JPS63146401A - Thin film heating resistor - Google Patents

Thin film heating resistor

Info

Publication number
JPS63146401A
JPS63146401A JP61293910A JP29391086A JPS63146401A JP S63146401 A JPS63146401 A JP S63146401A JP 61293910 A JP61293910 A JP 61293910A JP 29391086 A JP29391086 A JP 29391086A JP S63146401 A JPS63146401 A JP S63146401A
Authority
JP
Japan
Prior art keywords
thin film
heating resistor
layer
resistance
film heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61293910A
Other languages
Japanese (ja)
Other versions
JPH069163B2 (en
Inventor
哲広 是近
敬三郎 倉増
清春 山下
里中 孝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61293910A priority Critical patent/JPH069163B2/en
Publication of JPS63146401A publication Critical patent/JPS63146401A/en
Publication of JPH069163B2 publication Critical patent/JPH069163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Adjustable Resistors (AREA)
  • Electronic Switches (AREA)
  • Surface Heating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ジュール熱を利用する薄膜面状ヒータ、薄膜
型サーマルヘッド等に用いる薄膜発熱抵抗体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film heating resistor used in thin film planar heaters, thin film thermal heads, etc. that utilize Joule heat.

従来の技術 一般に、薄膜発熱抵抗体は、ジュール熱を利用する薄膜
型サーマルヘッド薄膜面状ヒータ等に用いられるが、本
明細書では、主に、薄膜型サーマルヘッドについて述べ
ることとする。
2. Description of the Related Art Thin film heating resistors are generally used in thin film thermal heads, thin film planar heaters, etc. that utilize Joule heat, but this specification will mainly discuss thin film thermal heads.

さて、熱印字記録に用いられるサーマルヘッドは、絶縁
性基板上に複数個の発熱抵抗体および、前記熱抵抗体に
電力を供給するための電極を設け、個々の発熱抵抗体に
電力を供給することにより、ジュール熱を発生させ、こ
れにより、印字記録を行なうものである。
Now, a thermal head used for thermal print recording is provided with a plurality of heating resistors and electrodes for supplying power to the thermal resistors on an insulating substrate, and supplies power to each heating resistor. As a result, Joule heat is generated, and printing is thereby performed.

これらに用いる発熱抵抗体としては、薄膜発熱抵抗体が
熱応答性が良く、高解像度化でき、信卸性が高く、また
、消費電力が小さい等の点で、優れている。
As the heat generating resistor used for these, thin film heat generating resistors are excellent in that they have good thermal responsiveness, can provide high resolution, have high reliability, and have low power consumption.

従来薄膜発熱抵抗体としては、たとえば、特開昭52−
143841号公報にある通り、Ta −5i合金等が
、耐熱性に優れている。しかしながら、近年のサーマル
ヘッドの熱印字記録の高速化を実現させるためには、数
ミリ秒の短かい印字パルスにより、記録を行なわなけれ
ばならず、そのためには、薄膜発熱抵抗体に大電力を投
入し、400℃以上もの温度を発生させる必要がある。
As a conventional thin film heating resistor, for example,
As stated in Japanese Patent No. 143841, Ta-5i alloy and the like have excellent heat resistance. However, in order to achieve high-speed thermal print recording using modern thermal heads, it is necessary to record using short print pulses of several milliseconds, and to do this, a large amount of power is applied to the thin-film heating resistor. It is necessary to generate a temperature of 400°C or more.

加えて、高電力化は、薄膜発熱抵抗体の抵抗値を大きく
しない限り、必然的に電流が大きくなるため、次の2つ
の問題を生じる。1つは、薄膜発熱抵抗体の抵抗値に対
して、薄膜発熱抵抗体に電力を供給する電極の抵抗値が
無視できなくなるため、電極の長さの差異により、各薄
膜発熱抵抗体の発熱量が異なり、記録パターンに濃度差
を生じたり、また特に、高解像度化した際に、電極にお
ける電力消費が問題になる。これを避けるには、電極の
厚さを極端に大きくすることが考えられるが、このとき
構造上、大きな不都合を生じる。もう1つは、加熱用電
源スイッチング回路等の駆動系の電流容量を大きくしな
ければならない等の問題が生じる。
In addition, as power increases, the current inevitably increases unless the resistance value of the thin film heating resistor is increased, resulting in the following two problems. One is that the resistance value of the electrode that supplies power to the thin-film heating resistor cannot be ignored compared to the resistance value of the thin-film heating resistor, so the amount of heat generated by each thin-film heating resistor is This causes a difference in density in the recorded pattern, and especially when increasing the resolution, power consumption in the electrodes becomes a problem. In order to avoid this, it is conceivable to make the electrode thickness extremely large, but this would cause a major structural inconvenience. Another problem arises that the current capacity of a drive system such as a heating power supply switching circuit must be increased.

以上の点から、薄膜発熱抵抗体としては、高温安定性と
、高抵抗値の実現が可能であることの2つが最低限必要
である。これらの点から前記Ta−3i合金を考えると
、Ta−3i合金は、耐熱性が安定な組成域において、
比抵抗が、200〜250μΩ−1程度と小さく、した
がって大きな抵抗値、たとえば、1000Ωの抵抗値(
最近の技術の流れでは、これ以上の抵抗値も要求されて
いる)を得るためには、L/W=2 (Lは、発熱体長
さ、Wは幅)として、膜厚が50人程度と薄く、製造時
の制御が難しい上に、この程度の膜厚になると、導電キ
ャリアの膜面散乱などの薄膜のサイズ効果により、膜の
再現性が得られなかったり、また膜質としても不安定に
なる。これを避けるためには、Ta−3i合金の厚みを
大きくし、蛇行形状等にパターン形成し、前記り長を増
すことに依り抵抗値を上げることも可能であるが、高解
像度化する際、この方法は、製造上能しい。また、Ta
−3t合金は、短パルス巾駆動時の耐熱性がなお十分で
なく、したがって、Ta−3i合金は、サーマルヘッド
に要求される高速化、高耐熱化の点で十分なものではな
かった。
From the above points, a thin film heating resistor must have two minimum requirements: high temperature stability and the ability to realize a high resistance value. Considering the Ta-3i alloy from these points, in the composition range where the heat resistance is stable, the Ta-3i alloy has
The specific resistance is as small as about 200 to 250 μΩ-1, and therefore a large resistance value, for example, a resistance value of 1000Ω (
In order to obtain a resistance value higher than this (according to recent technology trends), the film thickness must be approximately 50 mm, with L/W = 2 (L is the length of the heating element and W is the width). It is thin and difficult to control during manufacturing, and when the film thickness reaches this level, film reproducibility may not be obtained due to thin film size effects such as surface scattering of conductive carriers, and the film quality may become unstable. Become. In order to avoid this, it is possible to increase the resistance value by increasing the thickness of the Ta-3i alloy, forming a pattern in a meandering shape, etc., and increasing the length, but when increasing the resolution, This method is manufacturing efficient. Also, Ta
The -3t alloy still does not have sufficient heat resistance during short pulse width driving, and therefore the Ta-3i alloy is not sufficient in terms of the high speed and high heat resistance required for thermal heads.

以上の点を解決するためには、高耐熱で高比抵抗な薄膜
発熱抵抗体が必要であり、このために、遷移金属、炭素
、珪素よりなるもの、たとえば、チタン炭化物と炭化珪
素でなる薄膜発熱抵抗体を用いれば、制御性良く高耐熱
性、高比抵抗のいずれも満足できるわけであるが、ここ
で、次の問題が存在する。
In order to solve the above problems, a thin film heating resistor with high heat resistance and high specific resistance is required. If a heating resistor is used, it is possible to satisfy both high heat resistance and high specific resistance with good controllability, but the following problem exists.

Tll  耐酸化性 (2)  製造プロセスにおけるシート抵抗の変動(1
)については、たとえば、チタン炭化物と炭化珪素であ
る薄膜発熱抵抗体(以降TiC−3iCと略記する)は
、通常TiCとSiCの焼結体をターゲットとし、スパ
ッタリングにより形成される。この際、スパッタリング
時の入射イオンの持つ高いエネルギーによる解離現象の
ため、形成される薄膜の組成は、必ずしも化学量論的組
成のTiCとSiCの混合物ではな(、また、スパッタ
リングで形成した膜は、一般にアモルファス状態でガス
を内蔵しやすい等の性質も有し、これらにより、耐酸化
性が十分でない0通常、サーマルヘッドは、薄膜発熱抵
抗体上に、紙に印字する際の接触摩耗を防ぎ、かつ酸化
を防止するための保護層を形成するため、酸素が遮断さ
れ、TiC−3iCは、極めて良好な耐熱性を有する。
Tll Oxidation resistance (2) Variation in sheet resistance during manufacturing process (1)
), for example, a thin film heating resistor made of titanium carbide and silicon carbide (hereinafter abbreviated as TiC-3iC) is usually formed by sputtering using a sintered body of TiC and SiC as a target. At this time, due to the dissociation phenomenon caused by the high energy of incident ions during sputtering, the composition of the thin film formed is not necessarily a mixture of TiC and SiC with a stoichiometric composition (in addition, the composition of the thin film formed by sputtering is Generally, it has properties such as being in an amorphous state and easily containing gas, and due to these properties, it does not have sufficient oxidation resistance.Normally, a thermal head has a thin film heating resistor on which it prevents contact abrasion when printing on paper. , and to form a protective layer to prevent oxidation, oxygen is blocked, and TiC-3iC has extremely good heat resistance.

しかし保護層にピンホール等の形成不良がある際、そこ
を通して薄膜発熱抵抗体が酸化され、寿命が著しく劣化
する等の問題があった。
However, when there are pinholes or other defects in the protective layer, the thin film heating resistor is oxidized through the pinholes, resulting in a significant reduction in service life.

また(2)のような問題、具体的には、薄膜発熱抵抗体
上に、前述したように、電力供給用の電極を形成するわ
けであるが、この際、この電極層と薄膜発熱抵抗体の界
面には、反応層ができ、パターニングプロセスで、この
反応層が削り取られるため、薄膜発熱抵抗体の形成時の
シート抵抗と、これにパターニングを施した後の仕上り
の抵抗値。
In addition, to solve the problem (2), specifically, as mentioned above, an electrode for power supply is formed on the thin film heating resistor, but in this case, this electrode layer and the thin film heating resistor A reaction layer is formed at the interface, and this reaction layer is scraped away during the patterning process, so the sheet resistance when forming the thin film heating resistor and the finished resistance value after patterning.

形状から算出されるシート抵抗の間に、良好な再現性が
得られない等の問題があった。
There were problems such as not being able to obtain good reproducibility in the sheet resistance calculated from the shape.

発明が解決しようとする問題点 上述したように従来のサーマルヘッド・の薄膜発熱抵抗
体材料であるTa−3i合金は、サーマルヘッドの高速
化、高耐熱化のためには、なお十分な特性を有していな
い、遷移金属、炭素、珪素でなるF!膜発熱抵抗体は、
形成温度依存性が小さく、したがって制御性良く作成で
き、高速化、高耐熱化に十分対応できるが、なお、保f
fJ!iにピンホール等の欠陥がある際、酸化され寿命
の劣化が著しいと共に、製造プロセス変動により、シー
ト抵抗の良好な再現性が得られないなどの問題があった
Problems to be Solved by the Invention As mentioned above, the Ta-3i alloy, which is the thin film heating resistor material of the conventional thermal head, still has insufficient characteristics to increase the speed and heat resistance of the thermal head. F!, consisting of transition metals, carbon, and silicon, does not contain! The membrane heating resistor is
The dependence on the formation temperature is small, so it can be formed with good controllability, and it can be used for high speed and high heat resistance.
fJ! When there is a defect such as a pinhole in i, there are problems such as oxidation and significant deterioration of the service life, as well as a failure to obtain good reproducibility of sheet resistance due to variations in the manufacturing process.

かかる点から本発明は、サーマルヘッドの高速化、高耐
熱化のために必要な条件、すなわち高抵抗値したがって
高比抵抗で、高温安定性に優れ、高耐熱性を有し、かつ
耐酸化性に冨み、作成時の再現性の良好な薄膜発熱抵抗
体を提供することを主な目的とする。
From this point of view, the present invention meets the necessary conditions for increasing the speed and heat resistance of a thermal head, namely, high resistance value, therefore high specific resistance, excellent high temperature stability, high heat resistance, and oxidation resistance. The main purpose of this invention is to provide a thin film heating resistor that is rich in properties and has good reproducibility during production.

問題点を解決するための手段 本発明は、上記問題点を解決するために、薄膜発熱抵抗
体を二層構造とし、下層は、遷移金属。
Means for Solving the Problems In order to solve the above problems, the present invention provides a thin film heating resistor with a two-layer structure, the lower layer being a transition metal.

炭素、珪素でなるもの、特にチタン炭化物と炭化珪素で
なるものを選び、上層が珪素、酸化珪素。
Select a material made of carbon or silicon, especially one made of titanium carbide and silicon carbide, with the upper layer being silicon or silicon oxide.

炭化珪素、窒化珪素のいずれかよりなるもの、特に珪素
もしくは酸化珪素でなるもので構成したものである。
It is made of either silicon carbide or silicon nitride, especially silicon or silicon oxide.

作用 上述した構成における下層のチタン炭化物と炭化珪素で
なる材料N(以降TiC−3iCと略記)は、形成温度
依存性が小さく (低温形成が可能)、制御性良く作成
でき、高温安定性に優れ、耐熱性も良好である。しかし
ながら、保!!層にピンホール等の欠陥がある場合、酸
化により、寿命の劣化が著しい、また、パターン形成時
に、電極との反応層がエツチングにより削り取られたり
、またTiC−3iC自体が電極のエツチング液によっ
てエツチングされる等によりシート抵抗の良好な再現性
が得られない等の問題があった。このため、TiC−3
iC上に上層として、珪素もしくは、酸化珪素を適切な
厚さ形成する。このとき、珪素は、その表面の自然酸化
膜が極めて堅ろうであるため、(酸化珪素は言うまでも
ない)、その酸化防止効果により、下層を保護するため
、耐酸化性が飛曜的に向上すると共に、この上層の珪素
、酸化珪素がエツチング液に対するバッファ層になるた
め、上述した下層のTiC−3iCは、エツチングされ
ず、極めて良好なシート抵抗の再現性を得ることができ
る。加えて、二層構成にしても、TiC−3iCのみ(
−引の場合と同様、形成温度依存性が小さく、形成時の
制御性が良い。
Effect Material N (hereinafter abbreviated as TiC-3iC), which is made of titanium carbide and silicon carbide as the lower layer in the above-mentioned structure, has low dependence on the formation temperature (low-temperature formation is possible), can be formed with good controllability, and has excellent high-temperature stability. , heat resistance is also good. However, Ho! ! If the layer has defects such as pinholes, the life of the layer will be significantly deteriorated due to oxidation, and the layer that reacts with the electrode may be etched away during pattern formation, or the TiC-3iC itself may be etched by the electrode etching solution. There was a problem that good reproducibility of sheet resistance could not be obtained due to For this reason, TiC-3
Silicon or silicon oxide is formed to an appropriate thickness as an upper layer on the iC. At this time, silicon has an extremely strong natural oxide film on its surface (not to mention silicon oxide), so its anti-oxidation effect protects the underlying layer, dramatically improving oxidation resistance and Since the upper layer of silicon and silicon oxide serve as a buffer layer for the etching solution, the lower layer of TiC-3iC mentioned above is not etched and extremely good sheet resistance reproducibility can be obtained. In addition, even with a two-layer structure, only TiC-3iC (
- As in the case of the 3-layer method, the dependence on the forming temperature is small and the controllability during forming is good.

以上の通り、下層にTiC−3iC,上層に珪素もしく
は酸化珪素からなる材料層を有する二層構造の薄膜発熱
抵抗体は、極めて容易かつ安定に作成することが可能で
、再現性良く、高抵抗で高温安定性、耐酸化性に優れ高
耐熱衝撃性を有するため、たとえば、これに用いること
で、容易に、′i?1llI型サーマルヘッドの高速化
、高耐熱化に対等することができる。
As described above, a two-layer structure thin film heating resistor having a material layer consisting of TiC-3iC in the lower layer and silicon or silicon oxide in the upper layer can be produced extremely easily and stably, has good reproducibility, and has high resistance. Because it has excellent high temperature stability, oxidation resistance, and high thermal shock resistance, it can be used, for example, to easily produce 'i? It can match the high speed and high heat resistance of the 1llI type thermal head.

実施例 (実施例1) 第1図(alに本発明における薄膜発熱抵抗体の基本構
成を示す、実施例では、下履材料層にTic−StC1
上層材料層に珪素(以降Siと略記)からなる二層構造
の薄膜発熱抵抗体を用いた。
Example (Example 1) Figure 1 (al) shows the basic structure of the thin film heating resistor of the present invention.
A two-layer thin film heating resistor made of silicon (hereinafter abbreviated as Si) was used as the upper material layer.

さて、第1図において、電気的絶縁性基板1上に、スパ
フタリング等の薄膜形成技術により、TiC−3iCで
なる下層材料層2と、Siでなる上層材料層3の二層構
造の薄膜発熱抵抗体4を形成した。第2図にこの薄膜発
熱抵抗体4を大気中で、1時間熱処理した際のシート抵
抗の変化を示す、同図で、横軸は、熱処理温度、縦軸は
、シート抵抗変化率(初期値からの変化)を意味する。
Now, in FIG. 1, a thin film with a two-layer structure consisting of a lower material layer 2 made of TiC-3iC and an upper material layer 3 made of Si is formed on an electrically insulating substrate 1 by a thin film forming technique such as sputtering. A heating resistor 4 was formed. Figure 2 shows the change in sheet resistance when this thin film heating resistor 4 was heat treated in the atmosphere for 1 hour. In this figure, the horizontal axis is the heat treatment temperature, and the vertical axis is the sheet resistance change rate (initial value (change from)

また、曲&I5は、本発明の下層材料層TiC−3iC
2と上層材料JiSi3でなる二層構造の薄膜発熱抵抗
体4のシート抵抗変化特性の一例として、上層Si厚1
00人でまたシート抵抗が1000Ω/口の場合につい
て示しである。また、参考として、曲線6は、TiC−
3iCのみ(上層Siなし) (シート抵抗1000Ω
/口)のシート抵抗変化特性を示す0曲vA5,6の比
較から、上層Sj3は、たかだか100人の厚さである
にも関わらず、本発明の通り、二層構造の薄膜発熱抵抗
体4とすることで、耐酸化性が飛曜的に向上し、800
℃においても、酸化せず、シート抵抗変化も小さいこと
は明らかである。これは、上層材料層313の表面にで
きる酸化膜が堅ろうで、酸素の侵入を防止するためであ
る。このように本発明の二層構造の薄膜発熱抵抗体4は
、800℃程度まで耐酸化性を有し、酸化雰囲気中でも
劣化することがないため、酸化防止膜等の保護膜を形成
しないでも、薄膜面状ヒータ等に用いることが可能であ
る。
Moreover, the song &I5 is based on the lower material layer TiC-3iC of the present invention.
As an example of sheet resistance change characteristics of a thin film heating resistor 4 having a two-layer structure consisting of a top layer material JiSi3 and an upper layer material JiSi3,
00 people and the sheet resistance is 1000Ω/mouth. Also, for reference, curve 6 is TiC-
3iC only (no upper layer Si) (sheet resistance 1000Ω
From the comparison of 0 songs vA5 and 6 showing the sheet resistance change characteristics of By doing so, the oxidation resistance is dramatically improved, and the 800
It is clear that there is no oxidation and the change in sheet resistance is small even at ℃. This is because the oxide film formed on the surface of the upper material layer 313 is strong and prevents oxygen from entering. As described above, the two-layer structure thin film heating resistor 4 of the present invention has oxidation resistance up to about 800°C and does not deteriorate even in an oxidizing atmosphere. It can be used for thin film surface heaters, etc.

(実施例2) 第3図に、本発明における薄膜発熱抵抗体の薄膜型サー
マルヘッドへの応用例を示す、同図で、通常サーマルヘ
フドは、実施例1と同様、電気的絶縁性基板1上に、ス
パッタリング等の薄膜形成技術を用い、下層材料1iT
ic−3iC2と、上層材料層Si3でなる二層構造の
薄膜発熱抵抗体4を形成し、この上に薄膜発熱抵抗体4
に通電するための電極7を形成した後、フォトリソグラ
フィー技術によりパターン形成し、この上に、絶縁物、
半導体等でなる保護層8(保護層8は、通常、薄膜発熱
抵抗体の酸化防止と、紙に印字する際の接触摩耗を防ぐ
ために存在する)を形成した構成をとる。
(Example 2) FIG. 3 shows an example of application of the thin film heating resistor of the present invention to a thin film type thermal head. Using thin film forming technology such as sputtering, the lower layer material 1iT
A thin film heating resistor 4 having a two-layer structure consisting of IC-3iC2 and an upper material layer Si3 is formed, and the thin film heating resistor 4 is formed on this.
After forming the electrode 7 for energizing, a pattern is formed using photolithography technology, and an insulating material,
A protective layer 8 made of a semiconductor or the like (the protective layer 8 is usually present to prevent oxidation of the thin film heating resistor and prevent contact abrasion during printing on paper) is formed.

第4図に示すように、薄膜発熱抵抗体4をパターン形成
した際の発熱体長さし、発熱体幅Wと抵抗値Rより、仕
上がり時の薄膜発熱抵抗体4のシート抵抗をPscal
lとすれば、Pscall−R*(W/L)であり、こ
れと、薄膜発熱抵抗体4の成膜時のシート抵抗P3との
関係を、上層材料層Si3の有無により、第5図に示す
、同図で、下層TiC,−5iCの比抵抗は、2mΩ−
(2)の場合を示し、横軸はPs、縦軸は、Pscal
を表す。
As shown in FIG. 4, the sheet resistance of the finished thin film heating resistor 4 can be calculated from the length of the heating element when the thin film heating resistor 4 is patterned, the heating element width W, and the resistance value R.
1, Pscall-R*(W/L), and the relationship between this and the sheet resistance P3 during film formation of the thin film heating resistor 4 is shown in FIG. 5 depending on the presence or absence of the upper material layer Si3. In the same figure, the specific resistance of the lower layer TiC, -5iC is 2mΩ-
Case (2) is shown, the horizontal axis is Ps, and the vertical axis is Pscal.
represents.

ライン8は、上層Si3がない場合、ライン9は、上層
Si3がある場合(S 1JE100人)である。
Line 8 is when there is no upper layer Si3, and line 9 is when there is upper layer Si3 (S 1JE 100 people).

ライン8より上JiSi3がない場合は、Psに比して
Pscallは相対的に大きく、Ps−1,4にΩ/口
程度から大きく直線からずれ、Pscalは急激に増大
する。これに比して、ライン9は、PsとPs(ajが
ほぼ同一で、Ps−2にΩ/口程度まで直線性を有して
いる。これは、上N513がない場合、電極7と薄膜発
熱抵抗体の界面にできる反応層が、パターン形成プロセ
スのエツチングで削り取られたり、また、薄膜発熱抵抗
体自体が、電極7のエツチング液でエツチングされる等
の問題により、(通常数十人程度、削り取られる)再現
性を損なうと共に、Ps=1.4にΩ/口程度から上記
エツチング効果により、Pscalにおいて、膜厚が1
00人近傍のサイズ効果(表面散乱による抵抗が付加さ
れる)の生じる領域に入るため、PScalの急激な増
廂につながる。これに比して、上層Si3がある場合、
エツチングにより削り取られる領域は、上N S i 
3の一部で、下・層TiC−3iC2は何ら制約を受け
ない、したがって、下層TiC−3iC2自体が成膜時
にサイズ効果を生じる膜厚100人程程度したがってP
s−2にΩ/口程度までは、Ps−Pscajは良好な
直線性を有し、P S、 P 5cajlの値は、はぼ
同一となっている。また、比抵抗の観点からは、上層S
i3に関して少なくとも本実施例の通りSt厚100人
までは、上層Si3が無い場合と、はぼ同一と考えられ
る。この上層Si3の厚みの規定は、膜の形成プロセス
温度により異なり、たとえば、電極7の形成温度を高く
すれば、上層Si3への電極7の拡散が生じ、上層Si
3に起因するコンタクト抵抗は減少するため、一般的な
、トンネリング現象が生じる100Å以下に必ずしもす
る必要はない、しかしながら、電極7の拡散度の違いに
よる抵抗バラツキが生じることも考えられるため、上層
Si3の厚さは、せいぜい200人程程度限度と考えら
れる。
If there is no JiSi3 above line 8, Pscal is relatively large compared to Ps, and Ps-1 and 4 deviate from the straight line by about Ω/mouth, and Pscal increases rapidly. In contrast, line 9 has almost the same Ps and Ps(aj) and has linearity to Ps-2 up to about Ω/mouth. Due to problems such as the reaction layer formed at the interface of the heating resistor being scraped off by etching during the pattern formation process, and the thin film heating resistor itself being etched by the etching solution of the electrode 7, etc. In addition to impairing the reproducibility of
This results in a rapid increase in PScal because the size effect (resistance due to surface scattering is added) near 00 occurs. In contrast, when there is an upper layer Si3,
The area removed by etching is the upper N Si
3, the lower layer TiC-3iC2 is not subject to any restrictions. Therefore, the lower layer TiC-3iC2 itself has a film thickness of about 100 nm which causes a size effect during film formation.
Ps-Pscaj has good linearity up to about Ω/mouth in s-2, and the values of P S and P 5cajl are almost the same. In addition, from the viewpoint of specific resistance, the upper layer S
Regarding i3, at least up to the St thickness of 100 as in this embodiment, it is considered to be almost the same as the case where there is no upper layer Si3. The regulation of the thickness of the upper layer Si3 differs depending on the film formation process temperature. For example, if the formation temperature of the electrode 7 is raised, the electrode 7 will diffuse into the upper layer Si3, and the upper layer Si3 will be
Since the contact resistance caused by Si3 decreases, it is not necessarily necessary to reduce the contact resistance to 100 Å or less, which causes the general tunneling phenomenon. It is thought that the thickness of the board is limited to about 200 people at most.

以上のように、下層TiC−3iCと上FiSiでなる
二層構造の薄膜発熱抵抗体は、プロセス変動を低減化で
き、したがって良好な再現性が得られると共に、制御可
能なシート抵抗領域が大きくなり、極めて容易に高抵抗
化できる。
As described above, the thin film heating resistor with the two-layer structure consisting of the lower TiC-3iC layer and the upper FiSi layer can reduce process fluctuations, thus achieving good reproducibility and increasing the controllable sheet resistance range. , it is extremely easy to increase the resistance.

次に、本発明の薄膜発熱抵抗体を、第3図に示す構造と
し、耐熱衝撃性を調べた。第6図は、連続パルス印加試
験の結果である。試験条件としては、印加パルス中1 
、 05sec、周M20 m5ec、印加電力密度6
4W/mm2として連続パルス印加した。同図で、横軸
は、パルス印加回数、縦軸は、抵抗変化率を表わす(抵
抗変化率が+5%を越えたパルス回数を寿命とする)、
ラインlOは、従来の薄膜発熱抵抗体であるTa−3+
金合金500℃形成)、ライン11.12は、いずれも
、本発明の上1si(厚さ100人)、下層TiC−3
iCの二層構造の薄膜発熱抵抗体で、各々350℃、6
50℃で形成したものである。
Next, the thin film heat generating resistor of the present invention was constructed to have the structure shown in FIG. 3, and its thermal shock resistance was examined. FIG. 6 shows the results of a continuous pulse application test. The test conditions are: 1 during the applied pulse
, 05sec, circumference M20 m5ec, applied power density 6
Continuous pulses were applied at 4 W/mm2. In the figure, the horizontal axis represents the number of pulse applications, and the vertical axis represents the resistance change rate (the number of pulses at which the resistance change rate exceeds +5% is defined as the life span).
Line IO is a conventional thin film heating resistor Ta-3+
Gold alloy formed at 500°C), line 11.12 are both the upper layer 1si (thickness 100 mm) and lower layer TiC-3 of the present invention.
iC's two-layer structure thin film heating resistor, each at 350℃ and 6
It was formed at 50°C.

ライン10〜12より、本発明の薄膜発熱抵抗体は、従
来のTa−Si合金に比して、格段に耐熱性が向上して
いると共に、形成温度が、350〜650℃の違いにも
関わらず、特性に差がない等から低温形成が可能である
と共に、形成温度の制御範囲を広く取うても、抵抗値の
再現性が良好である。また、第3図の保護層8を形成し
ないものについても、ライン11.12とほぼ同一の特
性を有し、酸化による劣化は生じなかった。したがって
、本発明における薄膜発熱抵抗体は、制御性。
From lines 10 to 12, it can be seen that the thin film heating resistor of the present invention has significantly improved heat resistance compared to the conventional Ta-Si alloy, and despite the difference in forming temperature of 350 to 650°C. First, since there is no difference in characteristics, it is possible to form at a low temperature, and even if the forming temperature is controlled over a wide range, the reproducibility of the resistance value is good. Furthermore, those without the protective layer 8 in FIG. 3 had almost the same characteristics as lines 11 and 12, and no deterioration due to oxidation occurred. Therefore, the thin film heating resistor in the present invention has excellent controllability.

再現性良く容易に高抵抗化することが可能で、また耐熱
性、耐酸化性に優れ、これを用いた薄膜型サーマルヘッ
ドは、極めて信頼性が高く、容易に、高速化、高耐熱化
が図れる。これ以外にも、摩耗性に問題がない範囲で、
保護層8を薄くすることが可能であると共に、保1ii
sにピンホールなどの欠陥がある場合、この欠陥を通し
て、水が侵入し、電解腐食が生じる等の点を、上層Si
3により防止する作用等もある。
It is possible to easily increase the resistance with good reproducibility, and it also has excellent heat resistance and oxidation resistance. Thin-film thermal heads using this are extremely reliable and can easily be increased in speed and heat resistance. I can figure it out. In addition to this, as long as there is no problem with abrasion,
It is possible to make the protective layer 8 thinner, and the protection layer 8 can be made thinner.
If there is a defect such as a pinhole in the upper layer Si, water may enter through the defect and electrolytic corrosion may occur.
3 also has a preventive effect.

また、これに加えて、本発明の薄膜発熱抵抗体を用いる
と、たとえば、電極7、保1[N8は、通常、スパッタ
リング等の薄膜形成技術(真空等の非酸化性雰囲気技術
)を用いて形成されるが、これらを、印刷焼成形成する
技術、たとえば、1を極7にを機会、保護層8に、ガラ
スを、印刷焼成する等、800℃程度の大気中焼成を必
要とする技術を適用しても、信頼性良くサーマルヘッド
を作成することができる等、プロセスの自由度も大幅に
増大する。
In addition, when using the thin film heating resistor of the present invention, for example, the electrode 7 and the electrode 1 [N8 are usually formed using a thin film forming technique such as sputtering (non-oxidizing atmosphere technique such as vacuum). However, these can be formed by printing and baking techniques, such as printing and baking 1 on the pole 7 and printing and baking glass on the protective layer 8, which requires baking in the air at about 800 degrees Celsius. Even when applied, the degree of freedom in the process is greatly increased, such as making it possible to create a thermal head with high reliability.

以上述べてきた通り、下層材料層TiC−8r Cs上
層材料層Siでなる二層構造の薄膜発熱抵抗体は、形成
温度依存性が小さく、制御l性。
As described above, the thin film heating resistor with a two-layer structure consisting of the lower material layer TiC-8rCs and the upper material layer Si has a small dependence on the formation temperature and is easy to control.

再現性良く容易に高抵抗化でき、また、耐熱性。High resistance can be easily achieved with good reproducibility, and it is also heat resistant.

高温安定性、耐酸化性が極めて優れており、信頼性、性
能の高い薄膜型サーマルヘッド、薄膜ヒータ等を容易に
実現することができる。
It has excellent high-temperature stability and oxidation resistance, and can easily produce thin-film thermal heads, thin-film heaters, etc. with high reliability and performance.

なお、本実施例1.2では、下層材料層にTiC−3i
Cを用いたが、これ以外の遷移金属。
In this Example 1.2, TiC-3i is used as the lower material layer.
C was used, but other transition metals were used.

炭素、珪素の混合物を用いても、これらの混合物は、い
ずれも形成温度依存性が小さく、高抵抗化が可能で高耐
熱性を有するため、これらを用いても、同様な効果があ
った。加えて、下層材料層にSiを用いたが、これ以外
にも、酸化珪素は、掻めて酸化防止効果が高く、また炭
化珪素、窒化珪素なども、表層に存在する自然酸化膜の
酸化防止効果により、同様の効果があった。
Even when a mixture of carbon and silicon was used, similar effects were obtained because these mixtures have a small dependence on the formation temperature, can be made high in resistance, and have high heat resistance. In addition, although Si was used for the lower material layer, silicon oxide has a strong oxidation prevention effect, and silicon carbide, silicon nitride, etc. can also be used to prevent oxidation of the natural oxide film that exists on the surface layer. The effects were similar.

発明の効果 以上述べてきたように、本発明は、下層に遷移金属、炭
素、珪素によりなる材料層、上層に珪素。
Effects of the Invention As described above, the present invention has a material layer comprising a transition metal, carbon, and silicon as the lower layer, and silicon as the upper layer.

酸化珪素1炭化珪素、窒化珪素のいずれかよりなる材料
層を有する二層構造の薄膜発熱抵抗体で、形成温度依存
性が小さく、制御性、再現性良く容易に高抵抗化でき、
耐熱性、高温安定性、耐酸化性に極めて優れており、た
とえば、これを用いた薄膜型サーマルヘッドは、容易に
、高速化、高耐熱化、信頼性の向上に対応でき、その工
業的価値は非常に高い。
It is a thin film heating resistor with a two-layer structure having a material layer made of either silicon oxide, silicon carbide, or silicon nitride.It has low dependence on formation temperature, and can easily be made high in resistance with good controllability and reproducibility.
It has excellent heat resistance, high-temperature stability, and oxidation resistance. For example, thin-film thermal heads using it can easily support higher speeds, higher heat resistance, and improved reliability, and have great industrial value. is very high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における薄膜発熱抵抗体の基本構成断面
図、第2図は同抵抗体の耐酸化性を示す特性図、第3図
は本発明の薄膜発熱抵抗体の一実施例としての薄膜型サ
ーマルヘッドの構造断面図、第4図は同ヘッドのシート
抵抗のプロセス変動を説明するための説明図、第5図は
シート抵抗のプロセス変動を示す特性図、第6図は耐熱
衝撃性を示す特性図である。 2・・・・・・下層材料層、3・・・・・・上層材料層
、4・・・・・・薄膜発熱抵抗体。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第2図 大気上相ら4茄友(C) 第3図 第4図 第5図 )、5(1=:n/ロジ 第6図
Fig. 1 is a sectional view of the basic configuration of the thin film heating resistor of the present invention, Fig. 2 is a characteristic diagram showing the oxidation resistance of the same resistor, and Fig. 3 is a diagram showing an example of the thin film heating resistor of the present invention. A cross-sectional view of the structure of the thin-film thermal head. Figure 4 is an explanatory diagram to explain the process variations in sheet resistance of the head. Figure 5 is a characteristic diagram showing process variations in sheet resistance. Figure 6 is the thermal shock resistance. FIG. 2... Lower material layer, 3... Upper material layer, 4... Thin film heating resistor. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 Figure 2 Atmosphere Kamioso et al. 4 Soto (C) Figure 3 Figure 4 Figure 5)

Claims (4)

【特許請求の範囲】[Claims] (1)下層が遷移金属、炭素、珪素によりなる材料層、
上層が、珪素、酸化珪素、炭化珪素、窒化珪素のいずれ
かよりなる材料層で構成されたことを特徴とする薄膜発
熱抵抗体。
(1) A material layer whose lower layer is made of transition metal, carbon, and silicon,
1. A thin film heating resistor, wherein the upper layer is made of a material layer made of silicon, silicon oxide, silicon carbide, or silicon nitride.
(2)下層の遷移金属がチタンである特許請求の範囲第
(1)項に記載の薄膜発熱抵抗体。
(2) The thin film heating resistor according to claim (1), wherein the transition metal in the lower layer is titanium.
(3)下層の遷移金属、炭素、珪素によりなる材料層が
、チタン炭化物と炭化珪素の混合物である特許請求の範
囲第(1)項に記載の薄膜発熱抵抗体。
(3) The thin film heating resistor according to claim (1), wherein the lower material layer made of transition metal, carbon, and silicon is a mixture of titanium carbide and silicon carbide.
(4)下層がチタン炭化物と炭化珪素の混合物でなる材
料層、上層が、珪素、酸化珪素のいずれかよりなる材料
層で構成される二層構造を有する特許請求の範囲第(1
)項に記載の薄膜発熱抵抗体。
(4) Claim No. 1 having a two-layer structure in which the lower layer is a material layer made of a mixture of titanium carbide and silicon carbide, and the upper layer is a material layer made of either silicon or silicon oxide.
) The thin film heating resistor described in item 1.
JP61293910A 1986-12-10 1986-12-10 Thin film heating resistor Expired - Lifetime JPH069163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293910A JPH069163B2 (en) 1986-12-10 1986-12-10 Thin film heating resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293910A JPH069163B2 (en) 1986-12-10 1986-12-10 Thin film heating resistor

Publications (2)

Publication Number Publication Date
JPS63146401A true JPS63146401A (en) 1988-06-18
JPH069163B2 JPH069163B2 (en) 1994-02-02

Family

ID=17800736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293910A Expired - Lifetime JPH069163B2 (en) 1986-12-10 1986-12-10 Thin film heating resistor

Country Status (1)

Country Link
JP (1) JPH069163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216787A (en) * 1989-02-17 1990-08-29 Hitachi Ltd Disk heater
WO2001063971A1 (en) * 2000-02-23 2001-08-30 Ibiden Co., Ltd. Ceramic substrate
JP2014123566A (en) * 2012-12-21 2014-07-03 Wet Automotive Syst Ag Electric heating means

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216787A (en) * 1989-02-17 1990-08-29 Hitachi Ltd Disk heater
WO2001063971A1 (en) * 2000-02-23 2001-08-30 Ibiden Co., Ltd. Ceramic substrate
JP2014123566A (en) * 2012-12-21 2014-07-03 Wet Automotive Syst Ag Electric heating means

Also Published As

Publication number Publication date
JPH069163B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US6950117B2 (en) Thermal head
US4835548A (en) Thermal head
JPS63146401A (en) Thin film heating resistor
JPH0535074B2 (en)
JPH01235664A (en) Thin film type thermal head
JPS62255160A (en) Thin film-type thermal head
JPS6293901A (en) Thermal head and manufacture of the same
JPS60235403A (en) Thin film resistor
JPH0523042B2 (en)
JP2731453B2 (en) Thermal head substrate and method of manufacturing the same
JPH08258263A (en) Ink jet recording head
JP2558500B2 (en) Thermal head
JPH02248260A (en) Thin film type thermal head
JPS62111766A (en) Thermal head
JPH0557938A (en) Manufacture of thermal head
JPH07132629A (en) Thermal head and production thereof
JP2003165241A (en) Thermal head
JP2000246929A (en) Manufacture of thermal head
KR920008402B1 (en) Manufacturing method of thermal print head device
JPS623968A (en) Abrasion-resistant thin film thermal head
JP2003182127A (en) Thermal head
JPS62158062A (en) Thermal head and production thereof
JPS61136201A (en) Thin film type thermal head
JPS598233B2 (en) thermal head
JPS61137302A (en) Thin film type thermal head