examples of oxides include aluminum oxide (A〇J), yttrium oxide (Y 2 O j, lead oxide (PbO), cadmium oxide (C d〇), chromium oxide (COJ, copper oxide (CuO)). The oxides listed here may be added alone to zinc borosilicate, or may be added in combination of two or more. Oxide is used as an oxidizing agent for substrate materials. In order to act, they are reduced.
先に列挙した各種酸化物の重量比は、 ほう珪酸亜鉛の重量比の 1 / 2 0倍〜 1 / 5倍程度であることがよい。 この重量比が小さすぎると、 ガラスフリッ ト中に おいて上記酸化物の存在率が高くなる結果、 窒素ガスに起因するふくれを充分に 防止できなくなるおそれがある。 逆に、 この重量比が大きすぎると、 ガラスフリ ット中において上記酸化物の存在率が小さくなる結果、 配線抵抗 1 0の密着性を 充分に向上できなくなるおそれがある。  The weight ratio of the various oxides listed above is preferably about 1/20 to 1/5 times the weight ratio of zinc borosilicate. If the weight ratio is too small, the abundance of the oxide in the glass frit will increase, and it may not be possible to sufficiently prevent blistering due to nitrogen gas. Conversely, if the weight ratio is too large, the abundance of the oxide in the glass frit will decrease, and the adhesion of the wiring resistance 10 may not be sufficiently improved.
その他、 貴金属ペースト P 1中には、 有機ビヒクルとしての樹脂バインダが 3 重量。/。〜 1 5重量%ほど含まれ、 溶剤が 1 0重量%〜3 0重量%ほど含まれてい る。 樹脂バインダの例としては、 例えばェチルセルロース等のセルロース類があ る。 溶剤は印刷性や分散性の向上を目的として添加される成分であって、 その具 体例としてはアセテート類、 ブチルセ口ソルブ等のセロソルブ類、 ブチルカルビ トール等のカルビトール類が挙げられる。 ここに列挙した溶剤は、 1種のみ用い られてもよく、 2種以上混合して用いられてもよい。  In addition, 3 weight of resin binder as organic vehicle in noble metal paste P1. /. About 15% by weight, and about 10% to 30% by weight of a solvent. Examples of the resin binder include celluloses such as ethyl cellulose. The solvent is a component added for the purpose of improving printability and dispersibility, and specific examples thereof include acetates, cellosolves such as butyl sorbitol, and carbitols such as butyl carbitol. The solvents listed here may be used alone or as a mixture of two or more.
貴金属ペースト P 1を約 7 5 0 °Cの温度で所定時間加熱すると、 貴金属ペース ト P 1中の溶剤が揮発し、 配線抵抗 1 0及びパッド 1 0 aがセラミック基板 9上 に焼き付けられる。 溶融したガラスフリットはセラミック基板 9の表面に近づく 方向に移動する傾向があり、 逆に貴金属粒子はセラミック基板 9の表面から離れ る方向に移動する傾向がある。  When the noble metal paste P1 is heated at a temperature of about 750 ° C. for a predetermined time, the solvent in the noble metal paste P1 evaporates, and the wiring resistance 10 and the pads 10a are baked on the ceramic substrate 9. The molten glass frit tends to move in a direction approaching the surface of the ceramic substrate 9, and conversely, the noble metal particles tend to move in a direction away from the surface of the ceramic substrate 9.
その後、 ノ ッド 1 0 aにはんだ S 1を介して端子ピン 1 2を接合して、 ホット' プレート 3を完成させ、 さらにこれをケーシング 2の開口部 4に取り付ければ、 図 1に示す所望のホットプレートュニット 1が完成する。 ホットプレートュニッ ト 1は、 ふくれがなく、 引っ張り強度が高い抵抗体を備える。 さらに、 抵抗体の 抵抗値のばらつきは小さいため、 ホットプレートの加熱面は均一な温度に加熱さ れる。  Then, the terminal pin 12 is joined to the node 10 a via the solder S 1 to complete the hot plate 3, which is further attached to the opening 4 of the casing 2. Hot plate unit 1 is completed. The hot plate unit 1 has no blisters and has a high tensile strength resistor. Further, since the resistance value of the resistor has a small variation, the heating surface of the hot plate is heated to a uniform temperature.
実施例及び比較例  Examples and comparative examples
[サンブルの作製 (貴金属粒子の金属種が同じ場合) ] 実施例 1〜 5、 比較例 1〜 3では、 窒化アルミニゥム粉末 (平均粒径 1 . 1 μ m) 1 0 0重量部に、 Υ 0 :, (平均粒径◦. 4 μ ιη) 4重量部、 アクリル系樹脂バ インダ (三井化学株式会社製、 商品名 : S A— 5 4 5, 酸価 1 . 0 ) 8重量部を 添加して混合した。 このようにして得た混合物を均一に混練してなる混練物をプ レス成形用型に入れてプレスすることにより、 板状生成形体を作製した。 [Preparation of a sample (when the metal type of the precious metal particles is the same)] In Examples 1 to 5 and Comparative Examples 1 to 3, 100 parts by weight of aluminum nitride powder (average particle size : 1.1 μm) was added by : 0:, (average particle size : 4 μιη) 4 parts by weight 8 parts by weight of an acrylic resin binder (trade name: SA-5545, acid value 1.0, manufactured by Mitsui Chemicals, Inc.) were added and mixed. A kneaded product obtained by uniformly kneading the mixture thus obtained was put into a press molding die and pressed to produce a plate-shaped formed body.
次いで、 穴あけ加工及び乾燥を行った後、 成形体を窒素雰囲気中で 3 5 0 °C、 4時間の脱脂を行い、 バインダを熱分解させた。 さらに、 脱脂された成形体を 1 6 0 0 °C、 3時間の条件でホットプレス焼成し、 セラミック基板 9としての窒化 アルミニウム基板を得た。 なお、 ホットプレスの圧力は 1 5 0 k g / c m2 に設 定した。 Next, after performing drilling and drying, the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Further, the degreased compact was fired by hot press at 160 ° C. for 3 hours to obtain an aluminum nitride substrate as the ceramic substrate 9. The pressure of the hot press was set to 150 kg / cm 2 .
この後、 基板切り出し及び表面研削加工を行った後、 ペース ト塗布工程を行つ た。 同工程では、 下記のごとき組成の貴金属ペース ト P 1を用い、 かつ塗布時の 厚さを 2 5 m程度に設定し、上記の手順に準拠して 8種のサンブルを作製した ( 表 1参照) 。  Then, after performing substrate cutting and surface grinding, a paste application step was performed. In this process, eight kinds of sembles were prepared according to the above procedure, using a noble metal paste P1 having the following composition and setting the thickness at the time of application to about 25 m (see Table 1). ).
貴金属粒子としては、 鱗片状かつ平均粒径 5 μ mの銀粒子を 1種のみ用いた。 そして、 貴金属ペースト P 1としての銀ペースト中における銀粒子の添加量を、 サンプル 2 , 7では 6 5重量。/。に設定し、 それ以外のものでは 7 0重量%に設定 した。  As the noble metal particles, only one flaky silver particle having an average particle size of 5 μm was used. The amount of silver particles added to the silver paste as the noble metal paste P 1 was 65 weight for samples 2 and 7. /. Was set to 70% by weight.
ガラスフリッ トとしては、 ほう珪酸亜鉛をベースとして含むもの (即ち亜鉛系 のもの) を 4種用意し、 ほう珪酸鉛をベースとして含むもの (即ち鉛系のもの) を 1種用意した。 亜鉛系のガラスフリットひ, β, y , δについては、 表 1の下 欄に詳しい組成が各々示されている。 また、 貴金属ペースト Ρ 1における各ガラ スフリツトの添加量は表 1に示すとおりである。  Four types of glass frit containing zinc borosilicate as a base (that is, zinc-based) and one containing lead borosilicate as a base (that is, lead-based) were prepared. For the zinc-based glass frit, β, y, and δ, detailed compositions are shown in the lower column of Table 1, respectively. Also, the amount of each glass frit added in the noble metal paste No. 1 is as shown in Table 1.
そして、 ビスマスの添加量を、 サンブル 1 , 3, 4, 5 (即ち実施例 1, 3 , 4, 5 ) では 3重量%に設定し、 サンプル 2 (即ち実施例 2 ) では 2重量%に設 定し、 それ以外のサンプル (比較例 1, 2 , 3 ) では 0重量%に設定した。  The amount of bismuth added was set to 3% by weight for samples 1, 3, 4, and 5 (ie, Examples 1, 3, 4, and 5) and to 2% by weight for sample 2 (ie, Example 2). The other samples (Comparative Examples 1, 2, and 3) were set to 0% by weight.
樹脂バインダとしてはェチルセルロースを選択し、 溶剤としてはブチルカルビ トールを選択するとともに、 貴金属ペース ト P 1における添加量を、 それぞれ 5 重量%, 1 5重量%に設定した。 Ethyl cellulose is selected as the resin binder, and butyl carb is used as the solvent. In addition to selecting Thor, the addition amount of the noble metal paste P1 was set to 5% by weight and 15% by weight, respectively.
[比較試験及びその結果]  [Comparison test and its results]
得られた 8種のサンプルの各々を用いて、 基板 9に対するペースト印刷及び焼 き付けを行い、 2mm角のテス ト用パターンを複数箇所に形成した。 そして、 こ れらのテス ト用パターンに対して引っ張り強度試験を実施し、 測定値の平均 (k g f /2mmD) を算出した。 また、 肉眼及び光学顕微鏡の両方で観察を行なう ことにより、 テス ト用パターンにおけるふくれの有無を検査した。 また、 電圧を 印加してサンプルを 1 80°Cまで昇温させ、 サーモピュア (日本データム社製 I R— 620 1 2— 001 2) にて加熱面における最高温度と最低温度との差 ( °C) を調べた。 これらの試験の結果を表 1に示す。  Using each of the obtained eight types of samples, paste printing and baking were performed on the substrate 9 to form a 2 mm square test pattern at a plurality of locations. Then, a tensile strength test was performed on these test patterns, and the average of the measured values (kgf / 2 mmD) was calculated. In addition, the presence or absence of blisters in the test pattern was examined by observation with both the naked eye and an optical microscope. In addition, the sample was heated to 180 ° C by applying a voltage, and the difference between the maximum temperature and the minimum temperature on the heated surface (° C) was measured using Thermopure (IR-620 12 2-001 2 manufactured by Nippon Datum). ). Table 1 shows the results of these tests.
Biまたはガラスフリットの Bi or glass frit
粒子 その酸化 ふくれ 引っ張り強度 温度差 Particle its oxidation blister tensile strength temperature difference
No. No.
(wt%) 物の添加 及び添加量 (kgf/2mmD) (。c) 量(wt%) (wt%)  (wt%) Material addition and amount (kgf / 2mmD) (.c) Amount (wt%) (wt%)
1(実施例1) Ag 70 3 ひ (Ζπ系ノ, 3 なし 12.2 0.5 1 (Example 1) Ag 70 3 (Ζπ series, 3 None 12.2 0.5
2 (実施例 2) Ag 65 2 ひ (Ζη系ノ, 5 なし 11.8 0.42 (Example 2) Ag 65 2 Ζ (Ζη series, 5 None 11.8 0.4
3 (実施例 3) Ag 70 3 β (Ζη系), 3 なし 9.4 0.53 (Example 3) Ag 70 3 β (Ζη system), 3 None 9.4 0.5
4 (実施例 4) Ag 70 3 7 (Ζη系), 3 なし 9.8 0.54 (Example 4) Ag 70 3 7 (Ζη system), 3 None 9.8 0.5
5 (実施例 5) Ag 70 3 δ (Ζη系), 3 なし 10.1 0.45 (Example 5) Ag 70 3 δ (Ζη system), 3 None 10.1 0.4
6(比較例1) Ag 70 0 α (Ζπ系ノ, 3 あり 5.2 0.46 (Comparative Example 1) Ag 70 0 α (Ζπ system, 3 Yes 5.2 0.4
7 (比較例 2) Ag 65 0 (Zn系), 5 あり 4.8 0.47 (Comparative Example 2) Ag 65 0 (Zn-based), 5 Yes 4.8 0.4
8 (比較例 3) Ag 70 0 Pb系, 3 あり 0.5 8 (Comparative Example 3) Ag 70 0 Pb system, with 3 0.5
Ag 56.6  Ag 56.6
9 (実施例 6) 2.1 Zn - Pb系 なし 10.0 0.5  9 (Example 6) 2.1 Zn-Pb type None 10.0 0.5
Pd 10.3  Pd 10.3
Ag 56.6  Ag 56.6
10 (実施例 7) 15.1 Zn- Pb系 なし 9.5 0.9  10 (Example 7) 15.1 Zn-Pb type None 9.5 0.9
Pd 10.3  Pd 10.3
Ag 56.6  Ag 56.6
11 (実施例 8) 25.0 Zn - Pb系 あり 5.8 5.0  11 (Example 8) 25.0 Zn-Pb based 5.8 5.0
Pd 10.3 (注) Pd 10.3 (note)
a :ほう珪酸亜鉛を 8 Owt%, A 1 20:,を 2 Owt%含む. a: borosilicate zinc 8 Owt%, A 1 2 0 :, containing 2 OWT%.
β :ほう珪酸亜鉛を 8 Owt%, A 1 203を 1 Owt%, C r 2 03 を 1 Owt%含む. γ :ほう珪酸亜鉛を 9 0 wt%, P b〇を 5 wt%, C d Oを 5 wt%含む. beta: borosilicate zinc 8 OWT%, the A 1 2 0 3 1 Owt% , including C r 2 0 3 1 Owt% γ:. borosilicate zinc 9 0 wt%, 5 wt% of P B_〇, Contains 5 wt% of CdO.
δ :ほう珪酸亜鉛を 8 5 wt%, C r 23を 1 5 wt%含む. 表 1から明らかなように、 実施例 1〜5については、 ふくれが全く認められず 、 パターン形成精度に優れていた。 しかも、 引っ張り強度の値は極めて高くなり 、 いずれも 9 k g f / 2 mm口を超えていた。 δ: 85 wt% of zinc borosilicate and 15 wt% of Cr 2 r 3. As is clear from Table 1, no blistering was observed in Examples 1 to 5 and the pattern formation accuracy was low. It was excellent. Moreover, the values of the tensile strength were extremely high, and all exceeded 9 kgf / 2 mm.
これに対し、 比較例 3ではふくれが認められ、 パターン形成精度に劣るものと なっていた。 また、 比較例 1, 2については、 ふくれが認められなかったとは言 うものの、 各実施例 1〜5の引っ張り強度の値の約半分程度に留まった。 つまり 、 少量のビスマスの添加が引っ張り強度の向上に対して極めて有効であることが 実証された。  On the other hand, in Comparative Example 3, blistering was observed, and the pattern formation accuracy was poor. In Comparative Examples 1 and 2, although no blistering was observed, the tensile strength was about half of the value of the tensile strength of each of Examples 1 to 5. In other words, it was proved that the addition of a small amount of bismuth was extremely effective in improving the tensile strength.
[サンプルの作製 (貴金属粒子の金属種が異なる場合) ]  [Preparation of sample (when the metal type of noble metal particles is different)]
実施例 6では、 窒化珪素粉末 (平均粒径 1. 1 /im) 4 5重量部に、 Y203 (平 均粒径 0. 4 /im) 2 0重量部、 A 1 203 (平均粒径 0. 5 μ m) 1 5重量部、 S i 02 (平均粒径◦. 5 /xm) 2 0重量部、 アクリル系樹脂バインダ (三井化学株 式会社製、 商品名 : S A— 5 4 5 , 酸価 1. 0) 8重量部を混合した。 In Example 6, the silicon nitride powder (average particle size 1. 1 / im) 4 5 parts by weight, Y 2 0 3 (flat Hitoshitsubu径0. 4 / im) 2 0 parts by weight, A 1 2 0 3 ( . The average particle diameter of 0. 5 μ m) 1 5 parts by weight, S i 0 2 (average particle size ◦ 5 / xm) 2 0 parts by weight, an acrylic resin binder (Mitsui Chemicals Co., Ltd., trade name: SA - 5 4 5, acid value 1.0) 8 parts by weight were mixed.
このようにして得た混合物を均一に混練してなる混練物をプレス成形用型に 入れてプレスすることにより、 板状の生成形体を作製した。  A kneaded product obtained by uniformly kneading the mixture thus obtained was put into a press mold and pressed to produce a plate-shaped formed body.
次いで、 穴あけ加工及び乾燥を行った後、 成形体を窒素雰囲気中で 3 5 0°C、 4時間の脱脂を行い、 バインダを熱分解させた。 さらに、 脱脂された成形体を 1 6 0 0°C、 3時間の条件でホッ トプレス焼成し、 セラミック基板 9として窒化珪 素基板を得た。 なお、 ホットプレスの圧力は 1 5 0 k gZ c m2に設定した。 この後、 基板切り出し及び表面研削加工を行った後、 ペースト塗布工程を行つ た。 ここでは貴金属ペースト P 1として、 下記のごとき組成のものを用い、 かつ 塗布時の厚さを 25 m程度に設定してサンアル 9を作製した。 なお、 ここではビ スマスに代えて酸化ビスマスを使用した Next, after performing drilling and drying, the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Further, the degreased molded body was subjected to hot press firing at 160 ° C. for 3 hours to obtain a silicon nitride substrate as the ceramic substrate 9. It should be noted that the pressure of the hot press was set to 1 5 0 k gZ cm 2. After that, the substrate was cut out and the surface was ground, and then a paste application step was performed. Here, the noble metal paste P 1 has the following composition, and The thickness at the time of application was set to about 25 m to produce Sanal 9. Here, bismuth oxide was used instead of bismuth.
•貴金属粒子:銀粒子 (昭栄化学工業 Ag— 520) が 56. 6重量部、 パラジウム粒子 (昭栄化学工業 P d— 2 1 3) が 1 0. 3  • Noble metal particles: 56.6 parts by weight of silver particles (Showei Chemical Industry Ag-520) and 10.3 parts of palladium particles (Showei Chemical Industry Pd-213)
.ガラスフリット : S i 02が 1. 0重量部、 B20:,が 2. 5重量部、 . Glass frit: S i 0 2 is 1.0 parts by weight, B 2 0:, is 2.5 parts by weight,
Zn〇が 5. 6重量部、 1)0が0. 6重量部、 • B i 203 : 2. 1重量部、 Zn_〇 is 5.6 parts by weight, 1) 0 0.6 parts by weight, • B i 2 0 3: 2. 1 part by weight,
•樹脂バインダ: 3. 4重量部、  • Resin binder: 3.4 parts by weight,
•溶剤:ブチルカルビトール 1 7. 9重量部。  • Solvent: 17.9 parts by weight butyl carbitol.
そして、 塗布された貴金属ペースト P 1を約 750°Cの温度で所定時間加熱す ることにより、 配線抵抗 1 0及びパッド 1 0 aを焼き付け、 実施例 6のホットプ レート 3を完成させた。  Then, by heating the applied noble metal paste P1 at a temperature of about 750 ° C. for a predetermined time, the wiring resistance 10 and the pad 10a were baked, and the hot plate 3 of Example 6 was completed.
実施例 7, 8では、 炭化珪素粉末 (平均粒径 1. 1 /xm) 45重量部に、 C (力 一ボン) 0. 5重量部、 アクリル系樹脂バインダ (三井化学株式会社製、 商品名 : S A— 545, 酸値 1. 0) 8重量部を混合した。  In Examples 7 and 8, in 45 parts by weight of silicon carbide powder (average particle size: 1.1 / xm), 0.5 parts by weight of C (force), an acrylic resin binder (trade name, manufactured by Mitsui Chemicals, Inc.) : SA-545, acid value 1.0) 8 parts by weight were mixed.
このようにして得た混合物を均一に混練してなる混練物をプレス成形用型に 入れてプレスすることにより、 板状生成形体を作製した。  A kneaded product obtained by uniformly kneading the mixture thus obtained was placed in a press mold and pressed to produce a plate-shaped formed body.
次いで、 穴あけ加工及び乾燥を行った後、 成形体を窒素雰囲気中で 350°C、 4時間の脱脂を行い、 バインダを熱分解させた。 さらに、 脱脂された成形体を 1 900°C、 3時間の条件でホットプレス焼成し、 セラミック基板 9としての窒化 珪素基板を得た。 なお、 ホットプレスの圧力は 1 50 k gZc rrr' に設定した。 さらに、 この窒化珪素基板を空気中で焼成することにより、その表面に S i o2 層を設けた。 Next, after drilling and drying, the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Further, the degreased compact was fired by hot press at 1900 ° C. for 3 hours to obtain a silicon nitride substrate as ceramic substrate 9. The pressure of the hot press was set to 150 kg gZc rrr '. Further, the silicon nitride substrate was fired in the air to provide an Sio 2 layer on the surface.
次に、 以下の組成の貴金属ペース ト P 1 (即ちペース ト A, B) を使用してぺ 一ス ト塗布工程を行うことにより、 それぞれサンプル 1 0, 1 1 (実施例 7, 8 ) を作製した。 くペースト A> Next, samples 10 and 11 (Examples 7 and 8) were obtained by performing the first paste coating process using the noble metal paste P 1 having the following composition (that is, pastes A and B). Produced. Paste A>
-貴金属粒子:銀粒子 (昭栄化学工業 Ag— 520) が 56. 6重量部、 パラジウム粒子 (昭栄化学工業 P d— 2 1 3) が 1 0. 3  -Noble metal particles: 56.6 parts by weight of silver particles (Showei Chemical Industry Ag-520) and 10.3 parts of palladium particles (Showei Chemical Industry Pd-213)
'ガラスフリッ ト : S i〇2が 1. 0重量部、 B203が 2 5重量部、 'Garasufuri' DOO: S I_〇 2 1.0 parts by weight, B 2 0 3 2 5 parts by weight,
Z nOが 5. 6重量部、 ? 1^0が0. 6重量部、  5.6 parts by weight of ZnO 1 ^ 0 is 0.6 parts by weight,
• B i 20;): 1 5. 1重量部、 • B i 20 ;) : 15.1 parts by weight,
•樹脂バインダ: 3. 4重量部、  • Resin binder: 3.4 parts by weight,
•溶剤:ブチルカルビトール 1 7. 9重量部。  • Solvent: 17.9 parts by weight butyl carbitol.
<ペースト B > <Paste B>
•貴金属粒子:銀粒子 (昭栄化学工業 Ag— 520) が 56. 6重量部、 パラジウム粒子 (昭栄化学工業 P d— 2 1 3) が 1 0. 3 重量部、  • Noble metal particles: 56.6 parts by weight of silver particles (Showei Chemicals Ag-520), 10.3 parts by weight of palladium particles (Showei Chemicals Pd-213),
•ガラスフリット : S i〇2が 1. 0重量部、 B23が 2. 5重量部、 • Glass frit: S I_〇 2 1.0 parts by weight, B 23 2.5 parts by weight,
ZnOが 5. 6重量部、 P bC^SO. 6重量部、  5.6 parts by weight of ZnO, 6 parts by weight of PbC ^ SO.
• B i 203: 25. 0重量部、 • B i 2 0 3: 25. 0 parts by weight,
•樹脂バインダ: 3. 4重量部、  • Resin binder: 3.4 parts by weight,
•溶剤:ブチルカルビトール 1 7. 9重量部。  • Solvent: 17.9 parts by weight butyl carbitol.
[比較試験及びその結果]  [Comparison test and its results]
得られた実施例 6, 7, 8のサンプル 9, 1 0, 1 1について、 実施例 1〜5 及び比較例 1〜 3について行なったのと同様の比較試験を行なった。 その結果、 実施例 6 , 7については、 配線抵抗 1 0及びパッド 1 0 aにふくれは認められな かった。 また、 実施例 8については、 ふくれが認められたことに加え、 加熱面の 温度差も 5 °Cと大きかった。  With respect to the samples 9, 10, and 11 of the obtained Examples 6, 7, and 8, the same comparative test as that of Examples 1 to 5 and Comparative Examples 1 to 3 was performed. As a result, in Examples 6 and 7, no swelling was observed in the wiring resistance 10 and the pad 10a. In Example 8, in addition to blistering, the temperature difference on the heated surface was as large as 5 ° C.
従って、 本実施形態の各実施例によれば以下のような効果を得ることができる  Therefore, according to each example of the present embodiment, the following effects can be obtained.
( 1 ) 実施例】〜 5のホッ トブレート 3では、 ビスマス、 ガラスフリ ッ ト及び 銀粒子からなる配線抵抗 1 0及びパッ ド 1 0 aが形成されている。 また、 実施例 6, 7のホッ トプレート 3では、 ビスマス酸化物、 ガラスフリ ッ ト、 銀粒子、 パ ラジウム粒子からなる配線抵抗 1 0及びパッ ド 1 0 aが形成されている。 (1) Examples: In hot plate 3 of ~ 5, bismuth, glass frit and A wiring resistance 10 and a pad 10a made of silver particles are formed. In the hot plates 3 of the sixth and seventh embodiments, a wiring resistance 10 and a pad 10a composed of bismuth oxide, glass frit, silver particles, and palladium particles are formed.
従って、 ガラスフリッ トの添加量を低減させることなくふくれの発生を抑制す ることができ、 かつ密着性も改善することができる。 このため、 パターン形成精 度に優れた高信頼性のホットプレート 3を得ることができる。  Accordingly, the occurrence of blisters can be suppressed without reducing the amount of glass frit added, and the adhesion can be improved. Therefore, a highly reliable hot plate 3 with excellent pattern formation accuracy can be obtained.
なお、 実施例 1〜 5において貴金属ベースト P 1中のビスマスをほぼ同量の酸 化ビスマスに置き換えたり、 実施例 6, 7において貴金属ペース ト P 1中の酸化 ビスマスをほぼ同量のビスマスに置き換えてもよい。  In Examples 1 to 5, bismuth in the noble metal base P1 was replaced with almost the same amount of bismuth oxide, and in Examples 6 and 7, bismuth oxide in the noble metal paste P1 was replaced with almost the same amount of bismuth. You may.
( 2 ) 実施例 1〜 5では、 とりわけ耐熱性に優れかつ熱伝導率が高い窒化アル ミニゥム基板をセラミック基板 9として用いている。 このため、 高温での使用に も耐えうる実用的なホットプレート 3を得ることができる。  (2) In Examples 1 to 5, an aluminum nitride substrate having particularly excellent heat resistance and high thermal conductivity is used as the ceramic substrate 9. Therefore, a practical hot plate 3 that can withstand use at high temperatures can be obtained.
なお、 本発明の実施形態は以下のように変更してもよい。  Note that the embodiment of the present invention may be modified as follows.
• 鱗片状の貴金属粒子に代えて、 球形状の貴金属粒子を用いてもよい。 また 、 貴金属粒子を 1種のみ用いることのみに限定されず、 必要に応じて 2種 (例え ば鱗片状のもの +球形状のもの) またはそれ以上のものを混合して用いてもよい  • Spherical precious metal particles may be used instead of scaly precious metal particles. In addition, it is not limited to using only one kind of precious metal particles, and two kinds (for example, scale-like ones and spherical ones) or more may be used as needed.
• 窒化アルミニウムまたは窒化珪素からなるセラミック基板 9はプレス成形 法を経て製造されたもののみに限定されることはなく、 例えばドクターブレード 装置を利用したシート成形法を経て製造されたものでもよい。 シート成形法を採 用した場合、 例えば積層されたシート間に配線抵抗 1 0を配設することができる ので、 高温用のホットプレート 3を比較的容易に製造することができる。 • The ceramic substrate 9 made of aluminum nitride or silicon nitride is not limited to one manufactured by a press molding method, but may be one manufactured by a sheet molding method using a doctor blade device, for example. When the sheet forming method is adopted, for example, the wiring resistance 10 can be provided between the stacked sheets, so that the hot plate 3 for high temperature can be manufactured relatively easily.
• 導体パターン層は実施形態において例示した配線抵抗 1 0ゃパッド 1 O a のみに限定されることはなく、 それ以外のもの、 つまり発熱用の抵抗体ではない 導体パターン層であってもよい。  • The conductor pattern layer is not limited to the wiring resistance 10 ゃ pad 1 Oa exemplified in the embodiment, but may be another conductor pattern layer, that is, a conductor pattern layer that is not a heating resistor.
• セラミック基板 9に対して貴金属ベースト P 1を塗布する方法としては、 スクリーン印刷法のみならず、 例えば捺印法やその他の手法もある。 • 上記酸化物は、 ガラスフリッ トとは別のものとして貴金属ペースト P 1中 に含まれているばかりでなく、 ガラスフリッ トの副成分としてガラスフリットに 添加された状態で貴金属ペースト P 1中に含まれていてもよい。 ただし、 ガラス フリツ卜の副成分として含まれている酸化物のほうが、 貴金属ペースト P 1にお いて均一に分散された状態となる点で好ましい。 • As a method of applying the noble metal base P1 to the ceramic substrate 9, not only a screen printing method but also, for example, a stamping method and other methods. • The above oxides are not only contained in the noble metal paste P1 as a separate component from the glass frit, but are also contained in the noble metal paste P1 as added to the glass frit as a sub-component of the glass frit. May be. However, the oxide contained as a sub-component of the glass frit is preferable in that it is uniformly dispersed in the noble metal paste P1.

Claims

請求の範囲 The scope of the claims
1 . 導体層を備えるセラミ ック基板を有するホッ トプレートにおいて、 前記導体 層は、 ビスマスまたはビスマス酸化物、 ガラスフリ ッ ト及び貴金属粒子からなる ことを特徴とするホットプレート。 1. A hot plate having a ceramic substrate having a conductor layer, wherein the conductor layer is made of bismuth or bismuth oxide, glass frit, and noble metal particles.
2 . 前記ビスマスまたはビスマス酸化物の含有量は 1 8重量%以下である請求項 1に記載のホットプレート。 2. The hot plate according to claim 1, wherein the content of the bismuth or bismuth oxide is 18% by weight or less.
3 . 前記セラミック基板は窒化物セラミック基板または炭化物セラミック基板で あることを特徴とする請求項 1または 2に記載のホッ トプレート。 3. The hot plate according to claim 1, wherein the ceramic substrate is a nitride ceramic substrate or a carbide ceramic substrate.
4 . 前記ガラスフリットは、 ほう珪酸亜鉛を含むことを特徴とする請求項 1乃至 3のいずれか 1項に記載のホットプレート。 4. The hot plate according to any one of claims 1 to 3, wherein the glass frit contains zinc borosilicate.
5 . 前記貴金属粒子は、 金粒子、 銀粒子、 白金粒子及びパラジウム粒子からなる 群から選ばれる少なくとも 1種であることを特徴とする請求項 1乃至 3のいずれ か 1項に記載のホットプレート。 5. The hot plate according to any one of claims 1 to 3, wherein the noble metal particles are at least one selected from the group consisting of gold particles, silver particles, platinum particles, and palladium particles.
6 . ビスマスまたはビスマス酸化物、 ガラスフリ ッ ト、 貴金属粒子及び有機ビヒ クルからなることを特徴とする導体ベースト。 6. A conductor base comprising bismuth or bismuth oxide, glass frit, precious metal particles and an organic vehicle.
7 . 前記ビスマスまたはビスマス酸化物の含有量は 1 8重量%以下である請求項 6に記載の導体ベース ト。 7. The conductor base according to claim 6, wherein the bismuth or bismuth oxide content is 18% by weight or less.
PCT/JP2000/002873 1999-05-07 2000-05-01 Hot plate and conductive paste WO2000069220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00922932A EP1185144A1 (en) 1999-05-07 2000-05-01 Hot plate and conductive paste

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP12697299 1999-05-07
JP11/126972 1999-05-07
JP2000126785A JP2001028290A (en) 1999-05-07 2000-04-27 Hot plate and conductor paste
JP2000/126785 2000-04-27

Publications (1)

Publication Number Publication Date
WO2000069220A1 true WO2000069220A1 (en) 2000-11-16

Family

ID=26463037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002873 WO2000069220A1 (en) 1999-05-07 2000-05-01 Hot plate and conductive paste

Country Status (3)

Country Link
EP (1) EP1185144A1 (en)
JP (1) JP2001028290A (en)
WO (1) WO2000069220A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0108888D0 (en) * 2001-04-09 2001-05-30 Du Pont Conductor composition IV
US7157023B2 (en) 2001-04-09 2007-01-02 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
US20090266409A1 (en) * 2008-04-28 2009-10-29 E.I.Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices
JP5726698B2 (en) * 2011-07-04 2015-06-03 株式会社日立製作所 Glass composition, glass frit containing the same, glass paste containing the same, and electric and electronic parts using the same
DE102015119763A1 (en) 2015-11-16 2017-05-18 Heraeus Quarzglas Gmbh & Co. Kg infrared Heaters

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439812A (en) * 1990-06-02 1992-02-10 Tanaka Kikinzoku Internatl Kk Conductor composition
JPH0496201A (en) * 1990-08-05 1992-03-27 Yamamura Glass Co Ltd Heating element composition
JPH05114305A (en) * 1991-10-23 1993-05-07 Asahi Chem Ind Co Ltd Paste for baking
JPH08148030A (en) * 1994-11-24 1996-06-07 Murata Mfg Co Ltd Conductive paste
JPH08148375A (en) * 1994-11-18 1996-06-07 Nippon Carbide Ind Co Inc Conductive paste
JPH1140330A (en) * 1997-07-19 1999-02-12 Ibiden Co Ltd Heater and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439812A (en) * 1990-06-02 1992-02-10 Tanaka Kikinzoku Internatl Kk Conductor composition
JPH0496201A (en) * 1990-08-05 1992-03-27 Yamamura Glass Co Ltd Heating element composition
JPH05114305A (en) * 1991-10-23 1993-05-07 Asahi Chem Ind Co Ltd Paste for baking
JPH08148375A (en) * 1994-11-18 1996-06-07 Nippon Carbide Ind Co Inc Conductive paste
JPH08148030A (en) * 1994-11-24 1996-06-07 Murata Mfg Co Ltd Conductive paste
JPH1140330A (en) * 1997-07-19 1999-02-12 Ibiden Co Ltd Heater and manufacture thereof

Also Published As

Publication number Publication date
JP2001028290A (en) 2001-01-30
EP1185144A1 (en) 2002-03-06

Similar Documents

Publication Publication Date Title
JP4916442B2 (en) Lead-free and cadmium-free conductive copper thick film paste
US5250229A (en) Silver-rich conductor compositions for high thermal cycled and aged adhesion
JPH08242062A (en) Ceramic circuit board backed at low temperature
US7261841B2 (en) Thick film conductor case compositions for LTCC tape
US20030000938A1 (en) Ceramic heater, and ceramic heater resistor paste
WO2000069220A1 (en) Hot plate and conductive paste
JP5503132B2 (en) Resistor paste and resistor
US4906405A (en) Conductor composition and method of manufacturing a multilayered ceramic body using the composition
US7731812B2 (en) Thick film conductor case compositions for LTCC tape
WO2000069218A1 (en) Hot plate and conductor paste
WO2000069217A1 (en) Hot plate and conductive paste
JP2004228410A (en) Wiring board
JP2003249332A (en) Hot plate and conductive paste
JP5215914B2 (en) Resistor film manufacturing method, resistor film, and resistor
JPH06169173A (en) Method for manufacturing aluminum nitride substrate
JP3326420B2 (en) Ceramic substrate
JP2003303664A (en) Hot plate and conductive paste
JP2004273426A (en) Conductive paste and ceramic multilayer substrate using the same
CN113924631B (en) High adhesion resistor composition
JPH03129810A (en) Laminated type ceramic chip capacitor and manufacture thereof
JPWO2002045465A1 (en) Ceramic heater and resistor paste for ceramic heater
JP2892220B2 (en) Manufacturing method of ceramic wiring board
WO2001063971A1 (en) Ceramic substrate
JP2001189188A (en) Resistance paste for ceramic heater and ceramic heater
JP2001189187A (en) Resistance paste for ceramic heater and ceramic heater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09979676

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000922932

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000922932

Country of ref document: EP

CR1 Correction of entry in section i

Free format text: PAT. BUL. 38/2001 ADD "DECLARATION UNDER RULE 4.17: OF INVENTORSHIP (RULE 4.17(IV)) FOR US ONLY."

WWW Wipo information: withdrawn in national office

Ref document number: 2000922932

Country of ref document: EP