JPH0453202A - Heating resistor - Google Patents
Heating resistorInfo
- Publication number
- JPH0453202A JPH0453202A JP2161895A JP16189590A JPH0453202A JP H0453202 A JPH0453202 A JP H0453202A JP 2161895 A JP2161895 A JP 2161895A JP 16189590 A JP16189590 A JP 16189590A JP H0453202 A JPH0453202 A JP H0453202A
- Authority
- JP
- Japan
- Prior art keywords
- heating resistor
- film
- resistance
- resistor
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 79
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 239000000470 constituent Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000005546 reactive sputtering Methods 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910006293 Si—N—O Inorganic materials 0.000 abstract 1
- 239000010408 film Substances 0.000 description 53
- 239000000203 mixture Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910011208 Ti—N Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 1
- 244000223014 Syzygium aromaticum Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000001115 mace Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Electronic Switches (AREA)
- Non-Adjustable Resistors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明はサーマルヘラl〜に用いて好適な発熱抵抗体
(こ関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a heating resistor suitable for use in a thermal spatula.
(従来の技術)
従来より、電流を通し発熱させて用いる発熱抵抗体はヒ
ータや感熱ヘットその(Jがの用途に供され、それぞれ
の用途に応した種少の発熱抵抗体月利か提案されている
。以下、サーマルヘッドに用いる発熱抵抗体1こつき説
明する。(Prior art) Heat-generating resistors that are used to generate heat by passing an electric current through them have been used for heaters, heat-sensitive heads, etc., and a small number of heat-generating resistors have been proposed for each purpose. Hereinafter, a heating resistor used in a thermal head will be explained.
υ−ンルヘツ[〜(J絵、文字等を表す印字ト・ントの
モザイクを感熱紙上に形成するため、感熱紙を印字ド・
ント毎に加熱して発色させるものであり、種々の構造の
ものか提案されでいる(例えば文献■ 電イ通信学会論
文u ’ 84 / 3 V o l 。υ−Nruhetsu [~(J) In order to form a mosaic of printed characters representing pictures, letters, etc. on thermal paper, thermal paper is printed with printed characters.
Various structures have been proposed (for example, see the paper published by the Institute of Telecommunications Engineers u'84/3 Vol.
J67−C−No、3 p、262−269釜照)。J67-C-No., 3 p., 262-269 Kamataru).
このようなサーマルヘッドの発熱抵抗体として、窒化タ
ンタル(Ta2N)の薄膜を用いることか多い。周知の
ように、丁82 N%ハイブリット■C等電気回路の抵
抗体に供した場合その抵抗値の安定性に関し電気回路に
適し1と非常(こ優れた安定性を得ることかできるか、
Ta2N1サーマルヘツ[〜の発熱抵抗体に供した場合
その耐酸化性及び耐熱性に関しサーマルヘッドにおいて
望まれる充分な耐性を得ることができない。そこでこの
耐性不足を補うへ〈サーマルヘッドに列し構造上の工夫
か行なわれでいる。この点(こつき図面を粂照し説明す
る。A thin film of tantalum nitride (Ta2N) is often used as the heating resistor of such a thermal head. As is well known, when used as a resistor in an electric circuit, such as 82 N% Hybrid ■C, the stability of its resistance value is very suitable for the electric circuit.
When a Ta2N1 thermal head is used as a heat generating resistor, sufficient resistance desired in a thermal head cannot be obtained regarding its oxidation resistance and heat resistance. Therefore, in order to compensate for this lack of resistance, structural improvements have been made in line with thermal heads. This point will be explained by referring to the detailed drawings.
第6図はサーマルヘッドの構成を概略的に刀マす断面図
であって、絶縁基板上に多数設けた印字素了のひとつ(
こ着目した構成を示す。FIG. 6 is a cross-sectional view schematically showing the configuration of the thermal head, which is one of the many printing elements provided on the insulating substrate (
This shows the configuration that we focused on.
第6図にも示すように、サーマルヘッドの印字素子10
F、を締縛基板12に設けIと発熱抵抗体14とこの発
熱抵抗体14上に、発熱抵抗体14の発熱部14aを除
く部分に相離間させて設けた給電体16.18とから成
り、図示士ジすらこの印字素f′−10を絶縁基板12
丁に多数設けてサーマルヘッドを構成する。そして給電
体16.18上に耐酸化膜20及び耐摩耗膜22姦順次
に設ける。As shown in FIG. 6, the printing element 10 of the thermal head
F is provided on the binding board 12 and consists of I, a heating resistor 14, and a power supply body 16.18 provided on the heating resistor 14 in a spaced apart portion of the heating resistor 14 excluding the heating portion 14a. , the illustrator also placed this printing element f'-10 on an insulating substrate 12.
A large number of thermal heads are provided on one side to form a thermal head. Then, an oxidation-resistant film 20 and a wear-resistant film 22 are sequentially provided on the power supply bodies 16 and 18.
耐酸化膜20及び耐摩耗膜22は印字素子10の保護膜
であり、特(こ耐酸化膜は品温(こ加熱する発熱部14
. aの酸化を防止しサーマルヘッドの長寿命化に太き
、〈寄与するものである。The oxidation-resistant film 20 and the wear-resistant film 22 are protective films for the printing element 10.
.. It prevents the oxidation of a and greatly contributes to extending the life of the thermal head.
第7図(A)= (B)はサーマルヘラ1−の発熱抵抗
体の平面形状を示す図である。FIGS. 7A and 7B are diagrams showing the planar shape of the heating resistor of the thermal spatula 1-.
発熱抵抗体]4の寿命を長くするためには発熱抵抗体1
4の膜厚を厚くすればよいか、Ta2Nの電気抵抗率は
3001」Ω・cm以下と小さくこの1”a2Nu用い
く一発熱抵抗体14を形成した場合、発熱抵抗体14の
平面形状を第7図(A)にも示すようにリボン状と()
C膜厚を厚くすると発熱抵抗体14の抵抗値は下がるの
で、印字に必要な電力を得るため発熱抵抗体14(こ供
給すべき電流値を大きくしなければならない。しがl)
ながら印字素子10の駆動用ICのコスト低減のために
は、発熱抵抗体14に供給すべき電流値を小さくする必
要かある。そi−’lて第7図(B ) +(=小すよ
うなミアンダ形の発熱抵抗体14か13案されでいる。Heating resistor] In order to extend the life of heating resistor 4,
Is it okay to increase the thickness of the heating resistor 14?The electrical resistivity of Ta2N is as small as 3001"Ω・cm or less, so when the heating resistor 14 is formed using this 1"a2Nu, the planar shape of the heating resistor 14 should be made thicker. As shown in Figure 7 (A), the ribbon shape and ()
As the C film thickness increases, the resistance value of the heating resistor 14 decreases, so in order to obtain the power necessary for printing, the current value to be supplied to the heating resistor 14 must be increased.
However, in order to reduce the cost of the driving IC for the printing element 10, it is necessary to reduce the current value to be supplied to the heating resistor 14. Therefore, a meander-shaped heating resistor 14 or 13, as shown in FIG.
ミアンダ形のもの−Cは発熱部1488幅狭な蛇行パタ
ーンとし、これ(こまって低い供給電流で一実用ト充分
な印字を行なえる高い抵抗値を有しがつ膜厚か厚い発熱
抵抗体14を実現する。In the meander-shaped type-C, the heating portion 1488 has a narrow meandering pattern, and the heating resistor 14 has a thick film and has a high resistance value that allows sufficient printing for one practical use with a low supply current. Realize.
(発明か解決しようとする課題)
ところか、近年(こおいでは、サーマルヘッドによる印
字に対し高精細化の要求が高まっている。(Problem to be solved by the invention) However, in recent years, there has been an increasing demand for higher definition printing by thermal heads.
より高精細な印字のためにはより微細な印字ト・シトを
発色させる必要かあるか、この1とめには印字素子10
を微細化しなければならない。(〕がしながら上述のミ
アンダ形の印字素子10ては発熱部141つか幅狭な蛇
行パターンであるのでこの微細化には技術トの限界があ
る。For higher definition printing, is it necessary to color the finer printing marks?
must be miniaturized. However, since the above-mentioned meander-shaped printing element 10 has a heating portion 141 or a narrow meandering pattern, there is a technological limit to miniaturization.
より微細な印字素:f′−10を形成づ−る1こめに(
J、発熱抵抗体14の平面形状をより簡易な形状例えは
リボン状と弓−るほうか有利であり、従って発熱抵抗体
14をリボン状となしで膜厚を厚くしても印字のために
実用上充分高い抵抗イ白が得られる高抵抗体材料の開発
か望まれる。このような高抵抗体材料と(〕て、従来、
例えばTa−3i−N、[は丁a−8]−〇そのほがの
抵抗体材「1が開発されCいる。これら材料はTa、S
i、N或はOを含む混合物−Cある1とめ1.000−
100,000 +、−iΩ・cm程度の高い電気抵抗
率ρを有するか、その一方、抵抗値の温度に対する依存
性が強く温度か高くなると電気抵抗率ρか低くなる傾向
かあっ1と。例えばT a −S j−N抵抗体材料て
膜厚2000〜300C)Aの発熱抵抗体14を形成L
ノIこ場合、シ用へ抵抗1=2にΩ/口がつ抵抗温度係
数か−1500−−2000ppm/6Cと4了り、印
字の15:め発熱抵抗体14に印加した駆動l\」(・
スのパルス丁子ノドで約10〜20%程度の電流増加か
起こる。Finer print element: at the 1st time forming f'-10 (
J. It is advantageous to make the planar shape of the heat generating resistor 14 into a ribbon shape or an arched shape. Therefore, even if the heat generating resistor 14 is not shaped like a ribbon and the film thickness is increased, it is not practical for printing. Furthermore, it is desired to develop a high-resistance material that can provide a sufficiently high resistance white. Conventionally, with such high-resistance materials,
For example, Ta-3i-N, [Ha-A-8]-〇A similar resistor material "1" has been developed.These materials are Ta, S
i, a mixture containing N or O -C 1 stop 1.000-
It has a high electrical resistivity ρ of about 100,000 +, -iΩ·cm, but on the other hand, the resistance value has a strong dependence on temperature, and as the temperature rises, the electrical resistivity ρ tends to decrease. For example, the heating resistor 14 with a film thickness of 2000 to 300 C) is formed using a T a -S j-N resistor material.
In this case, the resistance 1 = 2, Ω/temperature coefficient of resistance, -1500--2000ppm/6C. (・
A current increase of about 10 to 20% occurs when the pulsed clove throat is used.
このように発熱抵抗体]4の抵抗値か温度に依存する結
果、発熱抵抗体14の発熱温度に応じてその抵抗値が変
化して印字の際に発熱抵抗体14に印加する電力の制御
か困難(こなり、まプと絶縁基板10の温度上昇と共に
発熱抵抗体]4の発熱量が増加するという問題を生1し
る。As a result of the resistance value of the heat generating resistor 4 depending on the temperature, the resistance value changes according to the heat generation temperature of the heat generating resistor 14, thereby controlling the power applied to the heat generating resistor 14 during printing. This creates the problem that the amount of heat generated by the heating resistor 4 increases as the temperature of the insulating substrate 10 rises.
この発明の目的は上述lノ1と従来の問題点を解決する
ため、比抵抗値が大きくかつ低い抵抗温度係数を有する
発熱抵抗体を提供することにある。An object of the present invention is to provide a heating resistor having a large specific resistance value and a low temperature coefficient of resistance in order to solve the above-mentioned problems of the prior art.
(課題を解決するための手段)
この目的の達成を図る1とめ、この発明の発熱抵抗体は
、T1、△ρ、Sl、N及び○から成ることを特徴とす
る。(Means for Solving the Problems) In order to achieve this object, the heating resistor of the present invention is characterized in that it consists of T1, Δρ, Sl, N, and ○.
この発明の実施に当っては、工1を40〜60重量%、
八βを10〜30重量%、Siを1〜3重量%、Nを2
0〜30重量%及び○を2〜10重量%含む発熱抵抗体
とするのか好適である。In carrying out this invention, 40 to 60% by weight of Step 1,
10 to 30% by weight of 8β, 1 to 3% by weight of Si, and 2% of N.
It is preferable to use a heating resistor containing 0 to 30% by weight and 2 to 10% by weight of O.
(作用)
この発明の発熱抵抗体はTi、Aρ、S i、N及0’
Cつ本−含んで構成るT−i−−−Aρ−81−N−
○抵抗体(あり、丁1、△ρ及びNのみから成る11へ
!−N抵抗抵抗体メース1及び○の2種の元素を添加し
たものと考えることかできる。これらSl及びOの添加
Hr一応しC発熱抵抗体の電気的性質特に抵抗温度係数
を変化させることかできる。(Function) The heating resistor of this invention has Ti, Aρ, Si, N and 0'
C-consisting of T-i--Aρ-81-N-
○Resistor (with, 1, Δρ and 11 consisting only of N!-N resistor It can be thought of as a resistor with the addition of two elements, Mace 1 and ○.These additions of Sl and O Hr It is possible to change the electrical properties, particularly the temperature coefficient of resistance, of the C heating resistor.
この発明の発熱抵抗体をサーマルヘッドに供する場合、
発熱抵抗体は丁」を40〜60重量%、八ρを10=3
0重量%、Slを1〜3重量%、Nを20〜30重量%
及び○を2〜10重里%含むよう+=”iるのか好まし
い。このような組成範囲で各元素を含む発熱抵抗体はサ
ーマルヘッドの発熱抵抗体として実用に適し1と高い比
抵抗及び実用(こ適し1こ低い抵抗温度係数を有する。When using the heating resistor of this invention in a thermal head,
The heating resistor contains 40 to 60% by weight of ``Ding'' and 10 = 3 of 8ρ.
0% by weight, 1-3% by weight of Sl, 20-30% by weight of N.
It is preferable that the heating resistor containing each element in such a composition range is suitable for practical use as a heating resistor of a thermal head and has a high specific resistance of 1 and a practical resistance ( This suitably has a lower temperature coefficient of resistance.
(実施例) 以下、図面を参照しこの発明の実施例につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
尚、図面はこの発明か理解できる程度に概略的に示()
であるにすぎない。The drawings are shown schematically to the extent that this invention can be understood ()
It's just that.
この実施例はサーマルヘッドの発熱抵抗体に供し1と例
であり、以下の説明では、サーマルヘッドの製造工程の
説明とともにこの実施例につき説明する。This embodiment is an example of a heating resistor for a thermal head, and in the following description, this embodiment will be explained together with a description of the manufacturing process of the thermal head.
第3図(A)〜(C)はサーマルヘッドの製造工程を段
階的に示す断面図であり、この実施例の発熱抵抗体を第
6図に示す構成のサーマルヘッドに供した場合の製造工
程の一例を示す。3(A) to 3(C) are cross-sectional views showing step by step the manufacturing process of the thermal head, and the manufacturing process when the heating resistor of this example is used in the thermal head having the configuration shown in FIG. 6. An example is shown below.
まず絶縁基板12としてグレーズドアルミナ基板を用意
し、第3図(ハ)にも示すよう(こ、高周波スパッタ(
RFスパッタ)法により、この基板12の基板面12a
の全面に−Fi−△!5i−N−0発熱抵抗体24を成
膜する。このFl−△β−3j、 −N −0発熱抵抗
体24はT1(チタン)、Al2(アルミニウム)、S
i(シリコン)、N(窒素)及びO(酸素)から成り、
Tiを40〜60重量%、Aρを10〜30重里%、S
lを1〜3重量%、Nを20へ一30重量%及び○を2
〜10重量%含む。First, a glazed alumina substrate is prepared as the insulating substrate 12, and as shown in FIG.
The substrate surface 12a of this substrate 12 is
-Fi-△ on the entire surface! A 5i-N-0 heating resistor 24 is formed. This Fl-Δβ-3j, -N-0 heating resistor 24 is made of T1 (titanium), Al2 (aluminum), S
Consisting of i (silicon), N (nitrogen) and O (oxygen),
40-60% by weight of Ti, 10-30% by weight of Aρ, S
1 to 3% by weight of L, 20 to 30% of N, and 2% of ○.
Contains ~10% by weight.
第4図はこの実施例の発熱抵抗体24の成膜に用いlと
ターケラ1〜の構成を示す図であり、第4図(A)はタ
ーケーットの平面図及び第4図(B)は第4図(A)の
IV B −IV B線に沿って取った断面図である。FIG. 4 is a diagram showing the structure of the terquette 1 used for forming the heating resistor 24 of this embodiment, and FIG. 4(A) is a plan view of the terquette, and FIG. FIG. 4 is a cross-sectional view taken along line IVB-IVB of FIG. 4(A).
第4図に示づタ ケラ1〜は円盤形状のへβタゲット2
8、扇形状のT1ターゲット30及びチップ状の510
2ターゲ・ント32から成る。As shown in Figure 4, Takera 1~ is a disk-shaped β target 2.
8. Fan-shaped T1 target 30 and chip-shaped 510
It consists of 2 targets and 32 targets.
5i()z)9−ケラト32を平面的(こみたときの形
状を例えば−辺15mmの矩形とし、まIと[lターゲ
ット30の開き角θをθ=20°とし1.:。5i()z)9-The kerato 32 is made planar (the shape when folded is, for example, a rectangle with -sides of 15 mm, and the opening angle θ of the target 30 is θ=20°, and 1.:.
尚、第4図(A)中、T1ターゲット30に点をイ」
して−示−4゜
T’ j−A 12−8 i −N −0発熱抵抗体2
4の成膜時には、△ββターゲラへ28上にTiターゲ
・ント30とS〕02ターゲット32とを載置して用い
ると共にスパッタガス%Ar及びN2の混合ガスとして
、反応性スパッタを行なって発熱抵抗体24を成膜した
。△βターゲット28上に載置するS i O2ターゲ
ツト32の載置個数を一定個数例λ、ば6個に保持しノ
とまま丁lターゲット30の載置個数を変化させること
によって、発熱抵抗体24か含む構成元素の組成比を変
化させ制御Jる。発熱抵抗体24の比抵抗及び抵抗温度
係数(王CR)はこれら構成元素T1、Aj2、Sl、
N、○の絹成比特(こSi及び○の組成比(こ応して変
化する。また△r及びN2の混合ガスを用いた反応性ス
パッタを行なうことによってN%含む膜を成膜する。こ
の混合ガスは例えば90体積%△r及び10体積%N2
を含む。In addition, in Figure 4 (A), mark the T1 target 30.
-Indication-4゜T' j-A 12-8 i -N -0 Heat generating resistor 2
When forming the film No. 4, a Ti target 30 and a S]02 target 32 are placed on the Δββ target layer 28, and reactive sputtering is performed using a sputtering gas of a mixture of Ar and N2 to generate heat. A resistor 24 was formed into a film. The heating resistor It is controlled by changing the composition ratio of the constituent elements including 24 and 24. The specific resistance and temperature coefficient of resistance (CR) of the heating resistor 24 are determined by these constituent elements T1, Aj2, Sl,
The composition ratio of Si and O changes accordingly.A film containing % N is formed by reactive sputtering using a mixed gas of Δr and N2. This mixed gas is, for example, 90 volume% Δr and 10 volume% N2
including.
第2図に、これらターゲット及びスパッタガスを用いで
成膜した膜24の組成を示す。第2図(J△ρターゲッ
ト28上に総個数m個のT1ターゲット30を載置しで
成膜した場合に成膜された膜24か含む各元素Tj、A
β、Si、N、○の組成割合を示し1こ図であり、縦軸
に成膜された膜24か含む各元素の組成割合(重量%)
を及び横軸にT1ターゲットの開き角θの総和−m・θ
(d e q) @取って示しjとものである。図中、
丁1、N、△β、○及びSlの組成の変化をそれぞれ符
号口、ム、Ol・及び×でプロットして表し1と。FIG. 2 shows the composition of the film 24 formed using these targets and sputtering gases. FIG. 2 (Each element Tj, A included in the film 24 formed when a total number of m T1 targets 30 are placed on the J△ρ target 28)
The figure shows the composition ratios of β, Si, N, and ○, and the vertical axis is the composition ratio (weight %) of each element including the film 24 formed.
and the horizontal axis is the sum of the opening angle θ of the T1 target - m・θ
(d e q) @ Take and show j and things. In the figure,
Changes in the composition of D1, N, Δβ, ○, and Sl are plotted and expressed as 1, N, Δβ, ○, and Sl, respectively.
第2図からも理解できるように、T]ターゲッh30の
個数を増加させて開き角θの総和−m・θを増加させる
と成膜された膜24のT1の組成割合か増加する。また
開き角θの総和を減少させると次の■〜■のような傾向
を見い出すことかできる。(1)成膜された膜24のA
βの組成割合が増加()て膜組成はAρリッチな状態と
なる、■成膜され1と膜24のT1の組成割合は減少す
る、■成膜され1と膜24のNの組成割合は増加する、
■成膜され1と膜24のSj、Oの組成割合は共に減少
J−る。As can be understood from FIG. 2, when the number of T] targets h30 is increased and the sum of the opening angles θ is increased -m·θ, the composition ratio of T1 in the deposited film 24 increases. Furthermore, if the total sum of the opening angles θ is decreased, the following trends (■) to (■) can be found. (1) A of the deposited film 24
The composition ratio of β increases () and the film composition becomes Aρ-rich. ■ The composition ratio of T1 in the deposited 1 and film 24 decreases. ■ The composition ratio of N in the deposited 1 and film 24 decreases. To increase,
(2) The composition ratios of Sj and O in the film 1 and the film 24 both decrease.
第1図(こ、第4図1こ示すターゲットを用いて成膜し
1と膜24の電気的特性と第4図に示すタゲットにおい
てSi○2ターゲット32を省略して成層し1こ膜の電
気的特性とを示す。第1図は開き角0の総和−mθとし
で成膜した場合に成膜された膜の比抵抗と抵抗温度係数
TCRとを示す図であり、横軸に開き角θの総和を、左
側の縦軸に比抵抗(mΩ・cm)及び右側の縦軸に抵抗
温度係数(ppm/’ C)を取って示したものである
。FIG. 1 (FIG. 4) Electrical characteristics of film 1 and film 24 formed using the target shown in FIG. Figure 1 is a diagram showing the specific resistance and temperature coefficient of resistance TCR of a film formed when the film is formed with the total sum of opening angles of 0 - mθ, and the horizontal axis represents the opening angle. The total sum of θ is shown with specific resistance (mΩ·cm) on the vertical axis on the left and temperature coefficient of resistance (ppm/'C) on the vertical axis on the right.
図中、符号0及び・でブ[]ットLノた点線(j第4図
に示すターゲットにおいでへβターゲラ1〜28」二(
こ5102ターゲツト32を載置しないで成膜しlとA
ρ−T1−N膜の比抵抗及び抵抗温度係数の変化を、ま
1と符号△及びムてプロットしp実線は第4図に示ずタ
ーゲットにおいcAρ夕−ケラト28上に5102ター
ゲツト32を載置して成膜しlとAρ−Tj−N−8i
−○膜2Aの比抵抗及び抵抗温度係数の変化を表す。In the figure, the symbols 0 and dotted lines (j) indicate the targets shown in Figure 4.
This 5102 film is formed without placing the target 32.
The changes in resistivity and temperature coefficient of resistance of the ρ-T1-N film are plotted with signs △ and m, and the solid line is not shown in Figure 4. A film was formed by placing and forming a film.
-Represents changes in resistivity and temperature coefficient of resistance of film 2A.
第1図からも理解できるように、Aβ−下]N−3j−
○膜の比抵抗はAρ−王j−N膜の比抵抗よりも若干低
下するが、これに代えてApTi−N−3i−○膜24
の抵抗温度係数を△ρT’ i −N膜の抵抗温度係数
よりも大きく増加させその値を零(こより近い値とする
ことができ、従っでAρ−Ti−N系の膜ではSj、、
Oの添加により抵抗温度係数を大幅に改善することかで
きる。As can be understood from Fig. 1, Aβ-lower]N-3j-
Although the specific resistance of the ○ film is slightly lower than that of the ApTi-N-3i-○ film 24,
It is possible to increase the temperature coefficient of resistance of △ρT' i -N film to a value closer to zero, and therefore, in the Aρ-Ti-N film, Sj, ,
By adding O, the temperature coefficient of resistance can be significantly improved.
しか(〕この出願の発明者か行なった他の実験によれば
、Sl、○の過剰7.J添加は比抵抗か300mΩ・c
m以上となりかつ抵抗温度係数か−2000−−300
0ppm/’ Cとなり従ってサマルヘットの発熱抵抗
体に適した比抵抗及び抵抗温度係数か得られないので、
サーマルヘッドの発熱抵抗体に適した比抵抗及び抵抗温
度係数を有する発熱抵抗体を得るためには、Oを1〜3
重量%かつS]を2〜]O重量%の節回′C添加するの
が好ましいことを確認しIこ。サーマルヘッドの発熱抵
抗体に最適な発熱抵抗体を得るためには、Tj本50重
量%、八!を18重量%、Nを25重量%、Slを2重
量%及び○そ5重量%含む発熱抵抗体24を成膜するの
かよい。However, according to other experiments conducted by the inventor of this application, excessive addition of 7.J of Sl and ○ increases the resistivity by 300 mΩ・c.
m or more and the temperature coefficient of resistance is -2000--300
0 ppm/'C, and therefore the specific resistance and temperature coefficient of resistance suitable for the heating resistor of the thermal head cannot be obtained.
In order to obtain a heating resistor having a resistivity and temperature coefficient of resistance suitable for the heating resistor of a thermal head, O should be adjusted to 1 to 3
It was confirmed that it is preferable to add 2% to 2% by weight of S] to 2% by weight. In order to obtain the most suitable heating resistor for the heating resistor of the thermal head, Tj 50% by weight, 8! It is preferable to form a heating resistor 24 containing 18% by weight of N, 25% by weight of N, 2% by weight of Sl, and 5% by weight of ○.
ここでは第3図(ハ)に示す工程段階において例としで
、T]ターゲット30の開き角0の総和を120°、ス
パッタガスを、Ar及びN2%宮温及び常圧に19算し
て90体積%及び10体積%含む混合ガス、基板近傍で
のスパッタガス圧を1×1o″2TOrr、さらにスバ
・ンタバワーを200W及びスパッタ時間を30分とし
で、膜厚約1500人のTi−Aρ−8]−N−〇発熱
抵抗体24を成膜したものとする。この場合の発熱抵抗
体24の表面抵抗は約930Ω/口であり、このような
表面抵抗の発熱抵抗体24を用いればその形状をミアン
ダ型の形状(第7図(B)@照)に加工せずにより簡素
な形状例えばりポジ型の形状(第7図(A) g照)に
加工しても、ザマルヘットにおいで実用上望まれる抵抗
値の発熱抵抗体14を形成することかできる。Here, as an example, in the process step shown in FIG. Ti-Aρ-8 with a film thickness of approximately 1500% was prepared by using a mixed gas containing 10% by volume and 10% by volume, a sputtering gas pressure of 1×1o″2 TOrr near the substrate, a suba-interbower of 200W, and a sputtering time of 30 minutes. ]-N-〇 It is assumed that the heating resistor 24 is formed into a film.The surface resistance of the heating resistor 24 in this case is approximately 930Ω/hole, and if the heating resistor 24 with such a surface resistance is used, its shape will change. Even if it is processed into a simpler shape, such as a positive shape (see Fig. 7 (A)), without processing it into a meandering shape (see Fig. 7 (B)), it will not be practical in Zamalkhet. The heating resistor 14 having a desired resistance value can be formed.
発熱抵抗体24を成膜したのち、次に第3図(B)にも
示すように、発熱抵抗体24土に給電体26を形成する
。After forming the heating resistor 24, a power supply body 26 is then formed on the heating resistor 24, as shown in FIG. 3(B).
次いで、第3図(C)にも示すように、発熱抵抗体24
及び給電体26を平面形状がリボン状となるようにバタ
ーニングしてリボン型の発熱抵抗体14を形成し、その
のち発熱抵抗体14の発熱部14au露出するように給
電体26をバタングして発熱部14auはざみ相離間す
る給電体16及び18を発熱抵抗体14上に形成する。Next, as shown in FIG. 3(C), the heating resistor 24
Then, the power supply body 26 is buttered to have a ribbon-like planar shape to form a ribbon-shaped heating resistor 14, and then the power supply body 26 is buttered so that the heat generating portion 14au of the heat generation resistor 14 is exposed. Power feeders 16 and 18 are formed on the heat generating resistor 14, sandwiching the heat generating portion 14au and spaced apart from each other.
次に、第6図にも示すように、給電体16、18及び発
熱部+4a土に、5102から成る耐酸化膜20を形成
し、ざらに耐酸化膜20上に膜厚2 Ll rnのT
a 205から成る耐摩耗膜22を形成し、所定位置に
所定個数の印字素子10を備え1とり一?ルヘッl−を
完成する。Next, as shown in FIG. 6, an oxidation-resistant film 20 made of 5102 is formed on the power supply bodies 16 and 18 and the heat generating part +4a, and a T film with a film thickness of 2 Ll rn is roughly formed on the oxidation-resistant film 20.
A wear-resistant film 22 consisting of 205 is formed, and a predetermined number of printing elements 10 are provided at predetermined positions. Complete Ruhell.
ミアンダ型の発熱抵抗体14を形成するのではなく、リ
ボ′/型の発熱抵抗体14を形成すること1こよ−)(
、)第1ヘリソエツチングにより発熱抵抗体24本バタ
ーニ〕ノグした際の歩留りを向上することかでき、まp
印字素子10の微細化が容易(こなる。Instead of forming a meander type heating resistor 14, it is better to form a ribo'/type heating resistor 14.
,) The first helical sawing improves the yield when 24 heating resistors are battened.
The printing element 10 can be easily miniaturized.
第5図はサーマルヘッド(こおける電流変化の説明(こ
供づ−る図−Cある。第5図(B)は所定の印字濃度で
印字するに必要な印加電力でサーマルヘッドを駆動づ−
るため発熱抵抗体]4に印加したパルス幅2msの定電
圧駆動パルスの波形を示す図であり、縦軸に印加電圧及
び横軸に時間(ms)%取って示()た。ま1と第5図
(ハ)は第5図(B)に示す波形の定電圧駆動パルスを
印加し1こ際の発熱抵抗体14を流れる電流の変化を示
すものてあり、縦軸に発熱抵抗体14を流れる電流及び
横軸に時開(ms)を取って示し1.:。第5図(ハ)
中、サーマルヘッドの発熱抵抗体14を上述し1と実施
例で形成した表面抵抗930Ω/口のりホシ型のT1−
ハρ−N−3]−〇膜及びこれとは別に形成し1.:抵
抗温度係数−2200ppm/°Cのリボン型のTa−
3i−〇膜とした場合に、発熱抵抗体14を流れる電流
の変化をそれぞれ実線及び点線で示した。Figure 5 shows an explanation of current changes in the thermal head (Fig. C).
4 is a diagram showing the waveform of a constant voltage drive pulse with a pulse width of 2 ms applied to the heating resistor] 4, where the vertical axis shows the applied voltage and the horizontal axis shows the time (ms) %. Figures 1 and 5 (c) show the changes in the current flowing through the heating resistor 14 when a constant voltage drive pulse with the waveform shown in Figure 5 (B) is applied, and the vertical axis shows the change in the current flowing through the heating resistor 14. The current flowing through the resistor 14 and the time difference (ms) are plotted on the horizontal axis.1. :. Figure 5 (c)
In the middle, the heat generating resistor 14 of the thermal head is the surface resistance 930Ω/glue star type T1- formed in 1 and Example above.
ρ-N-3]-〇 film and formed separately from this 1. : Ribbon type Ta- with resistance temperature coefficient -2200ppm/°C
3i-0 film, the changes in the current flowing through the heating resistor 14 are shown by solid lines and dotted lines, respectively.
Ti−An −N−3i−0及び1− a −S j−
○膜いずれの場合も発熱抵抗体14の抵抗温度係数か負
であるため、第5図からも理解できるように、定電圧駆
動パルスの印加により発熱抵抗体14の温度か上昇する
と発熱抵抗体14の抵抗は減少し電流か増加する。しか
しなから電流変化率Δi・100/i(%)は王a−3
i−〇膜の場合にはは(よ20〜30%であるのに対し
上述した実施例のT j、−Aρ−N−3i−〇膜の場
合には(まぼ4%となり、電流変化率を非常(こ低く抑
えることかできる。プリンタやファクシミリでは印字時
の電流変化率を10%以内とすることか望まれており、
従って電流変化率4%は実用上充分に満足できる値−C
ある。Ti-An-N-3i-0 and 1-a-Sj-
In both cases, the temperature coefficient of resistance of the heating resistor 14 is negative, so as can be understood from FIG. The resistance of decreases and the current increases. However, the current change rate Δi・100/i (%) is
In the case of the i-〇 film, the current change is about 20 to 30%, whereas in the case of the Tj, -Aρ-N-3i-〇 film of the above-mentioned example, it is about 4%, and the current change is It is possible to keep the rate of change very low.For printers and facsimile machines, it is desired that the rate of change in current during printing be within 10%.
Therefore, the current change rate of 4% is a value that is fully satisfactory for practical purposes.
be.
この発明は上述した実施例(このみ限定されるものでは
なく、従って各構成成分の形状、個数、寸法、膜厚、形
成条件、成膜方法、数値的条件及びその(Jかの条件を
任意好適(こ変更することができる。This invention is applicable to the embodiments described above (but is not limited thereto, and therefore, the shape, number, dimensions, film thickness, formation conditions, film formation method, numerical conditions, and conditions of each component may be modified as desired). (This can be changed.
例えば成膜に用いるターゲットとして上述の実施例て述
へ1ともののほか、以下に挙げる(1)〜(4)のもの
を用いでもよい。For example, in addition to the target used in the film formation described in Embodiment 1 described above, targets (1) to (4) listed below may be used.
(1) T i−N、△f2N及び5iOzの3種の物
質から成る混合ターゲラ1〜
(2)T 1N、AnN及び513N4から成る混合タ
ーゲット
(3)TiN、Aβ203及び5in2から成る混合タ
ーゲット
(4)TiN、AρN及びSl:+I’J4から成る混
合ターゲット
これら(1)−(4)の混合ターゲットを用いる場合い
ずれの場合にも次の■〜@のいずれかひとつのスパッタ
ガスを用いるここかできる。(1) Mixed Targetera 1 to 1 consisting of three substances Ti-N, Δf2N and 5iOz (2) Mixed target consisting of T1N, AnN and 513N4 (3) Mixed target (4) consisting of TiN, Aβ203 and 5in2 ) A mixed target consisting of TiN, AρN, and Sl:+I'J4 When using the mixed targets (1) to (4), any one of the following sputtering gases can be used in either case. .
■△r及びN2の混合ガス
(ψAr、N2及び02の混合ガス
■ハrのみのガス
(発明の効果)
上述L/た説明からも明らかなように、この発明の発熱
抵抗体によれば、Tj、Aρ及びNのみから成る抵抗体
ベース(こS]−及び○の2種の元素を添加Ll1とも
のと考えることかでき、これらS]及び○の添加量に応
して発熱抵抗体の電気的性質狛(こ抵抗温度係数を変化
させることかできる。■ Mixed gas of △r and N2 (mixed gas of ψAr, N2 and 02 ■Gas of only Har (effects of the invention) As is clear from the above explanation of L/, according to the heating resistor of the present invention, A resistor base consisting only of Tj, Aρ and N (this S]- and ○ can be considered as the additive Ll1, and depending on the amounts of these S] and ○, the heating resistor's Electrical properties (temperature coefficient of resistance) can be changed.
この発明の発熱抵抗体をサーマルヘッドに供する場合、
発熱抵抗体(よTiを40〜60重量%、Af2を10
〜30重量%、Slを1〜3重量%、Nを20〜30重
量%及び0を2〜10重量%含むようにするのか好まし
い。このような組成紀囲で各元素を含む発熱抵抗体を形
成することによって、ミアンダ型よりも簡素な形状例え
ば1ノボン型の発熱抵抗体としてもサーマルヘッドの発
熱抵抗体と1ノで実用に適し1と高い抵抗値の発熱抵抗
体を形成でき、従ってサーマルヘッドの発熱抵抗体の駆
動用トライバICの低電流化か容易となり、低電流で動
作するトライバICを用いることによって生産コストの
低減を図れるという利点を生lノる。さらにサーマルヘ
ッドにおいでリボン型の発熱抵抗体を形成1−ることに
よって、発熱抵抗体の微細化か容易となるという利点を
生()る。When using the heating resistor of this invention in a thermal head,
Heating resistor (40 to 60% by weight of Ti, 10% of Af2)
Preferably, the content is 30% by weight, 1 to 3% by weight of Sl, 20 to 30% by weight of N, and 2 to 10% by weight of 0. By forming a heating resistor containing each element in such a compositional range, it is suitable for practical use as a heating resistor of a simpler shape than a meandering type, for example, a 1-no-bon type heating resistor as well as a heating resistor of a thermal head. 1, it is possible to form a heating resistor with a high resistance value of 1. Therefore, it is easy to reduce the current of the driver IC for driving the heating resistor of the thermal head, and production costs can be reduced by using a driver IC that operates with low current. This gives rise to the advantage of Furthermore, by forming a ribbon-shaped heating resistor in the thermal head, there is an advantage that the heating resistor can be easily miniaturized.
しかも上述のような組成範囲で各元素を含む発熱抵抗体
を形成することによって、より零に近い値の低い抵抗温
度係数を有し従って通電による抵抗値の減少か少ない発
熱抵抗体を形成することができ、従ってサーマルヘッド
駆動時に印加電力の制御が容易になる。Furthermore, by forming a heating resistor containing each element in the composition range as described above, it is possible to form a heating resistor that has a low temperature coefficient of resistance closer to zero, and therefore has a smaller resistance value when energized. Therefore, it becomes easy to control the applied power when driving the thermal head.
第1図は成膜された膜の電気的特性を示す図、第2図は
成膜された膜の組成を示す図、第3図(ハ)〜(C)は
サーマルヘッドの製造工程を概略的に示す図、
第4図(A)〜(B)はターゲットの構成の例を示す図
、
第5図(A)〜(B)は9−マルへ・ンドにおりる電流
変化の説明に供する図、
第6図はサーマルヘッドの印字素子の構成例を示す図、
第7図(A)〜(B)はサーマルヘラ1〜の発熱抵抗体
の平面形状を示す図である。
14.24・・・発熱抵抗体。
特許出願人 沖電気工業株式会社
+60
開き角θの総和(d e 9)
成膜された膜の電気的特性
第1゛図
成膜された膜の組成
第2図
]
サ
マルヘッドの印字素子の構成例
4aFigure 1 shows the electrical characteristics of the deposited film, Figure 2 shows the composition of the deposited film, and Figures 3 (C) to (C) outline the manufacturing process of the thermal head. Figures 4 (A) to (B) are diagrams showing examples of target configurations, and Figures 5 (A) to (B) are diagrams for explaining changes in current flowing to 9-margin. FIG. 6 is a diagram showing a configuration example of a printing element of a thermal head, and FIGS. 7(A) to 7(B) are diagrams showing a planar shape of a heating resistor of a thermal spatula 1. 14.24... Heat generating resistor. Patent applicant Oki Electric Industry Co., Ltd. +60 Sum of opening angles θ (d e 9) Electrical characteristics of the deposited film Figure 1 Composition of the deposited film Figure 2 Configuration example of the printing element of the thermal head 4a
Claims (2)
とする発熱抵抗体。(1) A heating resistor characterized by being made of Ti, Al, Si, N and O.
%、Siを1〜3重量%、Nを20〜30重量%及びO
を2〜10重量%含むことを特徴とする請求項1に記載
の発熱抵抗体。(2) 40-60% by weight of Ti, 10-30% by weight of Al, 1-3% by weight of Si, 20-30% by weight of N, and O
The heating resistor according to claim 1, characterized in that it contains 2 to 10% by weight of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2161895A JPH0453202A (en) | 1990-06-20 | 1990-06-20 | Heating resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2161895A JPH0453202A (en) | 1990-06-20 | 1990-06-20 | Heating resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0453202A true JPH0453202A (en) | 1992-02-20 |
Family
ID=15744050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2161895A Pending JPH0453202A (en) | 1990-06-20 | 1990-06-20 | Heating resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0453202A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004288981A (en) * | 2003-03-24 | 2004-10-14 | Mitsubishi Materials Corp | Thin film resistance material, resistor using same, and method of manufacturing resistor |
US8597474B2 (en) * | 2003-03-28 | 2013-12-03 | Ppg Industries Ohio, Inc. | Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal |
WO2015029915A1 (en) * | 2013-08-30 | 2015-03-05 | 三菱マテリアル株式会社 | Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor |
WO2015029914A1 (en) * | 2013-08-30 | 2015-03-05 | 三菱マテリアル株式会社 | Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor |
-
1990
- 1990-06-20 JP JP2161895A patent/JPH0453202A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004288981A (en) * | 2003-03-24 | 2004-10-14 | Mitsubishi Materials Corp | Thin film resistance material, resistor using same, and method of manufacturing resistor |
US8597474B2 (en) * | 2003-03-28 | 2013-12-03 | Ppg Industries Ohio, Inc. | Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal |
WO2015029915A1 (en) * | 2013-08-30 | 2015-03-05 | 三菱マテリアル株式会社 | Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor |
WO2015029914A1 (en) * | 2013-08-30 | 2015-03-05 | 三菱マテリアル株式会社 | Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor |
CN105264619A (en) * | 2013-08-30 | 2016-01-20 | 三菱综合材料株式会社 | Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor |
US10304597B2 (en) | 2013-08-30 | 2019-05-28 | Mitsubishi Materials Corporation | Metal nitride material for thermistor, method for producing same, and film type thermistor sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1716000B1 (en) | Micro-fluid ejection device having high resistance heater film | |
GB2072100A (en) | Thermal printhead | |
US4849605A (en) | Heating resistor and method for making same | |
JPH0453202A (en) | Heating resistor | |
JPH026201B2 (en) | ||
JPH0312551B2 (en) | ||
JPH06227015A (en) | Wear-resistant protective film for thermal head and preparation thereof | |
JP2870692B2 (en) | Thin-film thermal head | |
JPS62167056A (en) | Thermal head | |
JPH0453203A (en) | Heating resistor | |
JP2932661B2 (en) | Manufacturing method of thermal head | |
JPS62202753A (en) | Thin film type thermal head | |
JPS6118322B2 (en) | ||
JPS6072750A (en) | Thermosensitive recording head | |
JPS58122884A (en) | Heat-sensitive recording head | |
JPH0383660A (en) | Thermal head | |
JPH01256101A (en) | Thin film type thermal head | |
JP2000246929A (en) | Manufacture of thermal head | |
JPS62112302A (en) | Heating unit for thermal head | |
JPS6255712B2 (en) | ||
JPS62202755A (en) | Thin film type thermal head | |
JPS62202754A (en) | Thin film type thermal head | |
JPS62198101A (en) | Heating resistor and manufacture of the same | |
JPH0640525B2 (en) | Thermal head | |
JPH0712692B2 (en) | Thin-film thermal head |