JPH067521B2 - Thin-film thermal head - Google Patents

Thin-film thermal head

Info

Publication number
JPH067521B2
JPH067521B2 JP60193543A JP19354385A JPH067521B2 JP H067521 B2 JPH067521 B2 JP H067521B2 JP 60193543 A JP60193543 A JP 60193543A JP 19354385 A JP19354385 A JP 19354385A JP H067521 B2 JPH067521 B2 JP H067521B2
Authority
JP
Japan
Prior art keywords
thin
tic
resistance
sic
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60193543A
Other languages
Japanese (ja)
Other versions
JPS6254403A (en
Inventor
哲広 是近
敬三郎 倉増
清春 山下
孝道 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60193543A priority Critical patent/JPH067521B2/en
Publication of JPS6254403A publication Critical patent/JPS6254403A/en
Publication of JPH067521B2 publication Critical patent/JPH067521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱記録印字に用いる薄膜型サーマルヘッドに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film type thermal head used for thermal recording printing.

従来の技術 一般に、熱印字記録に用いられるサーマルヘッドは、絶
縁性基板上に複数個の発熱抵抗体および、この発熱抵抗
体に電力を供給するための電極を設け、個々の発熱抵抗
体に電力を供給することにより、ジュール熱を発生さ
せ、これにより、印字記録を行うものである。
2. Description of the Related Art Generally, a thermal head used for thermal printing recording is provided with a plurality of heat generating resistors on an insulating substrate and electrodes for supplying power to the heat generating resistors, and each heat generating resistor is provided with a power source. Is supplied to generate Joule heat, whereby printing and recording are performed.

これらに用いる発熱抵抗体としては、薄膜発熱抵抗体が
熱応答性が良く、高解像度化でき、信頼性が高く、ま
た、消費電力が小さい等の点で優れている。
As a heat generating resistor used for these, a thin film heat generating resistor is excellent in that it has good thermal responsiveness, high resolution, high reliability, and low power consumption.

従来薄膜発熱抵抗体としては、例えば、特開昭52−1438
41号公報にある通り、Ta−Si合金等が、耐熱性に優れて
いる。しかしながら、近年のサーマルヘッドの熱印字記
録の高速化を実現させるためには、数ミリ秒の短かい印
字パルスにより、記録を行わなければならず、そのため
には、薄膜発熱抵抗体に大電力を投入し、400℃以上
もの温度を発生させる必要がある。加えて、高電力化
は、薄膜発熱抵抗体の抵抗値を大きくしない限り、必然
的に電流が大きくなるため次の2つの問題を生じる。1
つは、薄膜発熱抵抗体の抵抗値に対して、薄膜発熱抵抗
体に電力を供給する電極の抵抗値が無視できなくなるた
め、この電極の長さの差異により、各薄膜発熱抵抗体の
発熱量が異なり、記録パターンに濃度差を生じたり、ま
た特に、高解像度化した際に、電極における電力消費が
問題になる。これを避けるには、電極の厚さを極端に大
きくすることが考えられるが、このとき構造上、大きな
不都合を生じる。もつ1つは、加熱用電源,スイッチン
グ回路等の駆動系の電流容量を大きくしなければならい
等の問題が生じる。
As a conventional thin film heating resistor, for example, JP-A-52-1438
As disclosed in Japanese Patent No. 41, Ta-Si alloys and the like have excellent heat resistance. However, in order to realize high-speed thermal printing recording of a thermal head in recent years, it is necessary to perform recording with a short printing pulse of several milliseconds, and for that purpose, a large amount of electric power is applied to the thin film heating resistor. It is necessary to charge it and generate a temperature of 400 ° C. or higher. In addition, the increase in power inevitably increases the current unless the resistance value of the thin-film heat generating resistor is increased, which causes the following two problems. 1
One is that the resistance value of the electrode that supplies power to the thin-film heating resistor cannot be ignored with respect to the resistance value of the thin-film heating resistor. However, there is a difference in density between recording patterns, and power consumption at the electrodes becomes a problem especially when the resolution is increased. In order to avoid this, it is conceivable to make the thickness of the electrode extremely large, but this causes a great inconvenience in the structure. Another problem is that the current capacity of the driving system such as the heating power source and the switching circuit must be increased.

以上の点から、薄膜発熱抵抗対としては、高温安定性
と、高抵抗値の実現が可能であることの2つが最低限必
要である。これらの点から前記Ta−Si合金を考えると、
このTa−Si合金は、耐熱性が比較的安定な領域が、比抵
抗200〜250μΩ−cm程度と小さく、従って、大き
な抵抗値を得ようとすれば、例えばL/W=2(Lは発
熱抵抗体長さ,Wは、巾)で、500Ωの抵抗値を得る
ため(最近の技術の流れでは、これ以上の抵抗値も要求
されている)には、膜厚が100Å程度と非常に薄く、
製造時の制御が極めて難しく、また膜質としても不安定
となる。これを避けるためには、Ta−Si合金の厚みを大
きくし、蛇行形状等にパターン形成し、前記L長を増す
ことにより、抵抗値を上げることも可能であるが、高解
像度化する際、この方法は、製造上極めて難しい。
From the above points, it is necessary for the thin-film heat generation resistance pair to have at least two characteristics, that is, high temperature stability and high resistance. Considering the Ta-Si alloy from these points,
In this Ta-Si alloy, the region where the heat resistance is relatively stable is as small as about 200 to 250 μΩ-cm, and therefore, if a large resistance value is to be obtained, for example, L / W = 2 (L is heat generation) In order to obtain a resistance value of 500 Ω (resistor length, W is width) (in the flow of recent technology, a higher resistance value is required), the film thickness is very thin, about 100Å,
It is extremely difficult to control during manufacturing, and the film quality becomes unstable. In order to avoid this, it is possible to increase the resistance value by increasing the thickness of the Ta-Si alloy, forming a pattern in a meandering shape, etc., and increasing the L length. This method is extremely difficult to manufacture.

また、Ta−Si合金は、短パルス巾駆動時の耐熱性が尚十
分でなく、従ってTa−Si合金は、サーマルヘッドに要求
される高速化,高耐熱化の点で十分なものではなかっ
た。
Further, the Ta-Si alloy is still insufficient in heat resistance at the time of driving with a short pulse width. Therefore, the Ta-Si alloy is not sufficient in terms of high speed and high heat resistance required for the thermal head. .

発明が解決しようとする問題点 上述したように従来のサーマルヘッドの薄膜発熱抵抗体
材料であるTa−Si合金は、サーマルヘッドの高速化,高
耐熱化のためには、尚十分な特性を有していない。
Problems to be Solved by the Invention As described above, the Ta-Si alloy, which is the material for the thin-film heating resistor of the conventional thermal head, still has sufficient characteristics for speeding up and high heat resistance of the thermal head. I haven't.

かかる点から本発明は、サーマルヘッドの高速化,高耐
熱化のために必要な条件、即ち、高抵抗値従って高比抵
抗で、高温安定性に優れ、高耐熱性を有する薄膜発熱抵
抗体を備えた薄膜型サーマルヘッドを提供することを目
的とするものである。
From this point of view, the present invention provides a thin-film heat-generating resistor that has the necessary conditions for high speed and high heat resistance of the thermal head, that is, a high resistance value and thus a high specific resistance, excellent high temperature stability, and high heat resistance. An object of the present invention is to provide a thin film type thermal head provided with the thin film thermal head.

問題点を解決するための手段 本発明は、上記問題点を解決するために、薄膜発熱抵抗
体として、遷移金属炭化物と炭化珪素でなるもの、特
に、遷移金属炭化物として、チタン炭化物(TiC)を選び
これと、炭化珪素(SiC)でなるものを用いた薄膜型サー
マルヘッドを構成したものである。
Means for Solving the Problems The present invention, in order to solve the above problems, as a thin film heating resistor, a transition metal carbide and silicon carbide, in particular, as the transition metal carbide titanium carbide (TiC) This is a thin film type thermal head constructed by using this and a material made of silicon carbide (SiC).

作 用 上述した構成におけるチタン炭化物(以降TiCと呼ぶ)
と炭化珪素(以降SiCと呼ぶ)でなる薄膜発熱抵抗体
は、TiC,SiCいずれも高温安定性に優れるが、TiC単体
の比抵抗が、250μΩ−Cmと小さいため、これに、Si
Cを混合して比抵抗を上げ安定化させたものである。
Operation Titanium carbide in the above configuration (hereinafter referred to as TiC)
The thin-film heat-generating resistor made of silicon carbide (hereinafter referred to as SiC) has excellent high-temperature stability in both TiC and SiC, but the specific resistance of TiC alone is as low as 250 μΩ-Cm.
It is a mixture of C to increase and stabilize the resistivity.

また、TiCとSiCでなる薄膜発熱抵抗体は、次のような特
徴を有する。即ち、これと同じ材料系を用いた場合、Ti
とSiCでなるもの,TiCとSiでなるものが考えられるが、
これらは、いずれも、TiとSiのような単体元素が、Si
CX,TiCX(x<1)と反応し、中間化合物を形成し、グ
レイングロースするが、TiCとSiCでなるものにおいて
は、個々に安定な化合物状態にあり、グレイングロース
しにくいこと。
Further, the thin-film heating resistor made of TiC and SiC has the following features. That is, if the same material system is used, Ti
And SiC, or TiC and Si,
All of these are simple elements such as Ti and Si.
Reacts with C X and TiC X (x <1) to form an intermediate compound, which results in graining, but in the case of TiC and SiC, each is in a stable compound state and is difficult to grow.

また、作成時に、窒素,酸素等を含まない材料系のた
め、TiOX(x2)などの不安定要因の生成が少なく、
極めて制御性良く作成できること等が挙げられる。
In addition, since it is a material system that does not contain nitrogen, oxygen, etc. at the time of creation, the generation of instability factors such as TiO x (x2) is small,
It can be mentioned that it can be created with extremely good controllability.

以上の通り、TiCとSiCでなる薄膜発熱抵抗体を用いるこ
とで、制御良く、高比抵抗(高抵抗値)で高温安定性に
優れ、高耐熱性に富んだ、薄膜型サーマルヘッドが構成
できる。
As described above, by using a thin-film heating resistor made of TiC and SiC, a thin-film thermal head with good controllability, high specific resistance (high resistance value), excellent high-temperature stability, and high heat resistance can be constructed. .

実 施 例 第1図に本発明における薄膜型サーマルヘッドの基本構
成を示す。本実施例では、遷移金属炭化物と炭化珪素で
なる薄膜発熱抵抗体として、TiCとSiCでなるものを用い
た。
Practical Example FIG. 1 shows the basic structure of a thin film thermal head according to the present invention. In this embodiment, the thin-film heating resistor made of transition metal carbide and silicon carbide is made of TiC and SiC.

さて、第1図において、電気絶縁性基板1上にスパッタ
リング等の薄膜形成技術により、TiCとSiCでなる薄膜発
熱抵抗体2を形成し、この上に前記薄膜発熱抵抗体2に
通電するための電極3を形成した後、フォトリングラフ
ィー技術により、パターン形成し、この上に絶縁物、半
導体等でなる保護層4(保護層4は、通常薄膜発熱抵抗
体2の酸化防止と、紙に印字する際の接触摩耗を防ぐた
めに存在する)を形成した構成をとる。
Now, referring to FIG. 1, a thin film heating resistor 2 made of TiC and SiC is formed on the electrically insulating substrate 1 by a thin film forming technique such as sputtering, and a thin film heating resistor 2 for energizing the thin film heating resistor 2 is formed on the thin film heating resistor 2. After the electrode 3 is formed, a pattern is formed by a photolinography technique, and a protective layer 4 made of an insulator, a semiconductor or the like is formed on the electrode 3 (the protective layer 4 is usually used for preventing the thin film heating resistor 2 from being oxidized and for printing on paper Existing in order to prevent contact wear at the time of).

第2図にスパツタリングターゲットの一例として、本実
施例で用いたTiCとSiCでなる薄膜発熱抵抗体2の作成時
のスパッタリングターゲットを示す。150φTiCター
ゲット5上に、SiC板6を配置した構造を取る。SiC板6
の数を変化させ、TiC,SiCの面積比を変えて、Arガス圧
1.5×10-2Torr、RFパワー400W,基板温度300
℃(一定)で、RFスパッタリングを行い、電気的絶縁
性基板1上に、薄膜発熱抵抗体2を形成した。第3図
に、このときのSiCターゲット面積比(横軸)と、比抵
抗ρ,抵抗温度係数(TCR)(縦軸)の関係を示す。
同図で、曲線7,8は各々、基板温度300℃でスパッ
タリングした直後の膜(=assputter膜)の比抵抗、抵
抗温度係数であり、曲線9,10は各々スパッタリング
後に、別真空中で、650℃(2時間)の熱処理を施し
た後の膜(anneal膜)の比抵抗と抵抗温度係数である。
FIG. 2 shows, as an example of the sputtering target, a sputtering target when the thin-film heating resistor 2 made of TiC and SiC used in this example was prepared. The structure is such that the SiC plate 6 is arranged on the 150φ TiC target 5. SiC plate 6
By changing the area ratio of TiC and SiC, the Ar gas pressure is 1.5 × 10 -2 Torr, the RF power is 400 W, and the substrate temperature is 300.
RF sputtering was performed at a temperature (constant) to form a thin film heating resistor 2 on the electrically insulating substrate 1. FIG. 3 shows the relationship between the SiC target area ratio (horizontal axis), the specific resistance ρ, and the temperature coefficient of resistance (TCR) (vertical axis) at this time.
In the figure, curves 7 and 8 are the specific resistance and resistance temperature coefficient of the film (= assputter film) immediately after sputtering at a substrate temperature of 300 ° C., and curves 9 and 10 are respectively after sputtering in different vacuum, The specific resistance and the temperature coefficient of resistance of the film (anneal film) after the heat treatment at 650 ° C. (2 hours).

これより、SiC組成に対する比抵抗,抵抗温度係数の変
化は緩やかであり、また300〜650℃で、比抵抗は
殆んど変化していないことがわかる。また抵抗温度係数
は、熱処理により、若干改善されている。このような点
から、TiCとSiCでなる薄膜発熱抵抗体は、形成温度制御
範囲を広く取ることが可能と考えられ、作成時の制御は
極めて容易と考えられる。これらは、TiC,SiCが、各
々、化合物状態で安定であり、グレイン成長しにくく、
また特にSiCは、容易に他元素と化合しない等、化学的
安定性が良好である点等によりものと考えられる。
From this, it is understood that the changes in the specific resistance and the temperature coefficient of resistance with respect to the SiC composition are gradual, and the specific resistance hardly changes at 300 to 650 ° C. The temperature coefficient of resistance is slightly improved by the heat treatment. From such a point, it is considered that the thin-film heating resistor made of TiC and SiC can have a wide range of formation temperature control, and control during production is considered to be extremely easy. In these, TiC and SiC are each stable in the compound state, and grain growth is difficult,
Further, it is considered that SiC is particularly preferable because it has a good chemical stability such that it does not easily combine with other elements.

ところで、第3図より、比抵抗2000μΩ−cmで、抵抗温
度係数−130130ppm/degは、従来のTa−Si合金に比
して、同様な抵抗温度係数に対し、10倍の比抵抗増で
ある。また、ちなみに、TiとSiCでなる薄膜、TiCとSiで
なる薄膜、TiCとSiC2でなる薄膜と比較すると、TiCとSi
Cでなる薄膜が最も形成温度影響が小さく、制御性,再
現性にも優れていることがわかった。これは、TiとSiC
でなるもの,TiCとSiでなるものは、各々、前者はTi,
後者は、Siのグレイン成長および、前者は、TiC,Ti
Ox,TiSix後者はSiC,SiOx,TiSix等の生成が考えられ
ること、またTiCとSiO2でなるものは、SiO2の解離OとT
iCとの反応によるTiOxの生成が考えられることなどに比
して、TiCとSiCでなるものは、TiCとSiCが化合物状態で
安定で、グレイン成長にしくいこと及び、酸素等の供給
源が少ないことにより中間生成物が発生しにくいことな
どが考えられる。
By the way, as shown in FIG. 3, the specific resistance of 2000 μΩ-cm and the temperature coefficient of resistance of −130 130 ppm / deg are 10 times higher than those of the conventional Ta—Si alloy with respect to the same temperature coefficient of resistance. . By the way, comparing with Ti and SiC thin films, TiC and Si thin films, and TiC and SiC 2 thin films, TiC and Si
It was found that the thin film made of C had the least influence on the forming temperature and had excellent controllability and reproducibility. This is Ti and SiC
The former is Ti, and the latter is TiC and Si.
The latter is grain growth of Si and the former is TiC, Ti
O x, TiSi x latter SiC, SiO x, the production of such TiSi x conceivable, also made by TiC and SiO 2 is of SiO 2 dissociation O and T
In contrast to the possibility that TiO x is generated by the reaction with iC, TiC and SiC are stable in the compound state of TiC and SiC, and it is difficult to grow grains, and the supply source of oxygen etc. It can be considered that an intermediate product is less likely to be generated due to the small amount.

次に、第1図に示す構造としてサーマルヘッドとした
後、これにパルス巾1msec、パルス周期10msec、で連続
パルス印加を行い、6×104回パルスを印加した際に、
抵抗値変動+10%を与える薄膜発熱抵抗体の単位面積
当りの印加電力(W/mm2)(=破断電力と呼ぶ)をTa
−Si合金及び、TiCとSiCでなる薄膜発熱抵抗体(650
℃熱処理後)について下表に示す。
Next, after the thermal head having the structure shown in FIG. 1 was applied, a continuous pulse was applied to this with a pulse width of 1 msec and a pulse period of 10 msec, and when a pulse was applied 6 × 10 4 times,
The applied power (W / mm 2 ) per unit area of the thin-film heating resistor that gives a resistance variation of + 10% (= called breaking power) is Ta
-Si alloys and thin-film heating resistors made of TiC and SiC (650
After heat treatment at ℃) is shown in the table below.

表より、耐熱性の面でも、このTiCとSiCでなる薄膜発熱
抵抗体は、Ta−Si合金薄膜発熱抵抗体に比して、格段に
改善されていることは、明らかである。
From the table, it is clear that also in terms of heat resistance, the thin-film heating resistor made of TiC and SiC is significantly improved as compared with the Ta-Si alloy thin-film heating resistor.

また、第4図に抵抗変化特性の一例として、パルス巾1m
sec、パルス周期20msec、印加電力64W/mm2で連続パル
ス印加した際の抵抗変化率を示す。同図で、横軸は、パ
ルス印加回数、縦軸は、抵抗変化率を表わす。
In addition, as an example of resistance change characteristics, a pulse width of 1 m is shown in FIG.
sec, pulse cycle 20 msec, resistance change rate when continuous pulse is applied with applied power 64 W / mm 2 . In the figure, the horizontal axis represents the number of pulse applications and the vertical axis represents the resistance change rate.

曲線11は、Ta−Si合金薄膜発熱抵抗体,曲線12は、本
発明のTiCとSiCでなる(以降TiC−SiCと略記)薄膜発熱
抵抗体の各々抵抗変化特性を示す。
A curve 11 shows the resistance change characteristics of the Ta-Si alloy thin film heating resistor, and a curve 12 shows the resistance change characteristics of the thin film heating resistor of TiC and SiC of the present invention (hereinafter abbreviated as TiC-SiC).

また、比較として、TiCとSiでなる(以降、TiC−Siと略
記)薄膜発熱抵抗体,TiCとSiO2でなる(以降TiC−SiO2
と略記)薄膜発熱抵抗体の抵抗変化特性を各々曲線1
3,14として付記する。
For comparison, a thin-film heating resistor made of TiC and Si (hereinafter abbreviated as TiC-Si) and TiC and SiO 2 made of (hereinafter TiC-SiO 2
Abbreviated as “curve 1” for the resistance change characteristics of the thin film heating resistor.
It is additionally noted as 3,14.

同図より、従来のTa−Si合金薄膜発熱抵抗体は、比較的
早いパルス回数で抵抗変化が負方向に急激に変位し、
(Ta−Siのグレイン成長による)これによる過剰な電力
の投入により、破壊が生じやすくなるのに対し、前記Ti
C−SiC,TiC−Si,TiC−SiO2は、いずれも抵抗変化特性
が格段に改善されているが、特に、その中でも、本発明
のTiC−SiC薄膜発熱抵抗体が最も優れている。これは、
TiC,SiCが、グレイン成長しにくく、また酸化等に対し
ても安定になっていることによる。
From the figure, in the conventional Ta-Si alloy thin film heating resistor, the resistance change abruptly shifts in the negative direction at a relatively fast number of pulses,
Due to the excessive input of electric power (due to the grain growth of Ta-Si), destruction is likely to occur.
All of C-SiC, TiC-Si, and TiC-SiO 2 have remarkably improved resistance change characteristics. Among them, the TiC-SiC thin-film heating resistor of the present invention is particularly excellent. this is,
This is because TiC and SiC are less likely to grow grains and are stable against oxidation.

このように、チタン炭化物と炭化珪素で構成される薄膜
発熱抵抗体は、高比抵抗で高温安定性,耐熱性に優れ、
抵抗変化が小さく、また作成時の制御性も良好で、これ
を用いた薄膜型サーマルヘッドは、高速化,高耐熱化に
容易に対応できる。
Thus, the thin-film heat-generating resistor composed of titanium carbide and silicon carbide has high specific resistance, high temperature stability, and excellent heat resistance,
The resistance change is small and the controllability at the time of fabrication is good, and the thin film thermal head using this can easily cope with high speed and high heat resistance.

尚、本実施例では、遷移金属炭化物として、チタン炭化
物を用いたが、これ以外の高融点な遷移金属炭化物、例
えば、ジルコニウム炭化物,ハフニウム炭化物,バナジ
ウム炭化物,ニオブ炭化物,タンタル炭化物,モリブデ
ン炭化物,タングステン炭化物などを用いても、これら
は硬質で、高温安定性を有し、化学的にも安定であるた
め、これらに炭化珪素を適切に混合し薄膜発熱抵抗体を
構成することで、同様の効果を得ることができる。
In this example, titanium carbide was used as the transition metal carbide, but other high melting point transition metal carbides, for example, zirconium carbide, hafnium carbide, vanadium carbide, niobium carbide, tantalum carbide, molybdenum carbide, tungsten. Even if carbides are used, they are hard, have high temperature stability, and are chemically stable. Therefore, by appropriately mixing silicon carbide with these to form a thin film heating resistor, the same effect can be obtained. Can be obtained.

発明の効果 以上述べてきたように、本発明は、遷移金属炭化物と炭
化珪素で構成される作成時の制御性が良く高比抵抗でか
つ熱安定度が高く耐熱性に富みかつ抵抗変化の小さい薄
膜発熱抵抗体を備えた薄膜型サーマルヘッドであり、こ
れによりサーマルヘッドの高速化,高耐熱化に容易に対
応でき、その工業的価値は非常に高い。
EFFECTS OF THE INVENTION As described above, according to the present invention, the controllability at the time of preparation made of transition metal carbide and silicon carbide is high, the specific resistance is high, the thermal stability is high, the heat resistance is rich, and the resistance change is small. This is a thin-film thermal head equipped with a thin-film heating resistor, which makes it possible to easily cope with higher speeds and higher heat resistance of the thermal head, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明における薄膜型サーマルヘッドの基本
構造を示す要部の断面図、第2図〜第4図は、各々、本
発明の一実施例としての薄膜発熱抵抗体のスパッタリン
グターゲット形状の一例を示す上面図ならびに比抵抗と
抵抗温度係数,抵抗変化特性を示す特性図である。 1……電気絶縁性基板、2……遷移金属炭化物と炭化珪
素でなる薄膜発熱抵抗体、3……電極、4……保護層。
FIG. 1 is a sectional view of an essential part showing a basic structure of a thin film type thermal head according to the present invention, and FIGS. 2 to 4 are each a sputtering target shape of a thin film heating resistor as an embodiment of the present invention. FIG. 3 is a top view showing an example, and a characteristic diagram showing specific resistance, resistance temperature coefficient, and resistance change characteristics. 1 ... Electrically insulating substrate, 2 ... Thin film heating resistor made of transition metal carbide and silicon carbide, 3 ... Electrode, 4 ... Protective layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】遷移金属炭化物と炭化珪素でなる薄膜発熱
抵抗体を備えたことを特徴とする薄膜型サーマルヘッ
ド。
1. A thin-film type thermal head comprising a thin-film heating resistor made of a transition metal carbide and silicon carbide.
【請求項2】遷移金属炭化物が、チタン炭化物である特
許請求の範囲第1項に記載の薄膜型サーマルヘッド。
2. The thin film type thermal head according to claim 1, wherein the transition metal carbide is titanium carbide.
JP60193543A 1985-09-02 1985-09-02 Thin-film thermal head Expired - Fee Related JPH067521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193543A JPH067521B2 (en) 1985-09-02 1985-09-02 Thin-film thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193543A JPH067521B2 (en) 1985-09-02 1985-09-02 Thin-film thermal head

Publications (2)

Publication Number Publication Date
JPS6254403A JPS6254403A (en) 1987-03-10
JPH067521B2 true JPH067521B2 (en) 1994-01-26

Family

ID=16309817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193543A Expired - Fee Related JPH067521B2 (en) 1985-09-02 1985-09-02 Thin-film thermal head

Country Status (1)

Country Link
JP (1) JPH067521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281401A (en) * 1988-09-16 1990-03-22 Seiko Instr Inc Resistor

Also Published As

Publication number Publication date
JPS6254403A (en) 1987-03-10

Similar Documents

Publication Publication Date Title
JPH067521B2 (en) Thin-film thermal head
JPH0312551B2 (en)
JPS6254402A (en) Thin film type thermal head
JPH0647292B2 (en) Thin-film thermal head
JPS61137302A (en) Thin film type thermal head
JPS62255159A (en) Thin film-type thermal head
JPH069163B2 (en) Thin film heating resistor
JPS63216762A (en) Thermal head
JPS6317630B2 (en)
JPH0461201A (en) Thin-film resistor
JPH01256101A (en) Thin film type thermal head
JP2870692B2 (en) Thin-film thermal head
JPS61136201A (en) Thin film type thermal head
JPS62218149A (en) Heating element for thermal head
JPS63135260A (en) Thermal head
JPH0523042B2 (en)
JPH0694213B2 (en) Thin-film thermal head
JP2916215B2 (en) Method of manufacturing resistor thin film
JPS6367319B2 (en)
JPH02248260A (en) Thin film type thermal head
JPH07132629A (en) Thermal head and production thereof
JPH0144510B2 (en)
JPH07113164A (en) Sputtering target, film resistor formed by using the same and thermal printer head
JPH07188911A (en) Sputtering target, film resistor formed by using the same and thermal printer head
JPS62198101A (en) Heating resistor and manufacture of the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees