WO2001063971A1 - Ceramic substrate - Google Patents
Ceramic substrate Download PDFInfo
- Publication number
- WO2001063971A1 WO2001063971A1 PCT/JP2000/003400 JP0003400W WO0163971A1 WO 2001063971 A1 WO2001063971 A1 WO 2001063971A1 JP 0003400 W JP0003400 W JP 0003400W WO 0163971 A1 WO0163971 A1 WO 0163971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- ceramic substrate
- oxide glass
- conductor layer
- hot plate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 59
- 239000000919 ceramic Substances 0.000 title claims abstract description 57
- 239000000075 oxide glass Substances 0.000 claims abstract description 37
- 238000010438 heat treatment Methods 0.000 claims description 47
- 239000004020 conductor Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 35
- 229910000510 noble metal Inorganic materials 0.000 claims description 30
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 229910052709 silver Inorganic materials 0.000 claims description 12
- 239000004332 silver Substances 0.000 claims description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010970 precious metal Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 102
- 229910052581 Si3N4 Inorganic materials 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000002923 metal particle Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910002710 Au-Pd Inorganic materials 0.000 description 2
- 229910018879 Pt—Pd Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 229910002696 Ag-Au Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000004110 Zinc silicate Substances 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- 239000001656 lutein Substances 0.000 description 1
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 description 1
- 229960005375 lutein Drugs 0.000 description 1
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 description 1
- 235000012680 lutein Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 238000009681 x-ray fluorescence measurement Methods 0.000 description 1
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 1
- 235000019352 zinc silicate Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/141—Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
Definitions
- the present invention relates to a ceramic substrate suitable for a hot plate unit used for manufacturing a semiconductor device, for example.
- a heating device such as a hot plate unit is used to dry a silicon wafer coated with a photosensitive resin.
- the main component of the hot plate unit is a ceramic hot plate.
- nitride ceramic substrates have been used as hot plate materials.
- On one surface of the ceramic base material a conductor layer having a predetermined pattern, that is, a heat generating body is formed.
- the heating element is formed by applying a noble metal paste mainly composed of metal particles such as silver to a ceramic base material and baking it by heating. Further, a pad portion for connecting a power supply wiring is formed on a part of the heating element. Pa? Terminal pins are soldered to the terminals. The power supply is connected to the terminal pins via wiring.
- the silicon wafer placed on the upper surface of the hot plate is heated to 150 ° C. to 700 ° C.
- An object of the present invention is to provide a ceramic substrate having a conductor layer that is difficult to peel off.
- a first aspect of the present invention provides a ceramic base material having a conductor layer containing oxide glass and a noble metal disposed on a surface thereof.
- the conductor layer has a region where the concentration of oxide glass is relatively high on the surface side of the ceramic substrate.
- a ceramic substrate having a conductor layer containing oxide glass and a noble metal disposed on a surface thereof.
- the conductive layer includes at least two layers, and the concentration of the oxide glass in the first layer closest to the surface of the ceramic substrate is higher than that in the second layer adjacent to the first layer.
- FIG. 1 is a schematic sectional view of a hot plate unit according to one embodiment of the present invention.
- 2A to 2D are cross-sectional views of a hot plate showing a process of forming a conductor layer.
- Figure 3 is an SEM photograph of the conductor layer.
- Figure 4A shows an X-ray fluorescence mapping image of zinc in the heating element.
- Fig. 4B is a fluorescent X-ray mapping image of silver in the heating element.
- the hot plate unit 1 including the ceramic substrate according to one embodiment of the present invention will be described.
- the hot plate unit 1 includes a casing 2 and a hot plate 3 as main components.
- the circular casing 2 is made of metal, has a bottom 2a and a lip 4, and has an opening at the top.
- the hot plate 3 is attached to the lip 4 via an annular sealing element 14.
- the bottom 2a is provided with three pin-through sleeves 5 through which lift pins (not shown) are passed (only two are shown).
- the three lift pins support the silicon wafer W1 at three points and lift the silicon wafer W1 from the upper surface of the hot plate 3 to a predetermined height.
- a hole 7 for drawing out a lead wire is formed in the bottom 2a.
- a packing 8 is mounted in the lead-out hole 7.
- Hot pump The lead wire 6 for supplying the current to the rate 3 is led out of the case 2 through the packing 8.
- the silicon wafer W 1 coated with the photosensitive resin is heated to 150 to 800 ° C. on the hot plate 3.
- the material of the hot plate 3 is a plate-like ceramic substrate 9.
- a nitride ceramic substrate having properties of excellent heat resistance and high thermal conductivity is selected. Specifically, a substrate made of aluminum nitride, silicon nitride, boron nitride, or titanium nitride is used. A substrate made of aluminum nitride is particularly desirable in that it has a high thermal conductivity, and a substrate made of silicon nitride is desirable in the next step.
- the ceramic substrate 9 is designed in a disk shape having a thickness of about 1 111111 to 25111111 and an outer diameter slightly smaller than the outer dimensions of the casing 2. Near the center of the ceramic base 9, three pin insertion holes 11 corresponding to the respective lift pins are formed.
- a heating element 10 as a conductor layer is formed concentrically or spirally on the lower surface of the ceramic base 9.
- a pad 10a is also formed as a conductor layer.
- Terminal pins 12 are soldered to both pads 10a, respectively.
- the socket 6 a of the lead wire 6 is fitted to the tip of each terminal pin 12. Therefore, when a current is supplied to the heating element 10 via the lead wire 6 and the terminal pin 12, the heating element 10 generates heat and the hot plate 3 is heated.
- the heating element 10 and the pad 10a have a two-layer structure including a first layer L1 and a second layer L2.
- the first layer L1 is a base layer in contact with the ceramic substrate 9, and the second layer L2 is formed on the first layer L1.
- the first layer L1 and the second layer L2 contain an oxide glass as an insulator and a noble metal as a conductor.
- the amount, that is, the concentration of the oxide glass in the first layer L1 is relatively high.
- the concentration of the oxide glass in the second layer L2 is relatively low.
- the oxide glass is derived from glass powder dispersed in the noble metal paste P1, that is, the glass frit G1.
- the concentration of the oxide glass in the conductor layer may be set so as to have a concentration gradient such that the concentration gradually increases toward and near the base material 9. Further, the conductor layer may have more layers than two layers having different oxide glass concentrations.
- the concentration of the oxide glass in the layer close to the base material 9 is set higher than the concentration of the oxide glass in the outer layer formed on the layer.
- the oxide glass concentration of the first layer closest to the base material 9 is set higher than the oxide glass concentration of the second layer outside the first layer.
- the concentration of the outermost third layer of oxide glass may be set to an intermediate value between the first layer and the second layer.
- the concentration of the oxide glass in the region in contact with the base material 9 only needs to be higher than the concentration of the oxide glass in a region farther than that, and the concentration of the oxide glass in the outermost layer is not limited.
- the ratio M / m of the concentration M of the highest concentration portion to the concentration m of the lowest concentration portion may be larger than 1 Z 1 and less than 100 OZl. More preferably, it is more preferably greater than 1/1 and 500 or less. If the ratio MZm is smaller than 1Z1, the conductor layer becomes difficult to adhere to the ceramic substrate 9. On the other hand, when the ratio MZm is larger than 1000 Z1, the conductor layer is not sufficiently sintered, and the conductor layer is easily peeled off from the ceramic base material 9. Note that the ratio MZm is calculated from the intensity ratio of peaks derived from the predetermined element by measuring the amount of the predetermined element in the oxide glass by X-ray fluorescence measurement.
- the first layer L1 is often formed to be thinner than the second layer L2.
- the thickness of the first layer L1 is preferably in the range of 1 // 3 to 1Z10 of the thickness of the second layer L2, and more preferably 1Z4 to 1Z. Les, more preferably within the range of 6.
- the thickness ratio is larger than 1 to 3, the flow of electricity is easy, the breakage of the second layer L2, and the area are reduced, so that the conductivity required for the heating element 10 is reduced.
- the ratio of the first layer L1 decreases, and the adhesion between the heating element 10 or the pad 10a and the ceramic substrate 9 may be weakened. is there.
- the ratio is set to about 1/5.
- Heating element 10 ⁇ Pad 10a is 5 ⁇ ! It may be formed to a thickness of about 100 ⁇ m, preferably about 7 ⁇ m to 20 m.
- the noble metal paste P1 generally contains noble metal particles, metal oxides, resins, and solvents.
- the noble metal particles for example, at least one selected from silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) is used. These noble metals are relatively unlikely to be oxidized at high temperatures, and exhibit a sufficiently large resistance value when the heating element 10 generates heat. Two or more kinds of noble metal particles may be combined as follows. Ag-Au, Ag-Pt, Ag-Pd, Au-Pt, Au-Pd, Pt-Pd, Ag-Au-Pt, Ag-Au-Pd, Au-Pt -Pd, Ag—Au—Pt—Pd.
- a combination of Ag-Pd is preferable.
- the reason is that if the noble metal paste P1 having this combination is used, a heating element 10 having a sufficiently large resistance value can be obtained.
- Suitable metal oxides include, for example, lead oxide, zinc oxide, silicon oxide (silica), boron oxide, aluminum oxide (alumina), yttrium oxide (yttria), titanium oxide (titania), and the like.
- a ceramic mixture is prepared by adding a sintering aid such as yttria and a binder to the nitride ceramic powder, if necessary.
- a sintering aid such as yttria and a binder
- the ceramic mixture is uniformly kneaded using three rolls.
- the obtained kneaded material is formed into a plate-shaped formed body having a thickness of about 1 mm to 150 mm using a press forming die.
- a pin insertion hole 11 is formed in the formed body by punching or drilling.
- the green compact is then completely sintered by drying, degreasing and firing. As a result, a ceramic substrate 9 is obtained (FIG. 2 (a)).
- the sintering step is preferably performed by a hot press device, and the sintering temperature is preferably set at about 1500 to 2000 ° C. Then, the ceramic base material 9 is cut into a disk shape having a predetermined diameter (230 in this embodiment). The surface of the disc-shaped ceramic substrate 9 is polished using a puff polishing device or the like.
- a noble metal paste P1 prepared in advance is uniformly applied to the ground lower surface of the ceramic base material 9 by a screen printing method or the like (FIG. 2 (b)).
- the main component of the noble metal paste P1 is noble metal particles, and the next highest component is glass frit G1.
- the noble metal paste P1 contains a small amount of a resin binder and a solvent.
- a resin binder for example, celluloses such as ethyl cellulose are used.
- the solvent for example, acetates, sorbitols such as butyl sorbitol, and carbitols such as butyl carbitol are used. By adding the solvent, the noble metal paste P1 is uniformly dispersed and easily printed.
- the base material of the glass frit G for example, borosilicate zinc (S i 0 2: B 2 0 3: Zn0 2) Field Artillery lead silicate (S i 0 2: B 2 0 3: P B_ ⁇ ) is used You.
- borosilicate zinc S i 0 2: B 2 0 3: Zn0 2
- Field Artillery lead silicate S i 0 2: B 2 0 3: P B_ ⁇
- the glass frit G1 a material obtained by adding a small amount of metal oxide to the same base material is used.
- the metal oxides include aluminum oxide (A l 2 ⁇ 3), oxide lutein Niumu (Ru0 2), such as yttrium oxide (Y 2 0 3) and the like.
- the terminal pins 12 are joined to the pads 10a using solder S1 (FIG. 2 (d)).
- solder S1 FIG. 2 (d)
- the hot plate 3 is manufactured.
- the hot plate unit 1 shown in FIG. 1 is completed.
- Example 1 an aluminum nitride powder (average particle size 0. 6 / m) 85 parts by weight, Y 2 0 3 (average particle size 0. 4 ⁇ ) 4 parts by weight, an acrylic resin binder (Mitsui Chemicals Stock Company Ltd. , Trade name: SA-545, Acid value 1.0) 1 1 part by weight, mix and knead uniformly Was.
- the obtained kneaded material was mixed with alcohol. This mixture was granulated by a spray drying method. The granules were placed in a press mold and pressed to produce a plate-shaped formed body.
- the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere. As a result, the binder in the compact is thermally decomposed. Further, the degreased molded body was subjected to hot press firing at 160 ° C. for 3 hours at a pressing pressure of 150 kg / cm 2 to obtain an aluminum nitride base 9 (FIG. 2 (a)).
- the aluminum nitride base material 9 was cut into a predetermined shape, and the surface was ground, followed by printing a paste.
- a silver-containing paste (trade name: Sylvest, manufactured by Tokuka Kagaku Kenkyusho Co., Ltd.) having the following composition was used as the precious metal paste P1.
- This noble metal paste P1 was applied to a thickness of about 25 / m.
- oxide glass 8 0 wt% zinc silicate more of and 2 0% by weight of R U_ ⁇ moth Rasufuri' the amount ... 5 parts by weight including 2
- the aluminum nitride base material 9 was heated at about 75 ° C. for a predetermined time to evaporate the solvent in the noble metal paste P1. Further, by this heating, the heating element 10 and the pad 10 a were baked on the base material 9. During this heating, the molten glass frit G1 moved in a direction approaching the substrate 9, and the first layer L1 was formed in a region in contact with the substrate 9. Conversely, the silver moved away from the substrate 9 to form the second layer L2 on the first layer L1 (FIG. 2 (c)). These movements are thought to be due to the effect of gravity. Although the detailed reason is unknown, it is estimated that this movement phenomenon, uneven distribution phenomenon, or layer formation is particularly promoted when the noble metal cost P1 contains RuO. [Example 2]
- silicon nitride powder (average particle size 1. ⁇ ⁇ ) 45 parts by weight, Y 2 0: i (average particle size 0. 4 m) 20 parts by weight, A 1 2 0 3 (average particle diameter 0. 5 ⁇ m) 1 5 parts by weight, S i 0 2 (average particle diameter 0. 5 ⁇ ) 20 parts by weight of an acrylic resin binder (Mitsui Chemicals Co., Ltd., trade name: S alpha-545, acid number 1.0 ) 8 parts by weight were mixed.
- an acrylic resin binder Mitsubishi Chemicals Co., Ltd., trade name: S alpha-545, acid number 1.0
- the obtained mixture was uniformly kneaded, and the kneaded product was put into a press mold and pressed to produce a plate-shaped formed body.
- a hole was formed in the formed body, and the formed body was dried to obtain a formed body.
- the molded body was degreased at 350 ° C for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Then, the molded body was subjected to hot press firing at 1,600 ° C. for 3 hours under a pressing pressure of 150 kg / cm 2 , to obtain a silicon nitride substrate 9.
- the silicon nitride substrate was cut into a predetermined shape, and the surface was ground. Then, the noble metal paste P1 was printed on the silicon nitride substrate. In the printing process, a silver / palladium paste (trade name: Sylvest) manufactured by Tokuka Chemical Laboratories Co., Ltd. having the following composition was used as the noble metal paste p1, with a thickness of about 25 / m. 9 was applied.
- a silver / palladium paste (trade name: Sylvest) manufactured by Tokuka Chemical Laboratories Co., Ltd. having the following composition was used as the noble metal paste p1, with a thickness of about 25 / m. 9 was applied.
- the silicon nitride substrate 9 With the printed surface of the noble metal paste P1 facing up, the silicon nitride substrate 9 was heated at about 750 ° C. for a predetermined time. As a result, the heating element 10 and the pad 10a having a two-layer structure were baked on the base material 9.
- the same noble metal paste P1 as in Example 1 was used.
- the heating plate 10 was cut perpendicularly to the upper surface of the hot plate 3 of Example 1, and a cross section of the heating element 10 was observed with a scanning electron microscope (SEM) at X2000. As a result, as shown in FIG. 3, the heating element 10 did not swell or peel off. Similar results were obtained for the hot plate 3 of Example 2.
- a fluorescent X-ray SEM-XMA (Hitachi S-3200 N-keV eXSigma level 2)
- the distribution of silver was also investigated.
- Fig. 4 (a) shows a zinc mapping image
- Fig. 4 (b) shows a silver mapping image. It was found that the heating element 10 was separated into a first layer L1 containing a relatively large amount of zinc and a second layer L2 containing a relatively small amount of zinc. Specifically, the concentration of zinc in the first layer L1 was about 10 times higher than that in the second layer L2. Also, from FIG. 4 (a), it was found that the first layer L1 was located on the base material 9 side. Similar results were obtained for the hot plate 3 of Example 2.
- the heating elements 10 of Examples 1 and 2 were composed of a first layer L1 having a relatively high oxide glass concentration and located on the side closer to the substrate 9 and a base layer having a relatively low oxide glass concentration. It was confirmed that the second layer L2 was located on the side far from the material 9.
- Comparative Example 1 unlike Examples 1 and 2, the concentration of the oxide glass in the heating element 10 was closer to the base material 9 and lower on the side.
- the tensile strength against the heating element 10 was tested according to a known method. as a result, The measured value of Example 1 was 11.5 kg ⁇ 72 mm. The measured value of Example 2 was 15.1 kg / 2 mm. The heating elements 10 of Examples 1 and 2 had extremely good tensile strength. On the other hand, the measured value of Comparative Example 1 was 4.2 kg 2 m. According to the hot plate 3 of the embodiment, the following effects can be obtained.
- the ceramic substrate 9 is an aluminum nitride substrate or a silicon nitride substrate, and the conductor layer has a two-layer structure including a first layer L1 and a second layer L2.
- the first layer L1 having excellent adhesion to aluminum nitride or silicon nitride is arranged so as to be in contact with the ceramic substrate 9, and functions as a base layer for the second layer L2.
- the conductor layer adheres more firmly to the substrate 9 than before.
- the reliability of the hot plate unit 1 is improved because the ceramic substrate 9 has a conductor layer that is difficult to peel off.
- the hot plate 3 made of aluminum nitride / silicon nitride has high heat resistance and high thermal conductivity. Therefore, when such a hot plate 3 is heated, the temperature of its upper surface is uniform.
- the reason why the first layer L1 containing a large amount of glass improves the adhesion to the substrate 9 is that the glass in the first layer L1 is formed by an oxide layer existing on the surface layer of the aluminum nitride sintered body. (Alumina layer) and a glass phase component such as yttrium oxide added as a sintering aid have a high affinity, so it is presumed that the conductor layer will be adhered to the substrate 9.
- the ceramic base material 9 having a suitable conductor layer composed of the first layer L1 and the second layer L2 can be easily and reliably formed. Can be manufactured.
- the opposite side of the printed surface of the heating element 10 is used as a heating surface: Therefore, the object to be heated such as the silicon wafer W1 is heated. It is placed on a surface and heated directly.
- the object to be heated may be held with a gap of about 50 ⁇ to 200 m from the printed surface, and may be heated in a non-contact manner.
- the heat conduction of the base material 9 prevents the temperature distribution from being generated along the printed pattern of the heating element 10. Further, in this embodiment, since the distance between the heating surface and the heating element pattern is large, the heating surface is more uniformly heated, and the object to be heated can be more uniformly heated. Further, the heating element 1 ⁇ is disposed so as to be exposed from the ceramic base material 9, but the heating element 10 is not separated from the base material 9.
- the present invention may be modified as follows.
- the ceramic substrate 9 can be manufactured by a sheet forming method using, for example, a doctor blade device instead of the press forming method. In this case, if the heating elements 10 are arranged between the stacked sheets, the hot plate 3 for high temperature can be manufactured relatively easily.
- the conductor layer is not limited to heat generation.
- the noble metal paste P1 can be printed by, for example, a transfer method or another method instead of the screen printing method.
- base materials such as carbide ceramics such as, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, etc. may be used as the base material.
- the conductor layer may have three or more layers.
- the concentration of the oxide glass of the lower layer located closest to the base material 9 is relatively higher than the concentration of the oxide glass of the middle layer. Set to be higher.
- the concentration of the oxide glass in the upper layer located farthest from the base material 9 may be set to be relatively lower than the concentration of the oxide glass in the middle layer. It is also possible to form the conductor layer in a four-layer structure.
- the ceramic substrate 9 may be embodied as a material for other ceramic products instead of the hot plate 3.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Resistance Heating (AREA)
- Surface Heating Bodies (AREA)
Abstract
A ceramic substrate (9) including a heater (10) that can hardly separate. The heater contains oxide glass and precious metal. The heater has a relatively high oxide glass content in its portions where it is in contact with the ceramic substrate to increase the adhesion between the heater and the ceramic substrate.
Description
セラミック基材 技術分野 Ceramic substrate technical field
本発明は、 例えば半導体装置の製造に使用されるホットプレートュニットに好 適なセラミック基材に関するものである。 背景技術 The present invention relates to a ceramic substrate suitable for a hot plate unit used for manufacturing a semiconductor device, for example. Background art
半導体製造プロセスにおいて、 感光性樹脂の塗布されたシリコンウェハを乾燥 させるために、 例えば、 ホットプレートユニット等の加熱装置が用いられる。 ホットプレートュニットの主要な構成部材はセラミック製のホットプレートで ある。 近年では、 ホットプレートの材料として窒化物セラミック基材が使用され ている。 セラミック基材の片面には、 所定のパターンを有する導体層すなわち発 熱体が形成されている。 発熱体は、 銀等の金属粒子が主成分の貴金属ペーストを セラミック基材に塗布し、 加熱により焼き付けることにより形成される。 また、 電源配線接続用のパッド部が発熱体の一部に形成されている。 パ? ド部には端子 ピンがはんだ付けされている。 電源は配線を介してその端子ピンに接続される。 発熱体に通電することにより、 ホットプレートの上面に載置されたシリコンゥエ- ハは 1 5 0 °C〜 7 0 0 °Cに加熱される。 In a semiconductor manufacturing process, for example, a heating device such as a hot plate unit is used to dry a silicon wafer coated with a photosensitive resin. The main component of the hot plate unit is a ceramic hot plate. In recent years, nitride ceramic substrates have been used as hot plate materials. On one surface of the ceramic base material, a conductor layer having a predetermined pattern, that is, a heat generating body is formed. The heating element is formed by applying a noble metal paste mainly composed of metal particles such as silver to a ceramic base material and baking it by heating. Further, a pad portion for connecting a power supply wiring is formed on a part of the heating element. Pa? Terminal pins are soldered to the terminals. The power supply is connected to the terminal pins via wiring. By energizing the heating element, the silicon wafer placed on the upper surface of the hot plate is heated to 150 ° C. to 700 ° C.
ところが、 従来技術においては、 発熱体とセラミック基材との接着が比較的弱 いため、 発熱体がセラミック基材から剥離するおそれがあった。 そのため、 ホッ トプレートュニットの信頼性の向上が要求されている。 発明の開示 However, in the prior art, since the bonding between the heating element and the ceramic substrate was relatively weak, there was a risk that the heating element would be separated from the ceramic substrate. Therefore, it is required to improve the reliability of the hot plate unit. Disclosure of the invention
本発明の目的は、 剥離しにくい導体層を有するセラミック基材を提供すること にある。
上記の目的を達成するために、 本発明の第 1の態様は、 その表面に配置され、 酸化物ガラス及び貴金属を含有した導体層を有するセラミック基材を提供する。 導体層はセラミック基材の表面側において、 酸化物ガラスの濃度が相対的に高い 領域を有する。 An object of the present invention is to provide a ceramic substrate having a conductor layer that is difficult to peel off. In order to achieve the above object, a first aspect of the present invention provides a ceramic base material having a conductor layer containing oxide glass and a noble metal disposed on a surface thereof. The conductor layer has a region where the concentration of oxide glass is relatively high on the surface side of the ceramic substrate.
本発明の第 2の態様は、 その表面に配置され、 酸化物ガラス及び貴金属を含有 した導体層を有するセラミック基材を提供する。 導体層は少なくとも 2つの層を 含み、 セラミック基材の表面に最も近い第 1の層の酸化物ガラスの濃度は、 第 1 の層に隣接する第 2の層のそれよりも高い。 図面の簡単な説明 According to a second aspect of the present invention, there is provided a ceramic substrate having a conductor layer containing oxide glass and a noble metal disposed on a surface thereof. The conductive layer includes at least two layers, and the concentration of the oxide glass in the first layer closest to the surface of the ceramic substrate is higher than that in the second layer adjacent to the first layer. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形態のホットプレートュニットの概略的な断面図。 FIG. 1 is a schematic sectional view of a hot plate unit according to one embodiment of the present invention.
図 2 A〜図 2 Dは導体層の形成工程を示すホットプレートの断面図。 2A to 2D are cross-sectional views of a hot plate showing a process of forming a conductor layer.
図 3は導体層の S E M写真。 Figure 3 is an SEM photograph of the conductor layer.
図 4 Aは発熱体中の亜鉛の蛍光 X線マッビング映像。 Figure 4A shows an X-ray fluorescence mapping image of zinc in the heating element.
図 4 Bは発熱体中の銀の蛍光 X線マッビング映像。 発明を実施するための最良の形態 Fig. 4B is a fluorescent X-ray mapping image of silver in the heating element. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施形態のセラミック基材を備えるホットプレートュニット 1について説明する。 Hereinafter, the hot plate unit 1 including the ceramic substrate according to one embodiment of the present invention will be described.
図 1に示すように、 ホットプレートユニット 1は、 ケーシング 2及びホットプ レート 3を主要な構成成分として備える。円形のケーシング 2は金属製であって、 底部 2 aとリップ部 4とを備え、 上部に開口を有する。 ホットプレート 3は環状 のシール要素 1 4を介してリップ部 4に取り付けられる。 底部 2 aには、 図示し ないリフトピンが揷通される 3つのピン揷通スリーブ 5が設けられている (2つ のみ図示)。 3つのリフトピンはシリコンウェハ W 1を 3点で支持し、ホットプレ 一ト 3の上面から所定の高さにリフトする。 底部 2 aにはリード線引出用孔 7が 形成されている。 リード線引出用孔 7にはパッキング 8が装着される。 ホットプ
レート 3に電流を供給するためのリード線 6は、 このパッキング 8を介してケー ス 2の外部に引き出される。 感光性樹脂の塗布されたシリコンウェハ W 1はホッ トプレート 3上で 1 5 0〜8 0 0 °Cに加熱される。 ホットプレート 3の素材は板 状のセラミック基材 9である。 As shown in FIG. 1, the hot plate unit 1 includes a casing 2 and a hot plate 3 as main components. The circular casing 2 is made of metal, has a bottom 2a and a lip 4, and has an opening at the top. The hot plate 3 is attached to the lip 4 via an annular sealing element 14. The bottom 2a is provided with three pin-through sleeves 5 through which lift pins (not shown) are passed (only two are shown). The three lift pins support the silicon wafer W1 at three points and lift the silicon wafer W1 from the upper surface of the hot plate 3 to a predetermined height. A hole 7 for drawing out a lead wire is formed in the bottom 2a. A packing 8 is mounted in the lead-out hole 7. Hot pump The lead wire 6 for supplying the current to the rate 3 is led out of the case 2 through the packing 8. The silicon wafer W 1 coated with the photosensitive resin is heated to 150 to 800 ° C. on the hot plate 3. The material of the hot plate 3 is a plate-like ceramic substrate 9.
セラミック基材 9としては、 耐熱性に優れかつ熱伝導率が高いという性質を有 する窒化物セラミック基材が選択される。 具体的には、 窒化アルミニウム、 窒化 珪素、 窒化ホウ素、 窒化チタン製の基材が使用される。 高い熱伝導率を有する点 で窒化アルミニゥム製の基材が特に望ましく、 次レ、で窒化珪素製の基材が望まし レ、。 As the ceramic substrate 9, a nitride ceramic substrate having properties of excellent heat resistance and high thermal conductivity is selected. Specifically, a substrate made of aluminum nitride, silicon nitride, boron nitride, or titanium nitride is used. A substrate made of aluminum nitride is particularly desirable in that it has a high thermal conductivity, and a substrate made of silicon nitride is desirable in the next step.
セラミック基材 9は、 約1 111111〜2 5 111111程度の厚さと、 ケーシング 2の外形 寸法より若干小さい外径とを有する円盤形に設計されている。 セラミック基材 9 の中心部付近には、 各リフトピンに対応した 3つのピン挿通孔 1 1が形成されて いる。 The ceramic substrate 9 is designed in a disk shape having a thickness of about 1 111111 to 25111111 and an outer diameter slightly smaller than the outer dimensions of the casing 2. Near the center of the ceramic base 9, three pin insertion holes 11 corresponding to the respective lift pins are formed.
セラミック基材 9の下面には、 導体層としての発熱体 1 0が同心円状ないし渦 卷き状に形成されている。 発熱体 1 0の端部には、 同じく導体層としてのパッド 1 0 aが形成されている。 両パッド 1 0 aには、 端子ピン 1 2がそれぞれはんだ 付けされている。 各端子ピン 1 2の先端には、 リード線 6のソケット 6 aが嵌着 されている。 従って、 リード線 6及び端子ピン 1 2を介して発熱体 1 0に電流が 供給されると、 発熱体 1 0は発熱し、 ホットプレート 3は加熱される。 A heating element 10 as a conductor layer is formed concentrically or spirally on the lower surface of the ceramic base 9. At the end of the heating element 10, a pad 10a is also formed as a conductor layer. Terminal pins 12 are soldered to both pads 10a, respectively. The socket 6 a of the lead wire 6 is fitted to the tip of each terminal pin 12. Therefore, when a current is supplied to the heating element 10 via the lead wire 6 and the terminal pin 12, the heating element 10 generates heat and the hot plate 3 is heated.
図 2 ( d ) に示すように、 発熱体 1 0及びパッド 1 0 a (導体層) は第 1層 L 1及び第 2層 L 2からなる 2層構造を有する。 第 1層 L 1はセラミック基材 9に 接触する下地層であり、 第 2層 L 2は第 1層 L 1上に形成される。 As shown in FIG. 2D, the heating element 10 and the pad 10a (conductor layer) have a two-layer structure including a first layer L1 and a second layer L2. The first layer L1 is a base layer in contact with the ceramic substrate 9, and the second layer L2 is formed on the first layer L1.
第 1層 L 1及び第 2層 L 2は、 絶縁体である酸化物ガラスと、 導電体である貴 金属とを含有する。 第 1層 L 1中の酸化物ガラスの量すなわち濃度は相対的に高 い。 一方、 第 2層 L 2中の酸化物ガラスの濃度は相対的に低い。 なお、 酸化物ガ ラスは、 貴金属ペースト P 1中に分散されたガラス粉すなわちガラスフリッ ト G 1に由来するものである。
導体層中の酸化物ガラスの濃度は、 基材 9に近レ、側ほど徐々に高くなるように 濃度勾配を持たせるように設定してもよい。 また、 導体層は酸化物ガラス濃度の 異なる 2層よりも多い層を有してもよい。 この場合、 基材 9に近い側の層の酸化 物ガラスの濃度を、 その層上に重ねて形成される外側層の酸化物ガラスの濃度よ りも高く設定する。 例えば、 3つの層からなる導体層を形成する場合、 基材 9に 最も近い第 1層の酸化物ガラス濃度がその外側の第 2層の酸化物ガラス濃度に比 ベて高く設定される。 最も外側の第 3層の酸化物ガラスの濃度は第 1層及び第 2 層の中間の値に設定されてもよい。 The first layer L1 and the second layer L2 contain an oxide glass as an insulator and a noble metal as a conductor. The amount, that is, the concentration of the oxide glass in the first layer L1 is relatively high. On the other hand, the concentration of the oxide glass in the second layer L2 is relatively low. The oxide glass is derived from glass powder dispersed in the noble metal paste P1, that is, the glass frit G1. The concentration of the oxide glass in the conductor layer may be set so as to have a concentration gradient such that the concentration gradually increases toward and near the base material 9. Further, the conductor layer may have more layers than two layers having different oxide glass concentrations. In this case, the concentration of the oxide glass in the layer close to the base material 9 is set higher than the concentration of the oxide glass in the outer layer formed on the layer. For example, when a conductor layer composed of three layers is formed, the oxide glass concentration of the first layer closest to the base material 9 is set higher than the oxide glass concentration of the second layer outside the first layer. The concentration of the outermost third layer of oxide glass may be set to an intermediate value between the first layer and the second layer.
つまり、 導体層において、 基材 9と接する領域の酸化物ガラスの濃度がそれよ りも遠い領域の酸化物ガラスの濃度より高ければよく、 最外層の酸化物ガラスの 濃度は問われない。 That is, in the conductor layer, the concentration of the oxide glass in the region in contact with the base material 9 only needs to be higher than the concentration of the oxide glass in a region farther than that, and the concentration of the oxide glass in the outermost layer is not limited.
導体層における酸化物ガラスは、 最も高濃度の部分の濃度 Mと最も低濃度の部 分の濃度 mとの比率 M/mが、 1 Z 1よりも大きく 1 0 0 O Z l以下であること が望ましく、 1 / 1よりも大きく 5 0 0ノ1以下であることが特に望ましい。 比 率 MZmが 1 Z 1よりも小さいと、 導体層はセラミック基材 9に密着しにくくな る。逆に比率 MZmが 1 0 0 0 Z 1よりも大きいと、導体層が充分に焼結されず、 導体層がセラミック基材 9から剥がれやすい。 なお、 比率 MZmは、 酸化物ガラ ス中の所定元素の量を蛍光 X線測定によって測定し、 その所定元素に由来するピ ークの強度比から算出される。 In the oxide glass in the conductor layer, the ratio M / m of the concentration M of the highest concentration portion to the concentration m of the lowest concentration portion may be larger than 1 Z 1 and less than 100 OZl. More preferably, it is more preferably greater than 1/1 and 500 or less. If the ratio MZm is smaller than 1Z1, the conductor layer becomes difficult to adhere to the ceramic substrate 9. On the other hand, when the ratio MZm is larger than 1000 Z1, the conductor layer is not sufficiently sintered, and the conductor layer is easily peeled off from the ceramic base material 9. Note that the ratio MZm is calculated from the intensity ratio of peaks derived from the predetermined element by measuring the amount of the predetermined element in the oxide glass by X-ray fluorescence measurement.
図 2 ( d ) に示すように、 導体層が酸化物ガラスの濃度の異なる 2つの層を有 する場合、 第 1層 L 1は第 2層 L 2よりも薄く形成されていることがよレ、。 具体 的には、 第 1層 L 1の厚さは第 2層 L 2の厚さの 1 // 3〜1 Z 1 0の範囲内であ ることが好ましく、さらには 1 Z 4〜 1 Z 6の範囲内であることがより好ましレ、。 厚さの比率が 1ノ3よりも大きいと、 電気が流れやすレ、第 2層 L 2の断,面積が 減少するので、 発熱体 1 0に必要とされる導電性が低下する。 逆に、 厚さの比率 が 1 Z 1 0よりも小さい、 第 1層 L 1の割合が減少し、 発熱体 1 0やパッ ド 1 0 aとセラミック基材 9との密着が弱くなるおそれがある。 本実施形態では、 当該
比率は約 1 / 5に設定されている。 As shown in FIG. 2 (d), when the conductor layer has two layers having different oxide glass concentrations, the first layer L1 is often formed to be thinner than the second layer L2. ,. Specifically, the thickness of the first layer L1 is preferably in the range of 1 // 3 to 1Z10 of the thickness of the second layer L2, and more preferably 1Z4 to 1Z. Les, more preferably within the range of 6. When the thickness ratio is larger than 1 to 3, the flow of electricity is easy, the breakage of the second layer L2, and the area are reduced, so that the conductivity required for the heating element 10 is reduced. Conversely, when the thickness ratio is smaller than 1Z10, the ratio of the first layer L1 decreases, and the adhesion between the heating element 10 or the pad 10a and the ceramic substrate 9 may be weakened. is there. In the present embodiment, The ratio is set to about 1/5.
発熱体 1 0ゃパッド 10 aは、 5 μ π!〜 1 00 μ m程度の厚さ、 好ましくは 7 μ m〜20 m程度の厚さに形成されることがよレ、。 Heating element 10 ゃ Pad 10a is 5 μπ! It may be formed to a thickness of about 100 μm, preferably about 7 μm to 20 m.
貴金属ペースト P 1は、 一般的に、 貴金属粒子、 金属酸化物、 樹脂、 溶剤を含 む。 貴金属粒子としては、 例えば、 銀 (Ag)、 金 (Au)、 白金 (P t) 及びパ ラジウム (P d) から選ばれる少なくとも 1つが使用される。 これらの貴金属は 高温下で比較的酸化されにくく、発熱体 1 0の発熱時に充分大きな抵抗値を示す。 2種類以上の貴金属粒子を下記のごとく組み合わせてもよい。即ち、 Ag— Au, Ag -P t , Ag— P d, Au - P t , Au -P d, P t - P d, Ag— Au— P t , Ag -Au-P d, Au-P t -P d, Ag— Au— P t—P d、 の糸且み 合わせである。 The noble metal paste P1 generally contains noble metal particles, metal oxides, resins, and solvents. As the noble metal particles, for example, at least one selected from silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) is used. These noble metals are relatively unlikely to be oxidized at high temperatures, and exhibit a sufficiently large resistance value when the heating element 10 generates heat. Two or more kinds of noble metal particles may be combined as follows. Ag-Au, Ag-Pt, Ag-Pd, Au-Pt, Au-Pd, Pt-Pd, Ag-Au-Pt, Ag-Au-Pd, Au-Pt -Pd, Ag—Au—Pt—Pd.
なお、 上記の組み合わせのうち、 例えば A g-P dの組み合わせが好ましい。 その理由は、 この組み合わせを有する貴金属ペースト P 1を使用すれば、 抵抗値 の充分大きな発熱体 10が得られるためである。 Among the above combinations, for example, a combination of Ag-Pd is preferable. The reason is that if the noble metal paste P1 having this combination is used, a heating element 10 having a sufficiently large resistance value can be obtained.
好適な金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 酸化珪素 (シリカ)、 酸化ホウ素、 酸化アルミニウム (アルミナ)、 酸化イットリウム (イットリア)、 酸化チタン (チタニア) 等が挙げられる。 Suitable metal oxides include, for example, lead oxide, zinc oxide, silicon oxide (silica), boron oxide, aluminum oxide (alumina), yttrium oxide (yttria), titanium oxide (titania), and the like.
次に、 ホットプレート 3の製造工程の一例を簡単に説明する。 Next, an example of a manufacturing process of the hot plate 3 will be briefly described.
まず、 窒化物セラミック粉末に、 必要に応じてィットリァなどの焼結助剤ゃバ インダ一等を添加して、 セラミック混合物を作製する。 例えば、 3本ロールを用 いて、 セラミック混合物を均一に混練する。 そして、 プレス成形用型を用いて、 得られた混練物を厚さ 1 mm〜 1 50 mm程度の板状の生成形体に成形する。 パンチングまたはドリリングにより、 生成形体にピン挿通孔 1 1を形成する。 次いで、 生成形体を乾燥、 脱脂及び焼成により、 完全に焼結させる。 これにより、 セラミック基材 9が得られる (図 2 (a))。 焼成工程はホットプレス装置によつ て行われることがよく、 焼成温度は 1 500°C〜2000°C程度に設定されるこ とがよい。
そして、 セラミック基材 9を所定の直径 (本実施形態では 230誦) の円盤形 に切り出す。 この円盤形のセラミック基材 9の表面をパフ研磨装置等を用いて研 削する。 First, a ceramic mixture is prepared by adding a sintering aid such as yttria and a binder to the nitride ceramic powder, if necessary. For example, the ceramic mixture is uniformly kneaded using three rolls. Then, the obtained kneaded material is formed into a plate-shaped formed body having a thickness of about 1 mm to 150 mm using a press forming die. A pin insertion hole 11 is formed in the formed body by punching or drilling. The green compact is then completely sintered by drying, degreasing and firing. As a result, a ceramic substrate 9 is obtained (FIG. 2 (a)). The sintering step is preferably performed by a hot press device, and the sintering temperature is preferably set at about 1500 to 2000 ° C. Then, the ceramic base material 9 is cut into a disk shape having a predetermined diameter (230 in this embodiment). The surface of the disc-shaped ceramic substrate 9 is polished using a puff polishing device or the like.
研削されたセラミック基材 9の下面に、 あらかじめ調製された貴金属ペースト P 1を、 スクリーン印刷法等により均一に塗布する (図 2 (b))。 A noble metal paste P1 prepared in advance is uniformly applied to the ground lower surface of the ceramic base material 9 by a screen printing method or the like (FIG. 2 (b)).
貴金属ペースト P 1の主成分は貴金属粒子であり、 次に含有量の多い成分はガ ラスフリット G 1である。 貴金属ペースト P 1には、 少量の樹脂バインダ及び溶 剤が含まれている。 樹脂バインダとして例えばェチルセルロース等のセルロース 類が使用される。 溶剤としては、 例えば、 アセテート類、 ブチルセ口ソルブ等の セ口ソルブ類、 ブチルカルビトール等のカルビトール類などが使用される。 溶剤 を添加することで、 貴金属ペースト P 1は均一に分散され、 かつ印刷されやすく なる。 The main component of the noble metal paste P1 is noble metal particles, and the next highest component is glass frit G1. The noble metal paste P1 contains a small amount of a resin binder and a solvent. As the resin binder, for example, celluloses such as ethyl cellulose are used. As the solvent, for example, acetates, sorbitols such as butyl sorbitol, and carbitols such as butyl carbitol are used. By adding the solvent, the noble metal paste P1 is uniformly dispersed and easily printed.
ガラスフリット G 1のベース材料として、 例えば、 ほう珪酸亜鉛 (S i 02: B 203: Zn02) やほう珪酸鉛 (S i 02: B203: P b〇) が使用される。 ガラス フリット G 1として、 同ベース材料に少量の金属酸化物が添加されたものが使用 される。 金属酸化物の具体例としては、 酸化アルミニウム (A l2〇3)、 酸化ルテ ニゥム (Ru02)、 酸化イットリウム (Y203) 等が挙げられる。 As the base material of the glass frit G 1, for example, borosilicate zinc (S i 0 2: B 2 0 3: Zn0 2) Field Artillery lead silicate (S i 0 2: B 2 0 3: P B_〇) is used You. As the glass frit G1, a material obtained by adding a small amount of metal oxide to the same base material is used. Specific examples of the metal oxides include aluminum oxide (A l 2 〇 3), oxide lutein Niumu (Ru0 2), such as yttrium oxide (Y 2 0 3) and the like.
前記貴金属ペース ト Ρ 1の塗布後、 端子ピン 1 2をパッ ド 1 0 aにはんだ S 1 を用いて接合する (図 2 (d))。 これにより、 ホットプレート 3は製造される。 そして、ホットプレート 3をケーシング 2のリップ部 4に取り付けることにより、 図 1に示すホットプレートュニット 1が完成する。 次に、 本実施形態の実施例を以下に説明する。 After the application of the precious metal paste # 1, the terminal pins 12 are joined to the pads 10a using solder S1 (FIG. 2 (d)). Thus, the hot plate 3 is manufactured. Then, by attaching the hot plate 3 to the lip portion 4 of the casing 2, the hot plate unit 1 shown in FIG. 1 is completed. Next, examples of the present embodiment will be described below.
[実施例 1 ] [Example 1]
実施例 1では、 窒化アルミニウム粉末 (平均粒径 0. 6 /m) 85重量部、 Y2 03 (平均粒径 0. 4 μπι) 4重量部、 アクリル系樹脂バインダ (三井化学株式会 社製、 商品名 : SA— 545, 酸価 1. 0) 1 1重量部を混合し、 均一に混練し
た。 得られた混練物をアルコールと混合した。 スプレードライ法によりこの混合 物を顆粒状にした。 この顆粒をプレス成形用型に入れてプレスすることにより、 板状の生成形体を作製した。 In Example 1, an aluminum nitride powder (average particle size 0. 6 / m) 85 parts by weight, Y 2 0 3 (average particle size 0. 4 μπι) 4 parts by weight, an acrylic resin binder (Mitsui Chemicals Stock Company Ltd. , Trade name: SA-545, Acid value 1.0) 1 1 part by weight, mix and knead uniformly Was. The obtained kneaded material was mixed with alcohol. This mixture was granulated by a spray drying method. The granules were placed in a press mold and pressed to produce a plate-shaped formed body.
次いで、 生成形体に穴を形成した後、 乾燥させ、 成形体を得た。 成形体を窒素 雰囲気中で 3 5 0 °C、 4時間にわたって脱脂させた。 これにより、 成形体中のバ インダは熱分解される。 さらに、脱脂された成形体を 1 5 0 k g / c m2のプレス 圧力で 1 6 0 0 °C、 3時間にわたってホットプレス焼成し、 窒化アルミニウム基 材 9を得た (図 2 ( a ) )。 Next, after forming a hole in the formed body, it was dried to obtain a formed body. The molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere. As a result, the binder in the compact is thermally decomposed. Further, the degreased molded body was subjected to hot press firing at 160 ° C. for 3 hours at a pressing pressure of 150 kg / cm 2 to obtain an aluminum nitride base 9 (FIG. 2 (a)).
窒化アルミニウム基材 9を所定形状に切り出し、 その表面を研削した後、 ぺー ストを印刷した。 同印刷工程では、 下記のごとき組成の銀含有ペースト (株式会 社徳カ化学研究所製、 商品名:シルべスト) を貴金属ペース ト P 1として用いた。 この貴金属ペースト P 1を 2 5 / m程度の厚さに塗布した。 The aluminum nitride base material 9 was cut into a predetermined shape, and the surface was ground, followed by printing a paste. In the printing process, a silver-containing paste (trade name: Sylvest, manufactured by Tokuka Kagaku Kenkyusho Co., Ltd.) having the following composition was used as the precious metal paste P1. This noble metal paste P1 was applied to a thickness of about 25 / m.
貴金属ペースト P 1の組成 Composition of precious metal paste P1
•貴金属粒子:銀粒子… 7 0重量部 • Noble metal particles: silver particles ... 70 parts by weight
•酸化物ガラス: 8 0重量%のほう珪酸亜鉛及び 2 0重量%の R u〇2を含むガ ラスフリッ ト… 5重量部 • oxide glass: 8 0 wt% zinc silicate more of and 2 0% by weight of R U_〇 moth Rasufuri' the amount ... 5 parts by weight including 2
•樹脂バインダ…約 5重量% • Resin binder: approx. 5% by weight
•溶剤:ブチルカルビトール…約 1 5重量%。 • Solvent: butyl carbitol: about 15% by weight.
そして、 貴金属ペースト P 1の印刷された面を上に向けて、 窒化アルミニウム 基材 9を約 7 5 0 °Cで所定時間加熱して、 貴金属ペース ト P 1中の溶剤を蒸発さ せた。 また、 この加熱により、 発熱体 1 0及びパッド 1 0 aは基材 9に焼き付け られた。 この加熱時には、 溶融したガラスフリット G 1が基材 9に近づく方向に 移動して、 基材 9に接触する領域に第 1層 L 1が形成されていた。 逆に、 銀は基 材 9から離れる方向に移動して、 第 1層 L 1上に第 2層 L 2を形成していた (図 2 ( c ) )。 これらの移動は、 重力の影響によるものと考えられる。 また、 詳細な 理由は不明であるが、 この移動現象ないし偏在化現象ないし層形成は、 貴金属ぺ 一スト P 1に R u O が含まれる場合に特に促進されると推測されている。
[実施例 2 ] Then, with the printed surface of the noble metal paste P1 facing upward, the aluminum nitride base material 9 was heated at about 75 ° C. for a predetermined time to evaporate the solvent in the noble metal paste P1. Further, by this heating, the heating element 10 and the pad 10 a were baked on the base material 9. During this heating, the molten glass frit G1 moved in a direction approaching the substrate 9, and the first layer L1 was formed in a region in contact with the substrate 9. Conversely, the silver moved away from the substrate 9 to form the second layer L2 on the first layer L1 (FIG. 2 (c)). These movements are thought to be due to the effect of gravity. Although the detailed reason is unknown, it is estimated that this movement phenomenon, uneven distribution phenomenon, or layer formation is particularly promoted when the noble metal cost P1 contains RuO. [Example 2]
実施例 2では、 窒化珪素粉末 (平均粒径 1. Ι μπι) 45重量部、 Y20:i (平均 粒径 0. 4 m) 20重量部、 A 1203 (平均粒径 0. 5 μ m) 1 5重量部、 S i 02 (平均粒径 0. 5 μπι) 20重量部、 アクリル系樹脂バインダ (三井化学株式 会社製、 商品名 : S Α— 545, 酸価 1. 0) 8重量部を混合した。 In Example 2, silicon nitride powder (average particle size 1. Ι μπι) 45 parts by weight, Y 2 0: i (average particle size 0. 4 m) 20 parts by weight, A 1 2 0 3 (average particle diameter 0. 5 μ m) 1 5 parts by weight, S i 0 2 (average particle diameter 0. 5 μπι) 20 parts by weight of an acrylic resin binder (Mitsui Chemicals Co., Ltd., trade name: S alpha-545, acid number 1.0 ) 8 parts by weight were mixed.
得られた混合物を均一に混練し、 混練物をプレス成形用型に入れてプレスする ことにより、 板状の生成形体を作製した。 The obtained mixture was uniformly kneaded, and the kneaded product was put into a press mold and pressed to produce a plate-shaped formed body.
次いで、 生成形体に穴を形成し、 乾燥させ、 成形体を得た。 成形体を窒素雰囲 気中で 350°C、 4時間の脱脂を行い、 バインダを熱分解させた。 そして、 成形 体を 1 50 k g/c m2のプレス圧力で 1 600°C、 3時間にわたってホットプレ ス焼成し、 窒化珪素基材 9を得た。 Next, a hole was formed in the formed body, and the formed body was dried to obtain a formed body. The molded body was degreased at 350 ° C for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Then, the molded body was subjected to hot press firing at 1,600 ° C. for 3 hours under a pressing pressure of 150 kg / cm 2 , to obtain a silicon nitride substrate 9.
窒化珪素基材を所定形状に切り出し、 その表面を研削した。 その後、 窒化珪素 基材に貴金属ペースト P 1を印刷した。 同印刷工程では、 下記のごとき組成の銀 /パラジウムペースト (株式会社徳カ化学研究所製、 商品名 :シルべスト) を貴 金属ペースト p 1として用い、 25 /m程度の厚さで基材 9に塗布した。 The silicon nitride substrate was cut into a predetermined shape, and the surface was ground. Then, the noble metal paste P1 was printed on the silicon nitride substrate. In the printing process, a silver / palladium paste (trade name: Sylvest) manufactured by Tokuka Chemical Laboratories Co., Ltd. having the following composition was used as the noble metal paste p1, with a thickness of about 25 / m. 9 was applied.
貴金属ペースト P 1の組成 Composition of precious metal paste P1
•貴金属粒子:銀粒子 · · -56. 6重量%、 パラジゥム粒子 · · · 1 0. 3重量% • Noble metal particles: silver particles · ·-56.6% by weight, palladium particles · · · 10.3% by weight
'酸化物ガラス : S i〇2··· 1. 0重量0 /0、 Β203···2. 5重量0 /。、 ΖηΟ〜5. 6重量0 /。、 PbO〜0. 6重量%、 Ru02---2. 1重量% 'Oxide glass:. S I_〇 2 ... 1.0 wt 0/0, beta 2 0 3.. 2 5 weight 0 /. , ΖηΟ ~ 5.6 weight 0 /. , PbO~0. 6 wt%, Ru0 2 --- 2. 1 wt%
•樹脂バインダ: 3. 4重量% • Resin binder: 3.4% by weight
•溶剤:ブチルカルビトール · ' - 1 7. 9重量% • Solvent: butyl carbitol · '-1 7.9% by weight
貴金属ペースト P 1の印刷された面を上に向けて、 窒化珪素基材 9を約 75 0°Cで所定時間にわたって加熱した。 これにより、 2層構造を有する発熱体 1 0 及びパッド 1 0 aが基材 9に焼き付けられた。 With the printed surface of the noble metal paste P1 facing up, the silicon nitride substrate 9 was heated at about 750 ° C. for a predetermined time. As a result, the heating element 10 and the pad 10a having a two-layer structure were baked on the base material 9.
[比較例 1 ] [Comparative Example 1]
ースト P 1を印刷した面を下に向けてセラミック基材 9を 750°Cで
加熱した。 貴金属ペースト P 1は実施例 1 と同じものを使用した。 Ceramic substrate 9 at 750 ° C Heated. The same noble metal paste P1 as in Example 1 was used.
[評価試験] [Evaluation test]
( 1 ) 発熱体 1 ◦の膨れ及び剥れの調査 (1) Investigation of blistering and peeling of heating element 1
実施例 1のホットプレート 3の上面に垂直に切断して、 発熱体 1 0の断面を X 2000で SEM (走査電子顕微鏡) により観察した。 その結果、 図 3に示すよ うに、 発熱体 1 0の膨れや剥れはなかった。 実施例 2のホットプレート 3につい ても同様の結果が得られた。 The heating plate 10 was cut perpendicularly to the upper surface of the hot plate 3 of Example 1, and a cross section of the heating element 10 was observed with a scanning electron microscope (SEM) at X2000. As a result, as shown in FIG. 3, the heating element 10 did not swell or peel off. Similar results were obtained for the hot plate 3 of Example 2.
(2) 発熱体 1 0中の成分の偏在の調査 (2) Investigation of uneven distribution of components in heating element 10
蛍光 X線 SEM—XMA (日立 S— 3200 N— k e V e X S i gmaレ ベル 2) を用いて、 発熱体 10中の酸化物ガラスの成分の一つである亜鉛の分布 を調査した。 また、 銀の分布についても調査した。 亜鉛のマッピング映像を図 4 (a) に示し、 銀のマッピング映像を図 4 (b) に示す。 発熱体 10は亜鉛を相 対的に多く含む第 1の層 L 1と、 亜鉛を相対的に少なく含む第 2の層 L 2とに分 離していることがわかった。 具体的には、 第 1の層 L 1中の亜鉛の濃度は、 第 2 の層 L 2のそれより 1 0倍程度高かった。 また、 図 4 (a) から、 第 1の層 L 1 が基材 9側に位置していることもわかった。 実施例 2のホットプレート 3につい ても同様の結果が得られた。 Using a fluorescent X-ray SEM-XMA (Hitachi S-3200 N-keV eXSigma level 2), the distribution of zinc, one of the components of the oxide glass, in the heating element 10 was investigated. The distribution of silver was also investigated. Fig. 4 (a) shows a zinc mapping image, and Fig. 4 (b) shows a silver mapping image. It was found that the heating element 10 was separated into a first layer L1 containing a relatively large amount of zinc and a second layer L2 containing a relatively small amount of zinc. Specifically, the concentration of zinc in the first layer L1 was about 10 times higher than that in the second layer L2. Also, from FIG. 4 (a), it was found that the first layer L1 was located on the base material 9 side. Similar results were obtained for the hot plate 3 of Example 2.
即ち、 実施例 1, 2の発熱体 10は、 酸化物ガラス濃度が相対的に高くて基材 9に近い側に位置する第 1層 L 1と、 酸化物ガラス濃度が相対的に小さくて基材 9から遠い側に位置する第 2層 L 2とからなることが確認された。 That is, the heating elements 10 of Examples 1 and 2 were composed of a first layer L1 having a relatively high oxide glass concentration and located on the side closer to the substrate 9 and a base layer having a relatively low oxide glass concentration. It was confirmed that the second layer L2 was located on the side far from the material 9.
比較例 1では、 実施例 1 , 2とは異なり、 発熱体 1 0中の酸化物ガラスの濃度 は、 基材 9に近レ、側ほど低かつた。 In Comparative Example 1, unlike Examples 1 and 2, the concentration of the oxide glass in the heating element 10 was closer to the base material 9 and lower on the side.
(3) 引っ張り強度試験 (3) Tensile strength test
公知の方法に従って発熱体 1 0に対する引っ張り強度を試験した。 その結果、
実施例 1の測定値は 1 1 . 5 k g ί 7 2 mm口であった。 実施例 2の測定値は 1 5 . 1 k g / 2 mm口であった。 実施例 1及び 2の発熱体 1 0は極めて良好な引 つ張り強度を有していた。 これに対して、 比較例 1の測定値は 4 . 2 k g 2 m ロであった。 実施例のホットプレート 3によれば以下の効果が得られる。 The tensile strength against the heating element 10 was tested according to a known method. as a result, The measured value of Example 1 was 11.5 kgί72 mm. The measured value of Example 2 was 15.1 kg / 2 mm. The heating elements 10 of Examples 1 and 2 had extremely good tensile strength. On the other hand, the measured value of Comparative Example 1 was 4.2 kg 2 m. According to the hot plate 3 of the embodiment, the following effects can be obtained.
( 1 ) セラミック基材 9は窒化アルミニウム基材または窒化珪素基材であり、 導 体層は第 1層 L 1及び第 2層 L 2からなる 2層構造である。 窒化アルミニウムや 窒化珪素との密着性に優れた第 1層 L 1はセラミック基材 9に接するように配置 され、 第 2層 L 2の下地層として作用する。 その結果、 導体層は基材 9に対して 従来よりもしっかりと密着する。 セラミック基材 9は剥離しにくい導体層を備え るので、 ホッ トプレートュニッ ト 1の信頼性は向上する。 (1) The ceramic substrate 9 is an aluminum nitride substrate or a silicon nitride substrate, and the conductor layer has a two-layer structure including a first layer L1 and a second layer L2. The first layer L1 having excellent adhesion to aluminum nitride or silicon nitride is arranged so as to be in contact with the ceramic substrate 9, and functions as a base layer for the second layer L2. As a result, the conductor layer adheres more firmly to the substrate 9 than before. The reliability of the hot plate unit 1 is improved because the ceramic substrate 9 has a conductor layer that is difficult to peel off.
また、 窒化アルミニウムゃ窒化珪素製のホットプレート 3は高い耐熱性及び高 い熱伝導性を備える。 従って、 そのようなホットプレート 3を加熱したとき、 そ の上面の温度は均一である。 The hot plate 3 made of aluminum nitride / silicon nitride has high heat resistance and high thermal conductivity. Therefore, when such a hot plate 3 is heated, the temperature of its upper surface is uniform.
なお、 多くのガラスを含む第 1層 L 1により、 基材 9に対する密着性が改善さ れる理由としては、 第 1層 L 1中のガラスは、 窒化アルミニウムの焼結体表層に 存在する酸化層 (アルミナ層) や、 焼結助剤として添加した酸化イットリウム等 のガラス相成分との親和性が高いので、 導体層を基材 9に密着させるのであろう と推測される。 The reason why the first layer L1 containing a large amount of glass improves the adhesion to the substrate 9 is that the glass in the first layer L1 is formed by an oxide layer existing on the surface layer of the aluminum nitride sintered body. (Alumina layer) and a glass phase component such as yttrium oxide added as a sintering aid have a high affinity, so it is presumed that the conductor layer will be adhered to the substrate 9.
( 2 ) 第 1層 L 1の厚さと第 2層 L 2の厚さとの比率を適性綱範囲に設定したの で、 発熱体 1 0及びパッド 1 0 aに要求される電気的性質が維持される。 (2) Since the ratio of the thickness of the first layer L1 to the thickness of the second layer L2 is set within the appropriate range, the electrical properties required for the heating element 10 and the pad 10a are maintained. You.
( 3 ) 上記の成分移動現象または層形成が促進されるので、 第 1層 L 1及び第 2 層 L 2の 2層からなる好適な導体層を備えるセラミック基材 9を、 簡単にかつ確 実に製造することができる。 (3) Since the above-described component transfer phenomenon or layer formation is promoted, the ceramic base material 9 having a suitable conductor layer composed of the first layer L1 and the second layer L2 can be easily and reliably formed. Can be manufactured.
( 4 ) 実施例 1, 2のホットプレート 3では、 発熱体 1 0の印刷された面の反対 側が加熱面として使用される: 従って、 シリコンウェハ W 1等の被加熱物は加熱
面に載置されて直接的に加熱される。 尚、 被加熱物は印刷された面から 5 0 μ ηι 〜2 0 0 m程度の隙間をあけて保持されて、 非接触で加熱されてもよい。 (4) In the hot plate 3 of the first and second embodiments, the opposite side of the printed surface of the heating element 10 is used as a heating surface: Therefore, the object to be heated such as the silicon wafer W1 is heated. It is placed on a surface and heated directly. In addition, the object to be heated may be held with a gap of about 50 μηι to 200 m from the printed surface, and may be heated in a non-contact manner.
発熱体 1 0の印刷された面の反対面を加熱面として使用すれば、 基材 9の熱伝 導により、 発熱体 1 0の印刷パターンに沿った温度分布の発生が防止される。 さ らに、 本実施例では、 加熱面と発熱体パターンとの距離が大きいので、 加熱面は より均一に加熱され、 被加熱物をより均一に加熱することができる。 また、 発熱 体 1◦はセラミック基材 9から露出して配置されるが、 発熱体 1 0は基材 9から 剥がれることはなレ、。 When the surface opposite to the printed surface of the heating element 10 is used as a heating surface, the heat conduction of the base material 9 prevents the temperature distribution from being generated along the printed pattern of the heating element 10. Further, in this embodiment, since the distance between the heating surface and the heating element pattern is large, the heating surface is more uniformly heated, and the object to be heated can be more uniformly heated. Further, the heating element 1 ◦ is disposed so as to be exposed from the ceramic base material 9, but the heating element 10 is not separated from the base material 9.
なお、 本発明は以下のように変更してもよい。 The present invention may be modified as follows.
• セラミック基材 9は、 プレス成形法の代わりに、 例えばドクターブレード 装置を利用したシート成形法によって製造され得る。 この場合、 積層されたシー ト間に発熱体 1 0を配置すれば、 高温用のホットプレート 3を比較的容易に製造 することができる。 • The ceramic substrate 9 can be manufactured by a sheet forming method using, for example, a doctor blade device instead of the press forming method. In this case, if the heating elements 10 are arranged between the stacked sheets, the hot plate 3 for high temperature can be manufactured relatively easily.
• 導体層は発熱用に限定されない。 • The conductor layer is not limited to heat generation.
• 貴金属ペースト P 1は、 スクリーン印刷法の代わりに、 例えば転写法やそ の他の方法によって印刷され得る。 • The noble metal paste P1 can be printed by, for example, a transfer method or another method instead of the screen printing method.
• 窒化物セラミックのほかに、 例えば炭化珪素、 炭化ジルコニウム、 炭化チ タン、 炭化タンタル、 炭化タングステン等のような炭化物セラミックを基材材料 が基材として使用され得る。 • In addition to nitride ceramics, base materials such as carbide ceramics such as, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tungsten carbide, etc. may be used as the base material.
- 導体層は 3つ以上の層を有してもよい。 例えば、 導体層が下層、 中層及び 上層からなる 3層構造を有する場合、 基材 9に最も近い側に位置する下層の酸化 物ガラスの濃度は、 中層の酸化物ガラスの濃度よりも相対的に高くなるように設 定される。一方、基材 9から最も遠い側に位置する上層の酸化物ガラスの濃度は、 中層の酸化物ガラスの濃度よりも相対的に低くなるように設定されてもよい。 導 体層を 4層構造に形成することも可能である。 -The conductor layer may have three or more layers. For example, when the conductor layer has a three-layer structure consisting of a lower layer, a middle layer, and an upper layer, the concentration of the oxide glass of the lower layer located closest to the base material 9 is relatively higher than the concentration of the oxide glass of the middle layer. Set to be higher. On the other hand, the concentration of the oxide glass in the upper layer located farthest from the base material 9 may be set to be relatively lower than the concentration of the oxide glass in the middle layer. It is also possible to form the conductor layer in a four-layer structure.
• セラミック基材 9は、 ホットプレート 3の代わりに、 他のセラミック製品 用材料として具体化されてもよレ、。
• The ceramic substrate 9 may be embodied as a material for other ceramic products instead of the hot plate 3.
Claims
1 . その表面に配置され、 酸化物ガラス及び貴金属を含有した導体層を有するセ ラミック基材において、 前記導体層は前記セラミック基材の表面側において、 酸 化物ガラスの濃度が相対的に高レ、領域を有することを特徴とするセラミック基材。 1. A ceramic substrate having a conductor layer containing oxide glass and a noble metal disposed on its surface, wherein the conductor layer has a relatively high oxide glass concentration on the surface side of the ceramic substrate. , A ceramic substrate having a region.
2 . その表面に配置され、 酸化物ガラス及び貴金属を含有した導体層を有するセ ラミック基材において、 前記導体層は少なくとも 2つの層を含み、 前記セラミッ ク基材の表面に最も近い第 1の層の酸化物ガラスの濃度は、 第 1の層に隣接する 第 2の層のそれよりも高いことを特徴とするセラミック基材。 2. A ceramic substrate having a conductor layer containing oxide glass and a noble metal disposed on the surface thereof, wherein the conductor layer includes at least two layers, and a first layer closest to the surface of the ceramic substrate. A ceramic substrate, wherein the oxide glass concentration of the layer is higher than that of the second layer adjacent to the first layer.
3 . 前記セラミック基材は窒化物セラミック基材であることを特徴とする請求項 1または 2に記載のセラミック基材。 3. The ceramic substrate according to claim 1, wherein the ceramic substrate is a nitride ceramic substrate.
4 . 前記貴金属は、 銀、 金、 白金及びパラジウムからなる群から選ばれる少なく とも 1つであることを特徴とする請求項 1乃至 3のいずれか 1項に記載のセラミ ック基材。 4. The ceramic substrate according to any one of claims 1 to 3, wherein the noble metal is at least one selected from the group consisting of silver, gold, platinum and palladium.
5 . その表面に配置された導体層を備える窒化アルミニウム基材であって、 前記導体層はガラスを主成分として含む第 1層と、 前記第 1層上に形成されか つ銀を主成分として含む第 2層とを含むことを特徴とする窒化アルミ二ゥム基材。 5. An aluminum nitride base material having a conductor layer disposed on the surface thereof, wherein the conductor layer is formed on the first layer as a main component, and is formed on the first layer and contains silver as a main component. And a second layer containing the aluminum nitride substrate.
6 . 前記第 1層の厚さは前記第 2層の厚さの 1 / 3〜1 / 1 0であることを特徴 とする請求項 5に記載の窒化アルミニゥム基材。 6. The aluminum nitride substrate according to claim 5, wherein the thickness of the first layer is 1/3 to 1/10 of the thickness of the second layer.
7 . 前記第 1層の厚さは前記第 2層の厚さの 1 / 4〜1 Z 6であることを特徴と する請求項 5に記載の窒化アルミニゥム基材。
7. The aluminum nitride substrate according to claim 5, wherein the thickness of the first layer is 1/4 to 1 Z6 of the thickness of the second layer.
8 . 前記窒化アルミニウム基材はセラミック製ホットプレートに使用され、 前記 導体層は前記ホッ卜プレー卜の発熱体であることを特徴とする請求項 5乃至 7の レ、ずれか 1項に記載の窒化アルミニゥム基材。
8. The method according to claim 5, wherein the aluminum nitride substrate is used for a ceramic hot plate, and the conductor layer is a heating element of the hot plate. Aluminum nitride base material.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-46610 | 2000-02-23 | ||
JP2000046610A JP3326420B2 (en) | 1999-02-24 | 2000-02-23 | Ceramic substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001063971A1 true WO2001063971A1 (en) | 2001-08-30 |
Family
ID=18568992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/003400 WO2001063971A1 (en) | 2000-02-23 | 2000-05-26 | Ceramic substrate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001063971A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034768B1 (en) * | 1970-03-17 | 1975-11-11 | ||
JPS63146401A (en) * | 1986-12-10 | 1988-06-18 | 松下電器産業株式会社 | Thin film heating resistor |
JPH04325462A (en) * | 1991-04-24 | 1992-11-13 | Kawasaki Steel Corp | Paste for heating resistor for aln ceramic heater |
JPH06151044A (en) * | 1992-11-12 | 1994-05-31 | Ngk Insulators Ltd | Ceramics heater and manufacture thereof |
JPH09269687A (en) * | 1996-03-29 | 1997-10-14 | Toshiba Lighting & Technol Corp | Fixing heater, fixing device, and image forming device |
JPH1140330A (en) * | 1997-07-19 | 1999-02-12 | Ibiden Co Ltd | Heater and manufacture thereof |
-
2000
- 2000-05-26 WO PCT/JP2000/003400 patent/WO2001063971A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034768B1 (en) * | 1970-03-17 | 1975-11-11 | ||
JPS63146401A (en) * | 1986-12-10 | 1988-06-18 | 松下電器産業株式会社 | Thin film heating resistor |
JPH04325462A (en) * | 1991-04-24 | 1992-11-13 | Kawasaki Steel Corp | Paste for heating resistor for aln ceramic heater |
JPH06151044A (en) * | 1992-11-12 | 1994-05-31 | Ngk Insulators Ltd | Ceramics heater and manufacture thereof |
JPH09269687A (en) * | 1996-03-29 | 1997-10-14 | Toshiba Lighting & Technol Corp | Fixing heater, fixing device, and image forming device |
JPH1140330A (en) * | 1997-07-19 | 1999-02-12 | Ibiden Co Ltd | Heater and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002101816A1 (en) | Wafer prober | |
JP3927250B2 (en) | Thick film conductor paste composition for aluminum nitride substrate | |
JPH08242062A (en) | Ceramic circuit board backed at low temperature | |
JP2000151080A (en) | Transfer print patterning method and glass with print pattern formed thereon using the same | |
WO2001063971A1 (en) | Ceramic substrate | |
KR20080010894A (en) | Ceramic component and method for the same | |
JP2001028290A (en) | Hot plate and conductor paste | |
JP3326420B2 (en) | Ceramic substrate | |
EP3355369B1 (en) | Light emitting element-mounting substrate and light emitting apparatus | |
WO2020001979A1 (en) | A wire bonding arrangement and method of manufacturing a wire bonding arrangement | |
WO2000069218A1 (en) | Hot plate and conductor paste | |
JP2001230059A (en) | Ceramic substrate for device of semiconductor manufacture and inspection | |
WO2000069217A1 (en) | Hot plate and conductive paste | |
JP2003249332A (en) | Hot plate and conductive paste | |
JP3681628B2 (en) | Wafer prober apparatus and ceramic substrate used for wafer prober apparatus | |
JP2003133225A (en) | Heater for heating semiconductor product | |
JP2003249331A (en) | Hot plate and conductive paste | |
JP2001189188A (en) | Resistance paste for ceramic heater and ceramic heater | |
JP2001052843A (en) | Heater | |
JP2000231980A (en) | Aluminum nitride base material for hot plate | |
JP3616245B2 (en) | Manufacturing method of ceramic heater | |
JP2001189187A (en) | Resistance paste for ceramic heater and ceramic heater | |
JP2003303664A (en) | Hot plate and conductive paste | |
WO2002045465A1 (en) | Ceramic heater, and ceramic heater resistor paste | |
JPS58130590A (en) | Ceramic circuit board and thick film hybrid ic using same board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |