JPH01256101A - Thin film type thermal head - Google Patents

Thin film type thermal head

Info

Publication number
JPH01256101A
JPH01256101A JP63084938A JP8493888A JPH01256101A JP H01256101 A JPH01256101 A JP H01256101A JP 63084938 A JP63084938 A JP 63084938A JP 8493888 A JP8493888 A JP 8493888A JP H01256101 A JPH01256101 A JP H01256101A
Authority
JP
Japan
Prior art keywords
thin film
thermal head
heating resistor
sio2
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63084938A
Other languages
Japanese (ja)
Inventor
Norimitsu Sanhongi
法光 三本木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP63084938A priority Critical patent/JPH01256101A/en
Publication of JPH01256101A publication Critical patent/JPH01256101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To realize the high speed operation of a thermal head, and improve the high temperature stability, by making the temperature coefficient of resistance of Ta-SiO2 as a thin film heater resistor approximate to zero. CONSTITUTION:The temperature coefficient of resistance TCR of a thin film heating resistor 2 composed of tantalum-silicon oxide (Ta-SiO2) is made 0 to -500ppm in the resistivity range of 1-100mOMEGA.cm. As a result, the TCR can be almost equal to zero, by performing Ta-SiO2 sputtering, wherein a target whose SiO2 mol ratio in the target composition ratio is in a range of 30-70%, and argon gas pressure is kept about 10<-2>Torr. Thereby, the high speed operation of a thermal head is realized, and the improvement of high temperature stability and durability can be easily attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱記録印字に用いられる薄膜型サーマルヘッ
ドの薄膜発熱体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film heating element for a thin film type thermal head used for thermal recording printing.

(従来の技術〕 −taに熱記録印字に用いられるサーマルヘッドは、絶
I!基板上に複数個の発熱抵抗体および、発熱抵抗体に
電力を供給するための電極を設け、電極に電圧を印加す
る事により発熱抵抗体にジュール熱を発生させ、これに
より感熱記録紙上に数字、文字、記号など印字記録を行
うものである。
(Prior art) - The thermal head used for thermal recording printing is absolutely unique! A plurality of heat generating resistors and electrodes for supplying power to the heat generating resistors are provided on a substrate, and a voltage is applied to the electrodes. By applying this, Joule heat is generated in the heating resistor, and numbers, letters, symbols, etc. are printed and recorded on heat-sensitive recording paper.

このようなサーマルヘッドは近年、高速印字、大型化、
高密度化による低消費電流、高信頼性などの緒特性が強
く要求されている。
In recent years, such thermal heads have become faster printing, larger, and
There is a strong demand for characteristics such as low current consumption and high reliability due to high density.

高速印字としては数ミリ秒の短い印字パルスにより記録
を行わなければならず、そのためには発熱抵抗体に大電
流を投入し、瞬時に400℃以上もの温度を発生させる
必要がある。また大型化により発熱抵抗体の抵抗値に対
して、発熱抵抗体に電力を供給する電極の抵抗値が無視
できなくなるため、電極パターンにより各発熱抵抗体の
発熱量が異なり、記録パターンに濃度差が生したり、高
密度化により一度に駆動させる発熱抵抗体数が増すため
、加熱用電源やスイッチング回路等の駆動系の電流容量
が大きくなってしまう問題がある。
For high-speed printing, recording must be performed using short printing pulses of several milliseconds, and for this purpose it is necessary to apply a large current to the heating resistor to instantaneously generate a temperature of 400° C. or more. In addition, as the size increases, the resistance value of the electrode that supplies power to the heating resistor cannot be ignored compared to the resistance value of the heating resistor, so the amount of heat generated by each heating resistor differs depending on the electrode pattern, resulting in density differences in the recording pattern. Since the number of heating resistors to be driven at once increases due to high density, the current capacity of the drive system such as the heating power source and the switching circuit increases.

これらを解決するために発熱抵抗体材料としては、高温
安定性と高抵抗化の実現が必要であるが、従来の発熱体
材料の主流であった窒化タンタル(Ta−N)は、比抵
抗が200〜300μΩ・備前後と低く、最適な抵抗値
とするには膜厚が数 100人程庶出非常に薄くなり、
製造時の制御が極めて難しく、また膜質としても不安定
となる。これを避けるためにTa−Nの厚みを大きくし
、蛇行形状にパターンを形成する事により発熱体長を増
し、抵抗値を上げることも可能であるが、高解像度化す
る際にこの方法では製造上極めて難しく、歩留りが悪く
なるという問題があった。
To solve these problems, it is necessary for heating resistor materials to have high temperature stability and high resistance, but tantalum nitride (Ta-N), which has been the mainstream of conventional heating element materials, has a low specific resistance. The film thickness is as low as 200 to 300 μΩ, around 200 μΩ, and the optimum resistance value requires a film thickness of about 100.
Control during manufacturing is extremely difficult, and the film quality is also unstable. To avoid this, it is possible to increase the length of the heating element and increase the resistance value by increasing the thickness of Ta-N and forming a meandering pattern, but this method is difficult to manufacture when achieving high resolution. There was a problem that it was extremely difficult and the yield was low.

この為高抵抗が得られる、言い換えると高比抵抗の発熱
抵抗体材料としてTa−HのかわりにTa−5iO□が
考えられているが、Ta−5iJは比抵抗1〜100μ
Ω・c111程度の範囲においてそのTCPが−500
〜−1000pp+mとマイナス側に大きいため、高温
安定性に劣り、サーマルヘッドの薄膜発熱抵抗体材料と
しては不適当であった。
For this reason, Ta-5iO□ is considered as a heating resistor material that can obtain high resistance, or in other words, has a high specific resistance, instead of Ta-H, but Ta-5iJ has a specific resistance of 1 to 100μ.
The TCP is -500 in the range of about Ω・c111
Since it has a large negative value of ~-1000 pp+m, it has poor high temperature stability and is unsuitable as a thin film heating resistor material for a thermal head.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、サーマルへラドの発熱抵抗体材料とし
てTa−5i02は高速化、高温安定性に十分な特性を
有していない。
As mentioned above, Ta-5i02 does not have sufficient characteristics for high speed and high temperature stability as a heating resistor material for a thermal helad.

かかる点から本発明は、サーマルヘッドの高速化、高温
安定性のために必要な特性を有した薄膜発熱抵抗体を備
えた薄膜型サーマルヘッドを提供することを目的とする
ものである。
From this point of view, it is an object of the present invention to provide a thin film type thermal head equipped with a thin film heating resistor having characteristics necessary for increasing the speed of the thermal head and achieving high temperature stability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記問題点を解決するために、薄膜発熱抵抗体
製造時の条件を制御して、薄膜発熱抵抗体としてのTa
−5iOzのTCRをゼロに近くし、これを備えた薄膜
型サーマルヘッドを構成したものである。
In order to solve the above-mentioned problems, the present invention controls the conditions at the time of manufacturing the thin film heating resistor to produce Ta as the thin film heating resistor.
The TCR of -5iOz is made close to zero, and a thin film type thermal head equipped with this is constructed.

〔作用〕[Effect]

上述したようにTa−5iO□において高比抵抗の発熱
抵抗体を得ようとすると、TCPがマイナス側で大きく
なり、高温安定性が悪くなるという問題点がある為に、
製造時の条件を制御し高比抵抗でTCPがゼロに近い薄
膜発熱抵抗体が得られ、高温安定性に優れた薄膜発熱抵
抗体を備えたサーマルヘッドを構成できる。
As mentioned above, when trying to obtain a heating resistor with high specific resistance using Ta-5iO□, there is a problem that TCP increases on the negative side and high temperature stability deteriorates.
By controlling the manufacturing conditions, a thin film heating resistor with high resistivity and TCP close to zero can be obtained, and a thermal head equipped with a thin film heating resistor with excellent high temperature stability can be constructed.

〔実施例〕〔Example〕

第1図は本発明における薄膜型サーマルヘッドの断面図
を示す。
FIG. 1 shows a sectional view of a thin film type thermal head according to the present invention.

第1図において電気的絶縁基板l上にスパックリングに
よりTa−5iJよりなる薄膜発熱抵抗体2を形成し、
この上に薄膜発熱抵抗体に電力を供給するための電極3
を形成した後、フォトリソグラフィー技術によりパター
ン形成し、この上にFjl)1j4発熱抵抗体が発熱時
の酸化防止と、印字時怒熱記録紙との耐摩耗の為の保A
I膜4を形成した構成となっている。
In FIG. 1, a thin film heating resistor 2 made of Ta-5iJ is formed on an electrically insulating substrate l by spuckling,
On top of this is an electrode 3 for supplying power to the thin film heating resistor.
After forming a pattern, a pattern is formed using photolithography technology, and on top of this, a Fjl) 1j4 heating resistor is used to prevent oxidation during heat generation and to prevent abrasion with the recording paper that heats up during printing.
It has a structure in which an I film 4 is formed.

Ta−3iO□のスパッタリングは、コンベンショナル
スパッタにより行い、ターゲットにはTTa−5in焼
結体を用いた。スパッタリング条件の内、ターゲット組
成比とアルゴンガス圧を制御して抵抗温度係数(TCR
)を変化させた場合の関係を第2図、第3図に示す。
Sputtering of Ta-3iO□ was performed by conventional sputtering, and a TTa-5in sintered body was used as a target. Among the sputtering conditions, the target composition ratio and argon gas pressure are controlled to improve the temperature coefficient of resistance (TCR).
) are shown in FIGS. 2 and 3.

第2図はターゲラ1411成比以外のスパッタリング条
件を固定し、ターゲット組成比中の5iOzモル比に対
するTCPの変化を示したものである。
FIG. 2 shows the change in TCP with respect to the 5iOz molar ratio in the target composition ratio, with sputtering conditions other than the Targetera 1411 composition ratio fixed.

5iOzモル比の減少と共に比抵抗は小さくなるものの
、図に示すようにTCRはゼロに近づく。また第3図は
アルゴンガス圧以外のスパッタリング条件を固定して、
アルゴンガス圧に対するTCPの変化を示したものであ
り、アルゴンガス圧の上昇と共にTCPはゼロに近づき
、5 X 10−”Torr付近よりTCPはプラス側
に移る。この時比抵抗はアルゴンガス圧と共に上昇し、
10− tTorr台より急激に大きくなる。
Although the specific resistance decreases as the 5iOz molar ratio decreases, the TCR approaches zero as shown in the figure. In addition, Figure 3 shows that sputtering conditions other than argon gas pressure are fixed.
This shows the change in TCP with respect to argon gas pressure. TCP approaches zero as argon gas pressure increases, and TCP shifts to the positive side from around 5 X 10-"Torr. At this time, the specific resistance changes with argon gas pressure. rise,
It suddenly becomes larger than 10-tTorr.

次にTCPが異なるTa−5iO□薄膜発熱抵抗体を備
えたサーマルヘッドを、用いて連続パルス印加試験を行
った。
Next, a continuous pulse application test was conducted using a thermal head equipped with Ta-5iO□ thin film heating resistors with different TCPs.

スパッタリングには、ターゲット組成比中のSiO□モ
ル比が30%のTa−3iO□焼結体ターゲットを用い
て、アルゴンガス圧を変化させTCPが異なる薄膜発熱
抵抗体へ及び、薄膜発熱抵抗体Bを備えたサーマルヘッ
ドについて比較した。
For sputtering, a Ta-3iO□ sintered body target with a SiO□ molar ratio in the target composition ratio of 30% was used, and the argon gas pressure was changed to apply thin film heating resistors with different TCPs. A comparison was made of thermal heads equipped with

薄膜発熱抵抗体A、Bは下表ものである。Thin film heating resistors A and B are shown in the table below.

表I  Fjl膜発熱抵抗体 試験条件としてはパルス幅1m5ec+ パルス周期l
Q++pec+ 印加電力4(V/ ms ”で行い、
初期抵抗値との変化率を第4図に示した。この結果より
TCRが01111mに近い方が抵抗cmの変化率が小
さく、耐久性が著しく良いことがわかる。
Table I Fjl film heating resistor test conditions are pulse width 1m5ec + pulse period l
Q++pec+ Applied power 4 (V/ms”)
Figure 4 shows the rate of change from the initial resistance value. From this result, it can be seen that the closer the TCR is to 01111m, the smaller the rate of change in resistance cm and the significantly better durability.

以上述べてきた通り、Ta−5iO□スパツタリングに
おいてターゲットm酸比中の5iOzモル比が30〜7
0%の範囲のターゲットを用い、アルゴンガス圧が10
−”Torr台で行った場合、TCPがゼロに近く耐久
性が良いため、これを備えた薄膜型サーマルヘッドは極
めて信頼性が高く、容易に高速化、高温安定性に対応で
きる。
As mentioned above, in Ta-5iO□ sputtering, the 5iOz molar ratio in the target m acid ratio is 30 to 7.
Using a target in the 0% range, the argon gas pressure was 10%.
-" When carried out on a Torr stand, the TCP is close to zero and has good durability, so a thin film thermal head equipped with this is extremely reliable and can easily handle high speed and high temperature stability.

尚、本実施例ではスパッタリングターゲットにTa−5
iJ焼結体を用いたが、Ta及び5i(hの複合ターゲ
ットを用いても同様の結果が得られ、また、マグネトロ
ンスパッタによっても同様の結果が得られる事は言うま
でもない。
In this example, Ta-5 was used as the sputtering target.
Although an iJ sintered body was used, it goes without saying that similar results can be obtained using a composite target of Ta and 5i(h), and that similar results can also be obtained by magnetron sputtering.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、Ta−5ift発熱抵抗体
材料においてスパッタリング条件を制御し、TCPが0
〜−500ppm程度の薄■り発熱抵抗体を備えた薄膜
型サーマルヘッドであり、これによりサーマルヘッドの
高速化、高温安定性、耐久性の向上が容易にでき、その
工業的価値は非常に高い。
As described above, the present invention controls the sputtering conditions in the Ta-5ift heating resistor material so that the TCP is 0.
This is a thin film thermal head equipped with a thin heating resistor of ~-500ppm, which makes it easy to increase the speed, high temperature stability, and durability of the thermal head, and its industrial value is extremely high. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における薄膜型サーマルヘッドの断面図
、第2図はターゲッVt成比中のSiO□モル比に対す
るTCPの関係図、第3図はアルゴンガス圧に対するT
CPの関係図、第4図は本発明の一実施例として連続パ
ルス印加寿命を示した図である。 以上 出願人 セイコー電子工業株式会社
Figure 1 is a sectional view of the thin film thermal head according to the present invention, Figure 2 is a relationship between TCP and SiO□ molar ratio in the target Vt ratio, and Figure 3 is a diagram of TCP versus argon gas pressure.
The CP relationship diagram, FIG. 4, is a diagram showing the continuous pulse application life as an embodiment of the present invention. Applicant: Seiko Electronics Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)タンタル−酸化シリコン(Ta−SiO_2)よ
りなる薄膜発熱抵抗体を備え、該薄膜発熱抵抗体の抵抗
温度係数が比抵抗1〜100mΩ・cmの範囲において
、0〜−500ppmである薄膜型サーマルヘッド。
(1) Thin film type equipped with a thin film heating resistor made of tantalum-silicon oxide (Ta-SiO_2), the temperature coefficient of resistance of the thin film heating resistor being 0 to -500 ppm in a specific resistance range of 1 to 100 mΩ·cm thermal head.
JP63084938A 1988-04-06 1988-04-06 Thin film type thermal head Pending JPH01256101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63084938A JPH01256101A (en) 1988-04-06 1988-04-06 Thin film type thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63084938A JPH01256101A (en) 1988-04-06 1988-04-06 Thin film type thermal head

Publications (1)

Publication Number Publication Date
JPH01256101A true JPH01256101A (en) 1989-10-12

Family

ID=13844604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63084938A Pending JPH01256101A (en) 1988-04-06 1988-04-06 Thin film type thermal head

Country Status (1)

Country Link
JP (1) JPH01256101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320073A (en) * 2006-05-30 2007-12-13 Tohoku Ricoh Co Ltd Thermosensitive stencil printing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320073A (en) * 2006-05-30 2007-12-13 Tohoku Ricoh Co Ltd Thermosensitive stencil printing equipment

Similar Documents

Publication Publication Date Title
JPH026201B2 (en)
JPH01256101A (en) Thin film type thermal head
JPS6072750A (en) Thermosensitive recording head
JP2932661B2 (en) Manufacturing method of thermal head
JP3325787B2 (en) Thermal head and method of manufacturing the same
JPS62181162A (en) Thermal head
JPH0725174B2 (en) Method for manufacturing thick film type thermal head
JP2825209B2 (en) Manufacturing method of thin film thermal head
JPH0453202A (en) Heating resistor
JPH0647292B2 (en) Thin-film thermal head
JPS6145543B2 (en)
JPS6255712B2 (en)
JPS6243103A (en) Heating resistor
JPH01299058A (en) Thin-film type thermal head
JPH02155752A (en) Thermal head
JPS63226001A (en) Thermal head
JP2567252B2 (en) Thin-film thermal head
JPH05201047A (en) Thermal head
JPS6254402A (en) Thin film type thermal head
JPS63122573A (en) Thermal head
JPS6255901A (en) Thermal head
JPS6381074A (en) Recording ribbon
JPS62112302A (en) Heating unit for thermal head
JPS6110473A (en) Thermal head
JPH01232068A (en) Thermal head