JPH02216787A - Disk heater - Google Patents

Disk heater

Info

Publication number
JPH02216787A
JPH02216787A JP3618289A JP3618289A JPH02216787A JP H02216787 A JPH02216787 A JP H02216787A JP 3618289 A JP3618289 A JP 3618289A JP 3618289 A JP3618289 A JP 3618289A JP H02216787 A JPH02216787 A JP H02216787A
Authority
JP
Japan
Prior art keywords
resistor
electrodes
heater
disk
disk heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3618289A
Other languages
Japanese (ja)
Inventor
Yutaka Kakehi
掛樋 豊
Yukiya Hiratsuka
平塚 幸哉
Fujitsugu Nakatsui
中対 藤次
Norio Nakazato
中里 則男
Seiichi Watanabe
成一 渡辺
Yoichi Ito
陽一 伊藤
Keiji Ueyama
植山 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3618289A priority Critical patent/JPH02216787A/en
Publication of JPH02216787A publication Critical patent/JPH02216787A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture of large diameter of disk heater with little unevenness of the local temperature distribution by making the disk heater which has a resistor on the whole surface and electrodes at the periphery. CONSTITUTION:To a disk heater 1, a resistor 2 is provided evenly over the whole surface of the disk by coating in a filmy condition on the basic material 4. Electrodes 3A and 3B are provided at the periphery, and lead wire installing ports 4A and 4B are arranged. As a protective film of the resistor 2, an SiO membrane is used. As the basic material 4, a quartz used as an insulating material for a vacuum processing device and the like is used. As the resistor 2, SnO2 or ITO is suitable because the film coating is easy and an adequate resistance value 40OMEGA/square level can be obtained by them. By making such a disk heater, the unevenness of the temperature distribution can be reduced, and a large diameter of disk heater can be manufactured. Since the resistor 2, the basic material 4, and the protective film 5 can be composed of a transparent material, the disk heater 1 can be made transparent.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は円板ヒータに関するものであり、特に、大口径
化、透明化、低抵抗化等に対応し、かつ温度分布の均一
化に秀れた円板ヒータに関するものであり、プラズマ処
理装置の電極等に使用可能なものである。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a disk heater, and in particular, it is compatible with large diameters, transparency, low resistance, etc., and is excellent in uniform temperature distribution. This invention relates to a circular disk heater that can be used as an electrode in a plasma processing apparatus.

〔従来の技術〕 円板ヒータは従来、例えば、中外商工(株)rCERA
  HEATJカタログの構造図に示されているように
、アルミナセラミックのシート(母材)上に抵抗パター
ンをプリントし、これに絶縁保護層をコーティングして
製作される。
[Prior art] Disk heaters have conventionally been manufactured by, for example, rCERA manufactured by Chugai Shoko Co., Ltd.
As shown in the structural diagram in the HEATJ catalog, it is manufactured by printing a resistance pattern on an alumina ceramic sheet (base material) and coating it with an insulating protective layer.

[発明が解決しようとする課題] 上記製作されるヒータでは抵抗パターン上とその周辺で
は温度分布を有するため、大口径化すると割れが生じ、
現状で可能な技術はφ150である。また、アルミナセ
ラミック及び抵抗パターンは不透明であり、光を通過さ
せたい部材には用いることができない。
[Problem to be solved by the invention] Since the heater manufactured above has a temperature distribution on and around the resistance pattern, cracks occur when the diameter is increased.
The technology that is currently possible is φ150. Additionally, alumina ceramics and resistive patterns are opaque and cannot be used in components that require light to pass through.

本発明の第1の目的は大口径化が容易で透明化にも対応
でき、かつ温度分布の均一な円板ヒータを提供すること
である。
A first object of the present invention is to provide a disk heater that can easily be made larger in diameter, can be made transparent, and has a uniform temperature distribution.

本発明の第2の目的は上記円板ヒータを使用したプラズ
マ処理装置等の応用システムを提供することである。
A second object of the present invention is to provide an application system such as a plasma processing apparatus using the disk heater described above.

さらに本発明の第3の目的は上記円板ヒータ等に適用が
可能な電極や抵抗体等の構成要素を提供することである
Furthermore, a third object of the present invention is to provide constituent elements such as electrodes and resistors that can be applied to the disk heater and the like.

〔課題を解決するための手段〕[Means to solve the problem]

前記従来ヒータの問題点を解決するため、全面に抵抗体
、周辺に電極を設置して円板ヒータを構成した。
In order to solve the problems of the conventional heater, a disk heater was constructed by installing a resistor on the entire surface and electrodes around the periphery.

[作   用] 円板の全面に抵抗体が設けられているため局部的な温度
分布がなくなり、それに伴って大口径の円板ヒータを製
作することが可能となる。
[Function] Since the resistor is provided over the entire surface of the disc, there is no local temperature distribution, and accordingly, it becomes possible to manufacture a disc heater with a large diameter.

このように構成した円板ヒータの温度分布をより均一に
するためには電極自身に抵抗分布を持たせ、一方向Xか
ら電流が流れる際の等電位線をXに垂直な直線状になす
のが有効である。このような温度分布の均一化は円板状
抵抗体自身に抵抗値の分布を与えることによっても達成
し得る。
In order to make the temperature distribution of the disc heater configured in this way more uniform, the electrodes themselves should have a resistance distribution, and the equipotential line when current flows from one direction X should be a straight line perpendicular to X. is valid. Such a uniform temperature distribution can also be achieved by providing a resistance value distribution to the disc-shaped resistor itself.

大口径の円板ヒータは一般に直径がφ200〜300の
放電電極を作ることが可能であり、エツチング装置等の
プラズマ処理装置を構成することにより、放電電極の加
熱が容易に可能となる。
A large-diameter disk heater can generally produce a discharge electrode having a diameter of 200 to 300 mm, and by configuring a plasma processing device such as an etching device, the discharge electrode can be easily heated.

さらに、円板ヒータの母材及び抵抗体として透明な材料
を用いることにより透明円板ヒータの製作が可能であり
、これを用いたプラズマモニタ等円板ヒータを通過して
受光するモニタにも適用が可能となる。
Furthermore, by using transparent materials as the base material and resistor of the disc heater, it is possible to manufacture a transparent disc heater, and it can also be applied to monitors that receive light passing through the disc heater, such as plasma monitors. becomes possible.

〔実 施 例〕〔Example〕

以下本発明をいくつかの実施例を示して説明する。 The present invention will be explained below by showing some examples.

第1図は本発明の一実施例を示す円板ヒータ1であり、
その断面図を第2図に示す。2は円板全面に一様に設け
られた抵抗体であり、母材4上に薄膜状にコーティング
されている。3A、3Bは周辺に設けた電極であり、リ
ード線取付口4A、4Bが設けられている。5は抵抗体
2の保護膜であり、5iO−膜が適している。母材とし
ては真空処理装置等で絶縁材として使用されている石英
としている。抵抗体としては薄膜コーティングが容易で
、適度な抵抗体40Ω/口程度が得られるS n O*
やITO(インジウム、スズ、オキサイド)が適してい
る。
FIG. 1 shows a disk heater 1 showing one embodiment of the present invention,
A sectional view thereof is shown in FIG. A resistor 2 is provided uniformly over the entire surface of the disk, and is coated on the base material 4 in the form of a thin film. Reference numerals 3A and 3B are electrodes provided at the periphery, and lead wire attachment ports 4A and 4B are provided. 5 is a protective film for the resistor 2, and a 5iO- film is suitable. The base material is quartz, which is used as an insulating material in vacuum processing equipment and the like. As a resistor, S n O* is easy to coat with a thin film and can provide a suitable resistor of about 40Ω/hole.
or ITO (indium, tin, oxide) are suitable.

このように円板ヒータを構成することにより、従来のよ
うに線状の抵抗体を設けるのと比較して大巾に温度分布
のばらつきを小さくできるので、大口径の円板ヒータの
製作が可能となる。また、抵抗体2、母材4、保護膜5
を透明体で構成することができるので、円板ヒータ1を
透明化が必要な部位に適用することができる。さらに、
薄膜状の抵抗体2は線状でパターン化されていないので
電極3A、3B間の比抵抗を小さくすることができる。
By configuring the disk heater in this way, it is possible to reduce the variation in temperature distribution over a large width compared to the conventional method of providing a linear resistor, so it is possible to manufacture a disk heater with a large diameter. becomes. In addition, a resistor 2, a base material 4, a protective film 5
Since the disc heater 1 can be made of a transparent material, the disc heater 1 can be applied to areas that require transparency. moreover,
Since the thin film resistor 2 is linear and not patterned, the specific resistance between the electrodes 3A and 3B can be reduced.

抵抗が小さいと同一電位で電流が大きく得られ、従って
高い温度が設定できる。
If the resistance is small, a large current can be obtained at the same potential, and therefore a high temperature can be set.

第1図、第2図に示した実施例の等電位線6と等電流線
7を第3図及び第4図に示す、これらの結果は抵抗体2
の抵抗を全て均一と仮定し電極3A、3Bを図示するよ
うに72°に渡って外周部に設定した場合の計算結果で
ある。この結果より、電極3A、3Bの端部付近に電流
の大きくなる部分を生じており、この対策を行うことに
より、温度分布の均一化がさらに可能となる。
The equipotential lines 6 and the equipotential lines 7 of the embodiment shown in FIGS. 1 and 2 are shown in FIGS. 3 and 4, and these results show that the resistor 2
This is the calculation result when the electrodes 3A and 3B are set at the outer periphery over 72 degrees as shown in the figure, assuming that all resistances are uniform. From this result, a portion where the current becomes large is generated near the ends of the electrodes 3A and 3B, and by taking measures against this, it becomes possible to further make the temperature distribution uniform.

第5図は本発明の第2の実施例を示す図であり電極8は
全周に設けられており、電極そのものにも抵抗を持たせ
、第6図に示すように座標軸Xに対して中心に近づくに
つれて増大する分布を設定している。従って、等電位線
9はy軸と平行とすることができ、面内の電流分布を等
しくすることができる。第3図で示した等電位線6と比
較すればその効果が容易に理解することができる。
FIG. 5 is a diagram showing a second embodiment of the present invention, in which electrodes 8 are provided around the entire circumference, and the electrodes themselves have resistance, and as shown in FIG. The distribution is set to increase as the value approaches . Therefore, the equipotential lines 9 can be made parallel to the y-axis, and the in-plane current distribution can be made equal. The effect can be easily understood by comparing it with the equipotential line 6 shown in FIG.

第7図は本発明の第3の実施例を示すもので、電極自身
に抵抗を持たせる上記実施例と異なり、導伝体の電極l
Oをい(つかに分割しそれぞれに別途抵抗を設けて電圧
を供給し、同様の効果をねらったものである6本実施例
では電極を18分割しており、抵抗R0〜R4はそれぞ
れ第8図に示すように設定する。温度分布の均一化は第
5図の実施例と比較すると幾分低下するが、抵抗分割が
容易であり、安価となる。
FIG. 7 shows a third embodiment of the present invention, which differs from the above embodiment in which the electrode itself has resistance.
In this example, the electrode is divided into 18 parts, and the resistors R0 to R4 are each divided into 8th electrodes. Settings are made as shown in the figure.Although the uniformity of temperature distribution is somewhat lower than in the embodiment shown in Fig. 5, resistance division is easy and the cost is low.

第9図に本発明の第4の実施例を示す1本実施例では電
極3A、3Bは導電体で構成しており、抵抗体11の膜
厚分布を変化させ、先に示した第4図の等電流線を補正
するように等抵抗線図を与えている。従って、本実施例
によっても面内の温度分布を均一化することができる。
FIG. 9 shows a fourth embodiment of the present invention. In this embodiment, the electrodes 3A and 3B are made of a conductor, and the film thickness distribution of the resistor 11 is changed, as shown in FIG. The iso-resistance diagram is given to correct the iso-current line. Therefore, this embodiment also makes it possible to make the in-plane temperature distribution uniform.

先の実施例と比較すると面内の薄膜厚さを制御する分高
価となる。
Compared to the previous embodiment, this method is more expensive because the in-plane thin film thickness is controlled.

第10図に本発明の第5の実施例を示す、電極13を円
周上の3ケ所に設け、これに3層交流電源14を接続さ
せている。従って1本実施例によれば、電極13にそれ
ぞれ位相差120°となる電圧が印加されるので温度分
布の均一化が可能となる。第11図に示す本発明の第6
の実施例は同様の効果と2対の電極15A、15C5及
び15B、15Dとスイッチ回路16A、16Bにより
実現させたものでこれら2対の電極にそれぞれ180°
ずらして交流電圧を印加することにより同様の効果が得
られる。
FIG. 10 shows a fifth embodiment of the present invention, in which electrodes 13 are provided at three locations on the circumference, and a three-layer AC power source 14 is connected to these electrodes 13. Therefore, according to this embodiment, voltages with a phase difference of 120° are applied to the electrodes 13, so that the temperature distribution can be made uniform. The sixth embodiment of the present invention shown in FIG.
The embodiment achieves the same effect by using two pairs of electrodes 15A, 15C5 and 15B, 15D and switch circuits 16A, 16B, and each of these two pairs of electrodes has an angle of 180°.
A similar effect can be obtained by applying alternating current voltage in a shifted manner.

上記実施例では母材を石英としているが、上記薄膜より
大きい抵抗値を有しかつ温度伝導率の良い材料を用いる
ことによって、母材表面での温度分布の均一化が可能と
なる。このような適切な母材材料としてSiCが有効で
ある。
In the above embodiment, the base material is quartz, but by using a material that has a higher resistance than the thin film and has good thermal conductivity, it is possible to make the temperature distribution uniform on the surface of the base material. SiC is effective as such a suitable base material.

また、使用用途によってはSiCそのものを抵抗体とし
て用いることも可能である。
Furthermore, depending on the intended use, SiC itself may be used as a resistor.

本発明の第7の実施例を第12図に示す6本実施例は本
発明による円板ヒータをプラズマ処理装置の1つである
反応性イオンエツチング装置のアノード(電極)カバー
24として用いたものである。20はウェハ、21はR
Fを印加するカソード、22.25は絶縁材、26はチ
ャンバ側壁である0本実施例により、アノード表面をψ
300の広範囲に渡って加熱できるので、アノード側へ
の反応生成物の付着を防止、活性種の制御等に大きな効
果を発揮する。さらに、アノードカバー24を透明体の
円板ヒータで構成すれば、アノード23にのぞき窓を設
けて発光モニタを設置すれば、ウェハ20上のプラズマ
発光を正確に検出することができる。
A seventh embodiment of the present invention is shown in FIG. 12. In this embodiment, a disk heater according to the present invention is used as an anode (electrode) cover 24 of a reactive ion etching device, which is one of the plasma processing devices. It is. 20 is wafer, 21 is R
The cathode to which F is applied, 22. 25 is an insulating material, and 26 is a chamber side wall. According to this embodiment, the anode surface is
Since it can be heated over a wide range of 300°C, it is highly effective in preventing reaction products from adhering to the anode side and controlling active species. Further, if the anode cover 24 is configured with a transparent disk heater, plasma light emission on the wafer 20 can be accurately detected by providing a viewing window on the anode 23 and installing a light emission monitor.

上記実施例はプラズマ処理装置の1例としてエツチング
装置を取り上げたがCVD等成膜装置にも広(適用でき
るものである。
In the above embodiment, an etching apparatus was used as an example of a plasma processing apparatus, but the present invention can be widely applied to film forming apparatuses such as CVD.

〔発明の効果1 以上説明したように、本発明によれば円板の全面に抵抗
体が設けられているので局部的な温度分布のばらつきを
小さくすることができ、大口径の円板ヒータを製作する
ことができる。
[Effect of the invention 1 As explained above, according to the present invention, since the resistor is provided on the entire surface of the disk, it is possible to reduce local variations in temperature distribution, and it is possible to use a large diameter disk heater. It can be manufactured.

大口径の円板ヒータは直径200〜300の放電電極あ
るいはそのカバーとして適用が可能であリ、エツチング
装置等のプラズマ処理装置を構成することにより放電電
極の加熱が容易に可能となる。
A large-diameter disk heater can be used as a discharge electrode with a diameter of 200 to 300 mm or its cover, and by configuring a plasma processing device such as an etching device, the discharge electrode can be easily heated.

さらに本発明により、円板ヒータの母材及び抵抗体とし
て透明な材料を用いることにより、透明円板ヒータの製
作が可能であり、これを用いたプラズマモニタ等、円板
ヒータを通過して受光するモニタにも適用が可能となる
Furthermore, according to the present invention, by using transparent materials as the base material and the resistor of the disc heater, it is possible to manufacture a transparent disc heater, and a plasma monitor using this can receive light after passing through the disc heater. It can also be applied to monitors that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例を示す円板ヒータの
平面図、縦断面図、第3図、第4図はその等電位線図と
等電流線図、第5図、第6図は、本発明の第2の実施例
を示す円板ヒータの平面図と電極自身の抵抗分布図、第
7図、第8図は本発明の第3の実施例を示す円板ヒータ
の平面図と電極自身の抵抗分布図、第9図は本発明の第
4の実施例の円板ヒータの温度分布向上のための抵抗体
等抵抗線図、第1O図、第11図は本発明の第5及び第
6の実施例を示す円板ヒータの平面図、第12図は本発
明の第7の実施例のプラズマ処理装置の要部縦断面図で
ある。 2.11−−−−一抵抗体、3A、3B、8.1O,1
3,15−−−−−電極、16A、B−−−−−スイッ
チ回路(制御回路)、14.17−−−−−電源、4−
−−−−一母材、24−−−−−−イ l 図 13 圀 イ 4 閃 42 目 第 図 わ図 t&日身の狼坑Re オ を 圀 /l 第 図 電極11四囚仇Re オ 囚 オ 図
1 and 2 are a plan view and a vertical sectional view of a disk heater showing an embodiment of the present invention, FIGS. 3 and 4 are equipotential and equipotential diagrams, and FIG. FIG. 6 is a plan view of a disk heater and a resistance distribution diagram of the electrode itself showing a second embodiment of the present invention, and FIGS. 7 and 8 are a disk heater showing a third embodiment of the present invention. 9 is a plan view and a resistance distribution diagram of the electrode itself, FIG. 9 is a resistance diagram of a resistor for improving the temperature distribution of a disk heater according to the fourth embodiment of the present invention, and FIGS. FIG. 12 is a plan view of a disk heater showing fifth and sixth embodiments of the invention, and FIG. 12 is a longitudinal sectional view of a main part of a plasma processing apparatus according to a seventh embodiment of the invention. 2.11---One resistor, 3A, 3B, 8.1O, 1
3, 15----Electrode, 16A, B----Switch circuit (control circuit), 14.17----Power supply, 4-
----One base material, 24-------I l Fig. 13 Kuni I 4 Flash 42 Eyes Fig. 11 Four prisoners Re O prisoner figure

Claims (1)

【特許請求の範囲】 1、全面に抵抗体、周辺に電極を有することを特徴とす
る円板ヒータ。 2、前記電極自身に抵抗分布を持たせた第1請求項に記
載の円板ヒータ。 3、前記抵抗体の抵抗値に面内分布を持たせた第1請求
項に記載の円板ヒータ。 4、前記電極を複数対設け、各対間で位相差を有する電
圧を印加する制御回路を設けた第1請求項に記載の円板
ヒータ。 5、前記電極を3個設置し、これらの電極に3層電流を
印加する電源装置を設置した第1請求項に記載の円板ヒ
ータ。 6、前記抵抗体を母材とその母材上に施した薄膜抵抗体
で構成した第1請求項に記載の円板ヒータ。 7、前記母材の材料を前記薄膜抵抗体の抵抗値より大き
い抵抗値を有する材料とした第6請求項に記載の円板ヒ
ータ。 8、前記母材の材料をSiCとした第7請求項に記載の
円板ヒータ。 9、前記母材として透明な絶縁物を用い、前記薄膜抵抗
体に透明な材料を用いた第6請求項に記載の円板ヒータ
。 10、前記抵抗体としてSiCを使用した第1請求項に
記載の円板ヒータ。 11、全面に抵抗体、周辺に電極を有する円板ヒータを
放電電極のカバーとして設置したことを特徴とするプラ
ズマ処理装置。 12、全面に抵抗体、周辺に電極を有する円板ヒータを
放電電極として設置したことを特徴とするプラズマ処理
装置。 13、全面に透明な抵抗体、周辺に電極を有する円板ヒ
ータ、該円板ヒータを通過して受光する受光器からなる
ことを特徴とする発光モニタ。 14、全面に透明な抵抗体、周辺に電極を有する円板ヒ
ータ、該円板ヒータを通過して受光する受光器で構成さ
れた発光モニタからなることを特徴とするプラズマ処理
装置。 15、一対の電極であり、該電極の抵抗値が部分的に異
なることを特徴とする電極。 16、全面に抵抗体を有する円形の抵抗体であり、該抵
抗体の抵抗値が部分的に異なることを特徴とする円形抵
抗体。
[Claims] 1. A disk heater characterized by having a resistor on the entire surface and electrodes on the periphery. 2. The disc heater according to claim 1, wherein the electrode itself has a resistance distribution. 3. The disc heater according to claim 1, wherein the resistance value of the resistor has an in-plane distribution. 4. The disc heater according to claim 1, wherein a plurality of pairs of the electrodes are provided, and a control circuit is provided for applying a voltage having a phase difference between each pair. 5. The disc heater according to claim 1, wherein three of the electrodes are installed and a power supply device for applying a three-layer current to these electrodes is installed. 6. The disc heater according to claim 1, wherein the resistor is composed of a base material and a thin film resistor formed on the base material. 7. The disc heater according to claim 6, wherein the material of the base material is a material having a resistance value greater than the resistance value of the thin film resistor. 8. The disc heater according to claim 7, wherein the material of the base material is SiC. 9. The disc heater according to claim 6, wherein a transparent insulator is used as the base material, and a transparent material is used for the thin film resistor. 10. The disk heater according to claim 1, wherein SiC is used as the resistor. 11. A plasma processing apparatus characterized in that a disk heater having a resistor on the entire surface and an electrode around the circumference is installed as a cover for a discharge electrode. 12. A plasma processing apparatus characterized in that a disk heater having a resistor on the entire surface and an electrode around the periphery is installed as a discharge electrode. 13. A light emission monitor characterized by comprising a resistor that is completely transparent, a disk heater having electrodes around it, and a light receiver that receives light passing through the disk heater. 14. A plasma processing apparatus comprising a light emission monitor comprising a resistor that is completely transparent, a disk heater having electrodes around the disk heater, and a light receiver that receives light passing through the disk heater. 15. An electrode comprising a pair of electrodes, the electrodes having partially different resistance values. 16. A circular resistor characterized in that it is a circular resistor having a resistor on its entire surface, and the resistance value of the resistor is partially different.
JP3618289A 1989-02-17 1989-02-17 Disk heater Pending JPH02216787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3618289A JPH02216787A (en) 1989-02-17 1989-02-17 Disk heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3618289A JPH02216787A (en) 1989-02-17 1989-02-17 Disk heater

Publications (1)

Publication Number Publication Date
JPH02216787A true JPH02216787A (en) 1990-08-29

Family

ID=12462589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3618289A Pending JPH02216787A (en) 1989-02-17 1989-02-17 Disk heater

Country Status (1)

Country Link
JP (1) JPH02216787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153224A1 (en) * 2019-01-25 2020-07-30 東京エレクトロン株式会社 Heater temperature control method, heater, and placement stand

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116153A (en) * 1984-06-29 1986-01-24 Toyota Motor Corp Conductive transparent member of automobile
JPS6113661B2 (en) * 1978-12-27 1986-04-15 Nippon Electric Co
JPS63146401A (en) * 1986-12-10 1988-06-18 松下電器産業株式会社 Thin film heating resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113661B2 (en) * 1978-12-27 1986-04-15 Nippon Electric Co
JPS6116153A (en) * 1984-06-29 1986-01-24 Toyota Motor Corp Conductive transparent member of automobile
JPS63146401A (en) * 1986-12-10 1988-06-18 松下電器産業株式会社 Thin film heating resistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153224A1 (en) * 2019-01-25 2020-07-30 東京エレクトロン株式会社 Heater temperature control method, heater, and placement stand
JP2020119834A (en) * 2019-01-25 2020-08-06 東京エレクトロン株式会社 Heater temperature control method, heater, and mounting table
CN113330819A (en) * 2019-01-25 2021-08-31 东京毅力科创株式会社 Method for controlling temperature of heater, and mounting table
KR20210114481A (en) * 2019-01-25 2021-09-23 도쿄엘렉트론가부시키가이샤 Heater temperature control method, heater and mount

Similar Documents

Publication Publication Date Title
US10159116B2 (en) Modular layered heater system
EP0211190B1 (en) Cvd plasma reactor
AU600341B2 (en) Electrically resistive tracks
US6225608B1 (en) Circular film heater
JP2000332091A (en) Electrostatic chuck and treatment device
ATE333674T1 (en) METHOD FOR PRODUCING A TOUCH SENSITIVE SCREEN
US20230266015A1 (en) Electric Heater And Cooking Appliance Having Same
KR102159802B1 (en) Electric Heater
WO2001002621A1 (en) Improved temperature controlled thin film circular heater
JPH08125001A (en) Electrostatic chuck
KR100649913B1 (en) Conductive panel structure which resistance is controlled by patterning, and manufacturing method thereof
JPH02216787A (en) Disk heater
US20230154768A1 (en) Multi-zone azimuthal heater
JPH11297806A (en) Hotplate
JP2000065875A (en) Electrode and method for measuring insulation resistance
JPS63138737A (en) Dry etching apparatus
JP2001318318A (en) Specimen temperature controller for microscope
JPS622544A (en) Noiseless discharge type gas plasma treating device
CN111194102A (en) Electric heating plate capable of generating heat uniformly, preparation method thereof and thick film heating element
JPH02256077A (en) Discharge member and charger using the discharge member
JPH09161959A (en) Planar heating body
CN210458346U (en) Heating device for evaporation
JP2003004553A (en) Strain detecting device
JPH02303029A (en) Plasma electrode
JPS6060547A (en) Gas detector