JPS61137302A - Thin film type thermal head - Google Patents

Thin film type thermal head

Info

Publication number
JPS61137302A
JPS61137302A JP59260221A JP26022184A JPS61137302A JP S61137302 A JPS61137302 A JP S61137302A JP 59260221 A JP59260221 A JP 59260221A JP 26022184 A JP26022184 A JP 26022184A JP S61137302 A JPS61137302 A JP S61137302A
Authority
JP
Japan
Prior art keywords
thin film
resistance
heating resistor
thermal head
film heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59260221A
Other languages
Japanese (ja)
Inventor
哲広 是近
敬三郎 倉増
服部 孝道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59260221A priority Critical patent/JPS61137302A/en
Publication of JPS61137302A publication Critical patent/JPS61137302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱記録印字に用いる薄膜型サーマルヘッドの
薄膜発熱抵抗体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film heating resistor for a thin film thermal head used for thermal recording printing.

従来の技術 一般に、熱印字記録に用いられるサーマルヘッドは、絶
縁性基板上に、複数個の発熱抵抗体および、該発熱抵抗
体に電力を供給するだめの電極を設け、個々の発熱抵抗
体に電力を供給することにより、ジュール熱を発生させ
、これにより、印字記録を行なうものである。
BACKGROUND TECHNOLOGY In general, a thermal head used for thermal print recording is provided with a plurality of heating resistors and an electrode for supplying power to the heating resistors on an insulating substrate. By supplying electric power, Joule heat is generated, thereby performing printing and recording.

これらに用いる発熱抵抗体としては、薄膜発熱抵抗体が
、熱応答性が良く、高解像度化でき、耐熱性にも優れ、
寿命が長く、信頼性が高い等の点で、最も優れている。
As the heating resistor used for these, thin film heating resistors have good thermal response, can achieve high resolution, have excellent heat resistance,
It is the best in terms of long life and high reliability.

従来薄膜抵抗体としては、例えば、特開昭52−143
841号にもある通り、Ta−E3i合金等が、耐熱性
に優れている。
As a conventional thin film resistor, for example, Japanese Patent Application Laid-Open No. 52-143
As stated in No. 841, Ta-E3i alloy etc. have excellent heat resistance.

しかしながら、近年のサーマルヘッドの熱印字記録の高
速化を実現させるためには、数S +)秒の短い印字パ
ルスにより、記録を行なわなければならず、そのために
は、薄膜発熱抵抗体に大電力を投入し、400℃以上も
の温度を発生させる必要がある。加えて、高電力化は、
薄膜発熱抵抗体の抵抗値を大きくしない限り、必然的に
電流が大きくなるため、次の2つの問題を生じる。1つ
は、薄膜発熱抵抗体の抵抗値に対して、該薄膜発熱抵抗
体に電力を供給する電極の抵抗値が無視できなくなるた
め、該電極の長さの差異により、各薄膜発熱抵抗体の発
熱量が異なり、記録パターンに濃度差を生じたり、また
特に、高解像度化した際に、該電極における電力消費が
問題になる。これを避けるには、該電極の厚さを極端に
大きくすることが考えられるが、このとき構造上、大き
な不都合を生じる。もう1つは、加熱用電源、スイッチ
ング回路等の駆動系の容量を大きくしなければならない
等の問題が生じる。
However, in order to achieve high-speed thermal printing recording using recent thermal heads, it is necessary to perform printing using short printing pulses of several S + It is necessary to generate a temperature of 400°C or more. In addition, high power
Unless the resistance value of the thin film heating resistor is increased, the current will inevitably increase, resulting in the following two problems. One is that the resistance value of the electrode that supplies power to the thin film heating resistor cannot be ignored with respect to the resistance value of the thin film heating resistor, so the difference in the length of the electrode causes the difference in the resistance of each thin film heating resistor. The amount of heat generated is different, causing a density difference in the recorded pattern, and especially when the resolution is increased, power consumption in the electrode becomes a problem. In order to avoid this, it is conceivable to make the thickness of the electrode extremely large, but this would cause a major structural inconvenience. Another problem is that the capacity of the drive system, such as the heating power source and the switching circuit, must be increased.

以上の点から、薄膜発熱抵抗体としては、高温安定性と
、高抵抗値の実現が可能であることの2つが最低限必要
である。
From the above points, a thin film heating resistor must have two minimum requirements: high temperature stability and the ability to realize a high resistance value.

これらの点から、前記Ta−8l合金を考えると、該T
a−8t合金は、耐熱性が比較的安定な領域が、比抵抗
200〜260μΩ−1程度と小さく、従って、大きな
抵抗値を得ようとすれば、例えばL/W=2(Lは、薄
膜発熱抵抗体のドツト長、Wは、ドツト巾)で、500
Ωの抵抗値を得るため(最近の技術の流れでは、これ以
上の抵抗値も要求される)には、膜厚が、100A程度
と非常に薄く、製造時の制御が極めて難しく、また膜質
としても不安定となる。これを避けるためには、該Ta
−3i合金の厚みを大きくし、蛇行形状等にパターン形
成し、前記り長を増すことによシ、抵抗値を上げること
も可能であるが、高解像度化する際、この方法は、製造
上極めて難しい。
From these points, considering the Ta-8l alloy, the T
A-8T alloy has a relatively stable heat resistance region as small as 200 to 260 μΩ-1 in specific resistance. Therefore, if you want to obtain a large resistance value, for example, L/W = 2 (L is a The dot length of the heating resistor (W is the dot width) is 500
In order to obtain a resistance value of Ω (recent technological trends require a higher resistance value), the film thickness is extremely thin, around 100A, and control during manufacturing is extremely difficult, and the film quality is It also becomes unstable. To avoid this, the Ta
It is possible to increase the resistance value by increasing the thickness of the -3i alloy, forming a pattern in a meandering shape, etc., and increasing the length of the pattern, but when achieving high resolution, this method is difficult to achieve due to manufacturing issues. Extremely difficult.

また、該Ta−8t合金は、短パルス巾駆動時の耐熱性
が尚十分でなく、従って、該Ta−3L合金は、サーマ
ルヘッドに要求される高速化、高耐熱化の点で十分なも
のではなかった。
Furthermore, the Ta-8t alloy does not have sufficient heat resistance during short pulse width driving, and therefore the Ta-3L alloy is sufficient in terms of the high speed and high heat resistance required for thermal heads. It wasn't.

発明が解決しようとする問題点 上述した様に、従来のサーマルヘッドの薄膜発熱抵抗体
の材料であるTa−8l合金は、サーマルヘッドの高速
化、高耐熱化のためには、尚十分な特性を有していない
。かかる点から、本発明は、サーマルヘッドの高速化、
高耐熱化のために必要な、高抵抗値従って、高比抵抗で
、高温安定性に優れ、高耐熱性を有する薄膜発熱抵抗体
を備えた薄膜型サーマルヘッドを提供することを目的と
するものでなるもの特に、遷移金属炭化物としてチタン
炭化物を用いたものを備えた薄膜型サーマルヘッドを構
成したものである。
Problems to be Solved by the Invention As mentioned above, the Ta-8L alloy, which is the material for the thin film heating resistor of the conventional thermal head, does not have sufficient characteristics to make the thermal head faster and more heat resistant. does not have. From this point of view, the present invention aims to increase the speed of the thermal head,
The object of the present invention is to provide a thin-film thermal head equipped with a thin-film heating resistor that has high resistance, high specific resistance, excellent high-temperature stability, and high heat resistance necessary for high heat resistance. In particular, a thin film type thermal head is constructed using titanium carbide as the transition metal carbide.

作    用 上述した構成における前記チタン炭化物は、硬質で高融
点をもち、化学的に安定であるが、比抵抗は200μΩ
−α程度と必ずしも大きくないため、これに珪素および
珪素酸化物を混合させることにより、高比抵抗で、高温
安定性に優れ、高耐熱性に富み、抵抗値変動の小さい薄
膜発熱抵抗体を有する薄膜型サーマルヘッドが構成でき
る。
Function The titanium carbide in the above structure is hard, has a high melting point, and is chemically stable, but has a specific resistance of 200 μΩ.
-α is not necessarily large, so by mixing it with silicon and silicon oxide, a thin film heating resistor with high specific resistance, excellent high temperature stability, high heat resistance, and small resistance fluctuation can be created. A thin film type thermal head can be constructed.

実施例 第1図に、本発明における薄膜型サーマルヘッドの基本
構成を示す。電気的絶縁性基板1上に、スパッタリング
等の薄膜形成技術により、遷移金属炭化物、珪素、珪素
酸化物でなる薄膜発熱抵抗体2を形成し、この上に前記
薄膜抵抗体2に通電するだめの電極3を形成した後、フ
ォトリソグラフィー技術により、パターン形成し、この
上に絶縁物、半導体等でなる保護膜4(保護膜4は通常
薄膜発熱抵抗体2の酸化防止と、紙に印字する際の接触
摩耗を防ぐために存在する)を形成した構成をとる。本
実施例では、前記遷移金属炭化物として、チタン炭化物
を用いたチタン炭化物、珪素。
Embodiment FIG. 1 shows the basic configuration of a thin film type thermal head according to the present invention. A thin film heating resistor 2 made of a transition metal carbide, silicon, or silicon oxide is formed on an electrically insulating substrate 1 by a thin film forming technique such as sputtering, and a heat generating resistor 2 made of a transition metal carbide, silicon, or silicon oxide is formed on the electrically insulating substrate 1. After forming the electrode 3, a pattern is formed using photolithography technology, and a protective film 4 made of an insulating material, a semiconductor, etc. (exists to prevent contact wear). In this example, titanium carbide using titanium carbide and silicon are used as the transition metal carbide.

珪素酸化物でなる薄膜発熱抵抗体について述べるものと
する。該チタン炭化物、珪素、珪素酸化物でなる(以後
TiC−8l−8i02と略記する)薄膜発熱抵抗体は
、例えば、従来のスパッタリング技術を用いて容易に形
成することができる。第2図には、スパッタリングター
ゲットの一例として、本実施例で用いたスパッタリング
ターゲットを示す。
A thin film heating resistor made of silicon oxide will be described. The thin film heating resistor made of titanium carbide, silicon, or silicon oxide (hereinafter abbreviated as TiC-8l-8i02) can be easily formed using, for example, conventional sputtering technology. FIG. 2 shows the sputtering target used in this example as an example of the sputtering target.

160φTiCターゲツトS上に、51076と、スパ
ッタ率から考えて、該5i02板6の占有面積のほぼ2
倍の占有面積を有するSt 板7をのせ、該SiO□板
6と81板7を合わせた面積のTicターゲット60面
積に対する比を各々20%、30%。
51076 on the 160φ TiC target S, which is approximately 2 of the occupied area of the 5i02 plate 6 considering the sputtering rate.
A St 2 plate 7 having twice the occupied area is placed, and the ratio of the combined area of the SiO□ plate 6 and the 81 plate 7 to the area of the Tic target 60 is 20% and 30%, respectively.

ao%と変えて、Arガスにより、1.5X10−2T
orr、RFパワー400W、基板温度5001?:で
高周波スパッタリングを行ない、電気的絶縁性基板1上
に該T ic −3L −8io2薄膜発熱抵抗体を形
成した。第3図には、前記方法により得られた該Tic
−3i−8in2薄膜発熱抵抗体の比抵抗と抵抗温度係
数を示す。横軸には、S ! 02板6とSi 板7を
合わせたターゲツト面積比をと!ll(但し、SiO□
板6の占有面積はSi板7の占有面積のほぼ半分)縦軸
には、比抵抗と抵抗温度係数をとっている。
1.5X10-2T by Ar gas instead of ao%
orr, RF power 400W, substrate temperature 5001? : High frequency sputtering was performed to form the Tic-3L-8io2 thin film heating resistor on the electrically insulating substrate 1. FIG. 3 shows the Tic obtained by the above method.
-3i-8in2 The specific resistance and temperature coefficient of resistance of the thin film heating resistor are shown. On the horizontal axis, S! What is the target area ratio of the 02 plate 6 and the Si plate 7? ll (However, SiO□
(The area occupied by the plate 6 is approximately half that of the Si plate 7) The vertical axis shows the specific resistance and the temperature coefficient of resistance.

また、直線8.直線9は、各々基板温度SOO℃でスパ
ッタリングした直後の抵抗温度係数と比抵抗であり、直
線10.直線11は、各々スパッタリング後に、660
℃、2時間の真空熱処理を施した後の抵抗温度係数と比
抵抗である。同図より明らかな通り、SOO〜660C
の間で、比抵抗変動は殆んどなく、抵抗温度係数の変動
も小さく、高温安定性を有しており、また、比抵抗20
00μΩ−αで、抵抗温度係数が一1oO〜−160p
pw′deqというのは、従来のTa−3i合金に比し
て、比抵抗で10倍程度、抵抗温度係数は、若干Ta−
3i合金の方が正方向、従ってTa−5i合金に比して
、格段の特性改善になっている。ちなみに1第1図に示
す構造として、サーマルヘッドとした後、これにパルス
巾1m5ec、パルス周期10 m8110で連続パル
ス印加を行ない、8X104回パルスを印加した際に、
抵抗値変動+10%を与える印加電力(唱−)(破断電
力と呼ぶ)を該TiC−5t−3iO2薄膜発熱抵抗体
およびTa−3i合金薄膜発熱抵抗体について示すと、
下の表1の通りとなる。
Also, straight line 8. Straight line 9 represents the temperature coefficient of resistance and specific resistance immediately after sputtering at a substrate temperature of SOO°C, and straight line 10. The straight lines 11 each have a diameter of 660 after sputtering.
These are the temperature coefficient of resistance and specific resistance after vacuum heat treatment at ℃ for 2 hours. As is clear from the figure, SOO~660C
There is almost no variation in resistivity between 20 to 30%, the variation in temperature coefficient of resistance is small, and it has high temperature stability.
00μΩ-α, resistance temperature coefficient is 11oO~-160p
pw'deq is about 10 times the resistivity of conventional Ta-3i alloy, and the temperature coefficient of resistance is slightly higher than Ta-3i alloy.
The properties of the 3i alloy are significantly improved in the positive direction, and therefore compared to the Ta-5i alloy. By the way, after forming a thermal head with the structure shown in Figure 1, continuous pulses were applied to it with a pulse width of 1 m5 ec and a pulse period of 10 m8110, and when the pulse was applied 8 x 104 times,
The applied power (singing) (referred to as rupture power) that gives a resistance value fluctuation of +10% is shown for the TiC-5t-3iO2 thin film heating resistor and the Ta-3i alloy thin film heating resistor.
It is as shown in Table 1 below.

表より、耐熱性の面でも該TiC−3i−3in2薄膜
発熱抵抗体は、Ta−8i合金薄膜発熱抵抗体に比して
、格段に改善されていることは、明らかである。
From the table, it is clear that the TiC-3i-3in2 thin film heating resistor is significantly improved in terms of heat resistance compared to the Ta-8i alloy thin film heating resistor.

また、第4図に抵抗変化特性の一例として、パルス巾1
m5ecパルス周期20 ma ec印加電力64W/
j  で連続パルス印加した際の抵抗変化率を示したも
のである。横軸は、パルス印加回数を表わし、縦軸は、
抵抗変化率を表わす。
In addition, Fig. 4 shows an example of resistance change characteristics with a pulse width of 1
m5ec pulse period 20 maec applied power 64W/
It shows the resistance change rate when continuous pulses are applied at j. The horizontal axis represents the number of pulse applications, and the vertical axis:
Represents the rate of change in resistance.

曲線12は、Ta−8i合金薄膜発熱抵抗体9曲線13
は、本発明のT i C−8i−3i02薄膜発熱抵抗
体の各々抵抗変化特性であり、比較として、曲線14は
、チタン炭化物と珪素酸化物でなる(以後TiC−8i
n2と呼ぶ)#膜発熱抵抗体での抵抗変化特性を示し、
曲線16は、チタン炭化物と珪素でなる(以後TiC3
iと呼ぶ)薄膜発熱抵抗体の抵抗変化特性を示す。
Curve 12 is Ta-8i alloy thin film heating resistor 9 curve 13
are the resistance change characteristics of the T i C-8i-3i02 thin film heating resistor of the present invention, and for comparison, curve 14 is made of titanium carbide and silicon oxide (hereinafter referred to as TiC-8i
(referred to as n2) shows the resistance change characteristics of the #film heating resistor,
Curve 16 is composed of titanium carbide and silicon (hereinafter referred to as TiC3
(referred to as i) shows the resistance change characteristics of the thin film heating resistor.

同図より、前記Ta−5i合金薄膜発熱抵抗体は、比較
的早いパルス回数で、抵抗変化が負方向に急激に変位し
、(Ta−3tのグレイン成長等による)これによる過
剰な電力の投入により、破壊が生じやすくなる17)K
対し、該T i C−8i −8io2薄膜抵抗体。
From the same figure, the Ta-5i alloy thin film heating resistor shows a sudden change in resistance in the negative direction with a relatively fast number of pulses, and this causes excessive power input (due to grain growth of Ta-3t, etc.). 17) K
In contrast, the T i C-8i-8io2 thin film resistor.

T 五〇−3t02 薄膜発熱抵抗体、 Tic−3i
薄膜発熱抵抗体は、いずれも、抵抗変化特性が格段に改
善され、耐熱性も良好と言えるが、その中でも特に、該
T I C−3i −S i02薄膜発熱抵抗体の特性
が、最も良好と言える。これは、次の様に説明できる。
T50-3t02 Thin film heating resistor, Tic-3i
All of the thin film heating resistors can be said to have significantly improved resistance change characteristics and good heat resistance, but among them, the TIC-3i-S i02 thin film heating resistor has the best characteristics. I can say it. This can be explained as follows.

曲線142曲線16より、T 1C−8i02薄膜発熱
抵抗体の抵抗変化は、負方向に変位しており、(アニー
ル効果が支配的と考えられる) Tic−3i薄膜発熱
抵抗体の抵抗変化は、正方向に変位しており、(酸化も
しくは、Stの熱凝集等が支配的と考えられる)従って
、該TiC−8i−3in2薄膜発熱抵抗体は、TiC
IC3iとS 102を適切な比で混合することで、前
記Tic−3L 、TiC−3iOθ両者の性質が、打
ち消し合うことにより、良好な特性を有する様になって
いる。
From curve 142 and curve 16, the resistance change of the T1C-8i02 thin film heating resistor is displaced in the negative direction (the annealing effect is considered to be dominant), and the resistance change of the Tic-3i thin film heating resistor is displaced in the positive direction. (It is thought that oxidation or thermal aggregation of St is dominant) Therefore, the TiC-8i-3in2 thin film heating resistor is
By mixing IC3i and S102 in an appropriate ratio, the properties of both Tic-3L and TiC-3iOθ cancel each other out, resulting in good properties.

この様に、チタン炭化物と珪素、珪素酸化物で構成され
る薄膜発熱抵抗体は、高比抵抗で、高温安定性に優れ、
耐熱性に富み、抵抗変動が小さいため、これを用いた薄
膜型サーマルヘッドは、高速化、高耐熱化に容易に対応
できる。尚、本実施例では、遷移金属炭化物として、チ
タン炭化物を用いだが、これ以外の高融点な遷移金属炭
化物例えば、ジルコニウム炭化物、ノ・フニウム炭化物
In this way, the thin film heating resistor composed of titanium carbide, silicon, and silicon oxide has high resistivity and excellent high temperature stability.
Because it has high heat resistance and small resistance fluctuations, thin-film thermal heads using it can easily accommodate higher speeds and higher heat resistance. In this example, titanium carbide is used as the transition metal carbide, but other transition metal carbides having a high melting point such as zirconium carbide and nitride carbide may also be used.

バナジウム炭化物、ニオブ炭化物、タンタル炭化物、モ
リブデン炭化物、タングステン炭化物などを用いても、
これらは、硬質で、高温安定性を有し、化学的にも安定
であるため、これらに珪素。
Even if vanadium carbide, niobium carbide, tantalum carbide, molybdenum carbide, tungsten carbide, etc. are used,
These include silicon because they are hard, have high temperature stability, and are chemically stable.

珪素酸化物を適切に混合し薄膜発熱抵抗体を構成するこ
とで、同様の効果を得ることができる。
A similar effect can be obtained by appropriately mixing silicon oxide to form a thin film heating resistor.

発明の効果 以上述べてきた様に、本発明は、遷移金属炭化物、珪素
、珪素酸化物を適切に混合して構成される高比抵抗でか
つ熱安定度が高く、抵抗値変動の小さい薄膜発熱抵抗体
を備えた薄膜型サーマルヘッドであり、これにより、サ
ーマルヘッドの高速化、高耐熱化に容易に対応でき、そ
の工業的価値は、非常に高い。
Effects of the Invention As described above, the present invention provides a thin film heat generating device which has high resistivity, high thermal stability, and small resistance fluctuation, and is composed of an appropriate mixture of transition metal carbide, silicon, and silicon oxide. This is a thin film type thermal head equipped with a resistor, which makes it possible to easily support higher speed and higher heat resistance of the thermal head, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における薄膜型サーマルヘッドの基本
構造図、第2図、第3図、第4図は、各々、本発明の一
実施例としての薄膜発熱抵抗体のΦ4ツタリングターゲ
、7ト形状図、比抵抗と抵抗温度係数特性図、抵抗変化
率特性図である。 2・・・・・・本発明における遷移金属炭化物、珪素。 珪素酸化物からなる薄膜発熱抵抗体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名l・
・・ J−社、、!&4ンL羞坂 第1図      ?10.薄J!莢光9?!、物紐3
・・7t   楊 4・・・ イ月−j!λ1 第2図 第3図
FIG. 1 is a basic structural diagram of a thin film type thermal head according to the present invention, and FIGS. FIG. 7 is a shape diagram, a resistivity and resistance temperature coefficient characteristic diagram, and a resistance change rate characteristic diagram. 2...Transition metal carbide and silicon in the present invention. Thin film heating resistor made of silicon oxide. Name of agent: Patent attorney Toshio Nakao and one other person
...J-sha...! &4nL Shasaka Figure 1? 10. Thin J! Capsule 9? ! , string 3
...7t Yang 4... Izuki-j! λ1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)遷移金属炭化物と珪素および珪素酸化物からなる
薄膜発熱抵抗体を備えたことを特徴とする薄膜型サーマ
ルヘッド。
(1) A thin-film thermal head characterized by comprising a thin-film heating resistor made of a transition metal carbide, silicon, and silicon oxide.
(2)遷移金属炭化物が、チタン炭化物である特許請求
の範囲第1項に記載の薄膜型サーマルヘッド。
(2) The thin film type thermal head according to claim 1, wherein the transition metal carbide is a titanium carbide.
JP59260221A 1984-12-10 1984-12-10 Thin film type thermal head Pending JPS61137302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260221A JPS61137302A (en) 1984-12-10 1984-12-10 Thin film type thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260221A JPS61137302A (en) 1984-12-10 1984-12-10 Thin film type thermal head

Publications (1)

Publication Number Publication Date
JPS61137302A true JPS61137302A (en) 1986-06-25

Family

ID=17345028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260221A Pending JPS61137302A (en) 1984-12-10 1984-12-10 Thin film type thermal head

Country Status (1)

Country Link
JP (1) JPS61137302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370670A (en) * 1991-06-18 1992-12-24 Mibu Denki Seisakusho:Kk Tool for electric connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370670A (en) * 1991-06-18 1992-12-24 Mibu Denki Seisakusho:Kk Tool for electric connection

Similar Documents

Publication Publication Date Title
JPS61137302A (en) Thin film type thermal head
JPS62238767A (en) Recorder
JPS6254403A (en) Thin film type thermal head
JPS61137303A (en) Thin film type thermal head
JPS6254402A (en) Thin film type thermal head
JPS61260603A (en) Electronic component
JPS61136201A (en) Thin film type thermal head
JPS62255159A (en) Thin film-type thermal head
JPS62167056A (en) Thermal head
JPH02248260A (en) Thin film type thermal head
JPS6078768A (en) Thermal recording head
JPH069163B2 (en) Thin film heating resistor
JPS63202463A (en) Thermal head
JPS63170901A (en) Heating resistor and manufacture of the same
JPH01256101A (en) Thin film type thermal head
JP2916215B2 (en) Method of manufacturing resistor thin film
JPH0254786B2 (en)
JPS60235403A (en) Thin film resistor
JP2567252B2 (en) Thin-film thermal head
JPH07132629A (en) Thermal head and production thereof
JPS6293901A (en) Thermal head and manufacture of the same
US6219079B1 (en) Thin-film thermal head incorporating conductive layer containing Cu-Ag alloy
JPH0599758A (en) Manufacturing of platinum temperature sensor using zirconia base plate
JPS62255160A (en) Thin film-type thermal head
JPS60259469A (en) Thermal head