JPH0453203A - Heating resistor - Google Patents

Heating resistor

Info

Publication number
JPH0453203A
JPH0453203A JP2161896A JP16189690A JPH0453203A JP H0453203 A JPH0453203 A JP H0453203A JP 2161896 A JP2161896 A JP 2161896A JP 16189690 A JP16189690 A JP 16189690A JP H0453203 A JPH0453203 A JP H0453203A
Authority
JP
Japan
Prior art keywords
heating resistor
film
target
resistance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2161896A
Other languages
Japanese (ja)
Inventor
Yukio Kasuya
糟谷 行男
Yoshiro Takahashi
高橋 良郎
Takashi Kanamori
孝史 金森
Yasuo Iguchi
泰男 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2161896A priority Critical patent/JPH0453203A/en
Publication of JPH0453203A publication Critical patent/JPH0453203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To make a change in the electric properties of a heating resistor in accordance with the adding quantity of Si and O, especially in the temperature coefficient of resistance by a method wherein two kinds of elements of Si and O are added to Ti, B and N. CONSTITUTION:A glazed alumina substrate is prepared as an insulated substrate 12, and a film of heat-generating resistor 24, containing 10 to 20wt.% Ti, 15 to 30wt.% B, 1 to 2wt.% Si, N of 30 to 40wt.% N and 20 to 26wt.% O, is formed on the whole surface of the substrate surface 12a. A BN target 30 and an SiO2 target 32 are placed on a TiN target 28, and a film is formed by conducting a reactive sputtering operation. The mixture gas containing 10vol.% N2, 2vol.% O2 and 88vol.% Ar is used as sputtering gas in terms of the normal temperature and the normal pressure, the sputtering gas pressure in the vicinity of the substrate is set at 1X10<-2>Torr and the sputtering power is set at 200W. The electric properties of the title heating resistor is controlled by changing the compositional ratio and also by changing the number of placed BN targets 30 in the state wherein a fixed number of placed SiO2 targets 32 placed on a TiN targets 28 are maintained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明はサーマルヘッドに用いて好適な発熱抵抗体に
関する。 (従来の技術) 従来より、電流を通し発熱させで用いる発熱抵抗体はヒ
ータヤ感熱ヘットそのほかの用途に供され、それぞれの
用途に応した種々の発熱抵抗体材料か授業されている。 以下、サーマルへ・ンドに用いる発熱抵抗体につき説明
する。 サーマルヘッドは絵、文字等を表す印字ドツトのモザイ
クを感熱紙上に形成するため、感熱紙を印字1ヘツ1〜
毎に加熱しで発色させるものであり、種々の構造のもの
か提案されている(例えば文献■、電子通信学会論文誌
 ’ 84/3  Vol。 J67−C−NO,3p、262−2699照)。 このようなサーマルヘッドの発熱抵抗体として、窒化タ
ンタル(Ta2N)の薄膜を用いることか多い。周知の
ように、Ta2NVハイブリ・シトIC等電気回路の抵
抗体に供した場合その抵抗値の安定性に関し電気回路に
適し1と非常に優れ1こ安定性を得ることができるか、
Ta2Nをザーマルヘッ1への発熱抵抗体に供した場合
その耐酸化性及び耐熱性に関しサーマルヘッドにおいて
望まれる充分な耐性を得ることができない。そこでこの
耐性不足を補うべくサーマルヘッドに対し構造」二の工
夫か行なわれでいる。この点につき図面ヲ参照し説明す
る。 第6図はサーマルヘッドの構成を概略的に示す断面図で
あって、結縛基板上に多数設けた印字素子のひとつに着
目した構成を示す。 第6図にも示すように、サーマルヘッドの印字素子1(
It絶縁基板12に設けた発熱抵抗体14とこの発熱抵
抗体14上に、発熱抵抗体14の発熱部14a本除く部
分に相離間させて設け1と給電体16.18とから成り
、図示ゼすもこの印字素子10を絶縁基板12上に多数
設けCサーマルヘッドを構成り−る。そり、で給電体1
6.18上に11ii1酸化膜20及び耐摩耗膜22を
順次(こ設ける。 耐酸化膜20及び耐摩耗膜22は印字素子1oの保護膜
Cあり、特に耐酸化膜は高温(こ加熱する発熱部14a
の酸化を防止しサーマルヘッドの長寿命化に大きく寄与
するものである。 第7図(A)〜(B)はサーマルヘッドの発熱抵抗体の
平面形状を示す図である。 発熱抵抗体14の耐熱性を向上し寿命を長くするために
は発熱抵抗体14の膜厚を厚くすればよいか、T−a 
2 Nの電気抵抗率は300 LJΩ・cm以下と小さ
くとのI” a 2Nを用いて発熱抵抗体14を形成[
)1と場合、発熱抵抗体14の平面形状を第7図(A)
にも示すよう(こりホシ状とL/ −C膜厚を厚くする
と発熱抵抗体14の抵抗値は下がるので、印字(こ必要
な電力を得るため発熱抵抗体14に供給すべき電流1面
ヲ大きく(]なりればならない。1ノか()なから印字
素子10の駆動用ICのコスト低減のため(こは、発熱
抵抗体14に供給すべき電流値を小さく一1lJ″る必
要がある。そこ−C−第7図(B)に示すようなミアン
ダ形の発熱抵抗体14か提案されCいる。ミアンダ形の
ものでは発熱部14aを幅狭な蛇行パターンとLハ こ
れ(こまって低い供給電流で実用上充分な印字を行なえ
る高い抵抗値を有しかつ膜厚か厚い発熱抵抗体]4を実
現する。 (発明が解決しようとする課題) ところか、近年においては、サーマルヘッドによる印字
に列()高精細化の要求か高まっている。 より高精細な印字のため(こはより微細な印字トラ1〜
を発色させる必要かあるか、このlこめには印字素子1
0を微細化しなければならない。しかしながら上述のミ
アンダ形の印字素子10ては発熱部141〕か幅狭な蛇
行パターンであるのでこの微細化(こは技術士の限界か
ある。 より微細な印字素子10を形成するためには、発熱抵抗
体14の平面形状をより簡素な形状例えはリボン状とす
るほうか有利であり、従って発熱抵抗体14をリボン状
とな(〕て膜厚を厚くしても印字のために実用−り充分
高い抵抗値か得られる高抵抗体材料の開発か望まれる。 このような高抵抗体材料としで、従来、例えばTa−8
i−N、或はTa−8j−○そのほかの抵抗体材料か開
発されている。これら材料はTa、Si、N或は0を含
む混合物Cある1とめ1,000〜100,000 u
Ω・cm程度の高い電気抵抗率ρを有するか、その一方
、抵抗値の温度に対する依存性か強く温度か高くなると
電気抵抗率pか低くなる傾向かあった。例えば丁a−8
i−N抵抗体材料て膜厚2000=3000人の発熱抵
抗体14を形成しIじ場合、シー1〜抵抗1〜2にΩ/
口かつ抵抗温度係数か−1500〜−−2000ppm
/’ Cとなり、印字のため発熱抵抗体14に印加〔)
た駆動パルスのパルスエンドて約10〜20%程度の電
流増加か起こる。 このように発熱抵抗体14の抵抗値が温度に依存する結
果、発熱抵抗体14の発熱温度に応じCぞの抵抗値か変
化して印字の際に発熱抵抗体14に印加する電力の制御
が困難になり、また絶縁基板10の温度上昇と共に発熱
抵抗体14の発熱量が増加するという問題そ生()る。 この発明の目的は上述した従来の問題点を解決するlと
め、比抵抗値か大きくかつ低い抵抗温度係数を有する発
熱抵抗体を提供することにある。 (課題を解決する1こめの手段) この目的の達成を図るため、この発明の発熱抵抗体は、
T1、B、Si、N及び○から成ることを特徴とする。 この発明の実施に当っては、王]を10〜20重量%、
Bを15〜30重量%、Siを1〜2重量%、Nを30
=40重量%及びOを20−・・26重量%含む発熱抵
抗体とするのか好適である。 (作用) この発明の発熱抵抗体はT1、B、Si、N及び○から
成るTi −B−8j−−−N −0抵抗体であり、1
−]−1B及びNから成る抵抗体ヘ−スに81及び0の
2種の元素を添加したものと考えることかできる。これ
ら81及び○の添加量に応し−C発熱抵抗体の電気的性
質時1こ抵抗温度係数を変化させることか(−きる。 この発明の発熱抵抗体をサーマルヘッドに供う−る場合
、発熱抵抗体は王1tlo〜20重量%、[3を1り・
〜30重量%、Si−を1〜2重量%、Nを30へ一4
0重量%及びOを20〜26重量%含むようにするのか
好ましノい。このような組成割合で一各元素を含む発熱
抵抗体はサーマルヘッドの発熱抵抗体と
(Industrial Application Field) The present invention relates to a heating resistor suitable for use in a thermal head. (Prior Art) Conventionally, heating resistors used to generate heat through the passage of electric current have been used in heaters, heat-sensitive heads, and other applications, and various heating resistor materials have been developed to suit each application. The heating resistor used in the thermal head will be explained below. The thermal head forms a mosaic of printed dots representing pictures, characters, etc. on thermal paper, so each print print
Various structures have been proposed (for example, Document ①, Transactions of the Institute of Electronics and Communication Engineers '84/3 Vol. J67-C-NO, 3p, 262-2699). . A thin film of tantalum nitride (Ta2N) is often used as the heating resistor of such a thermal head. As is well known, when Ta2NV is used as a resistor in an electric circuit such as a hybrid IC, its resistance value is very suitable for the electric circuit, with a stability of 1.
When Ta2N is used as a heating resistor for the thermal head 1, sufficient resistance to oxidation and heat as desired in the thermal head cannot be obtained. Therefore, in order to compensate for this lack of resistance, some improvements have been made to the structure of the thermal head. This point will be explained with reference to the drawings. FIG. 6 is a cross-sectional view schematically showing the structure of the thermal head, and shows the structure focusing on one of the many printing elements provided on the binding substrate. As shown in FIG. 6, the printing element 1 of the thermal head (
It consists of a heat generating resistor 14 provided on the It insulating substrate 12, a power supply body 16 and a power supply body 16 and 18 provided on the heat generating resistor 14 at a distance from each other in a portion of the heat generating resistor 14 excluding the heat generating portion 14a. A large number of plum print elements 10 are provided on an insulating substrate 12 to constitute a C thermal head. Power feeder 1 with sled
6. The 11ii1 oxide film 20 and the wear-resistant film 22 are sequentially provided on the 18. The oxidation-resistant film 20 and the wear-resistant film 22 are the protective film C of the printing element 1o. Part 14a
This prevents oxidation and greatly contributes to extending the life of the thermal head. FIGS. 7(A) and 7(B) are diagrams showing the planar shape of the heating resistor of the thermal head. T-a
The heating resistor 14 is formed using I''a 2N, which has a small electrical resistivity of 300 LJΩ·cm or less.
)1, the planar shape of the heating resistor 14 is shown in FIG. 7(A).
As shown in Fig. 1, the resistance value of the heating resistor 14 decreases when the thickness of the L/-C film is increased. In order to reduce the cost of the driving IC of the printing element 10 (this means that the current value to be supplied to the heating resistor 14 needs to be small - 1 lJ"). Therefore, a meander-shaped heating resistor 14 as shown in FIG. A heating resistor with a high resistance value and a thick film thickness that can perform practically sufficient printing with the supplied current] 4. (Problem to be solved by the invention) However, in recent years, thermal heads have been used to The demand for high-definition printing is increasing.For higher-definition printing (this is finer printing
Is it necessary to color the print element 1?
0 must be made smaller. However, since the above-mentioned meander-shaped printing element 10 has a narrow meandering pattern in the heat generating part 141, this miniaturization (this may be at the limit of an engineer).In order to form a finer printing element 10, It is advantageous to make the heating resistor 14 into a simpler planar shape, for example a ribbon shape. Therefore, even if the heating resistor 14 is made into a ribbon shape and the film thickness is increased, it is not practical for printing. Therefore, it is desired to develop a high-resistance material that can obtain a sufficiently high resistance value. Conventionally, for example, Ta-8
Other resistor materials such as i-N or Ta-8j-○ have been developed. These materials are Ta, Si, N, or a mixture C containing 0.1,000 to 100,000 u
It has a high electrical resistivity ρ on the order of Ω·cm, and on the other hand, the resistance value has a strong dependence on temperature, and as the temperature rises, the electrical resistivity p tends to decrease. For example, cho a-8
If the heating resistor 14 is formed using i-N resistor material with a film thickness of 2000 = 3000, Ω/
Temperature coefficient of resistance -1500~-2000ppm
/' becomes C and is applied to the heating resistor 14 for printing [)
At the end of the driving pulse, the current increases by about 10 to 20%. As a result of the resistance value of the heat generating resistor 14 being dependent on the temperature in this way, the resistance value of C changes depending on the heat generation temperature of the heat generating resistor 14, making it difficult to control the power applied to the heat generating resistor 14 during printing. Moreover, as the temperature of the insulating substrate 10 rises, the amount of heat generated by the heating resistor 14 increases. An object of the present invention is to solve the above-mentioned conventional problems and to provide a heating resistor having a large specific resistance value and a low temperature coefficient of resistance. (First Means to Solve the Problem) In order to achieve this objective, the heating resistor of the present invention has the following features:
It is characterized by consisting of T1, B, Si, N, and O. In carrying out this invention, 10 to 20% by weight of King]
B: 15-30% by weight, Si: 1-2% by weight, N: 30% by weight
It is preferable to use a heating resistor containing 40% by weight and 20-26% by weight of O. (Function) The heating resistor of the present invention is a Ti-B-8j---N-0 resistor consisting of T1, B, Si, N, and ○.
-]-1 It can be considered that the two elements 81 and 0 are added to the resistor base consisting of B and N. Depending on the amount of these 81 and ○ added, the electrical properties of the -C heating resistor may be changed by changing the temperature coefficient of resistance (-). When the heating resistor of the present invention is used in a thermal head, The heating resistor is 1 to 20% by weight, [3 to 1]
~30% by weight, 1-2% by weight of Si-, 30 to 4% of N
It is preferable to contain 0% by weight and 20 to 26% by weight of O. A heating resistor containing each element in such a composition ratio can be used as a heating resistor for a thermal head.

【ノて実用に適
jノだ低い抵抗温度係数及び実用に適L/た高い比抵抗
(aを有する。 (実施例) 以F、図面を参照しノこの発明の実施例につき説明づ−
る。尚、図面(まこの発明か理解できる程度に概略的(
こ示(]であるにずぎない。 乙の実施例はサーマルヘッドの発熱抵抗体に供し1と例
であ;つ、以下の説明では、サーマルへ・ントの製造工
程の説明ととも(ここの実施例(こつき説明する。 第3図(A)・〜(C)はり−マルヘットの製造工程を
段階的に示す断面図であり、この実施例の発熱抵抗体を
第6図に示す構成のサーマルへ・ン]〜(こ供し1と場
合の製造工程の一例を示す。 まず絶縁基板12としてグレーズドアルミナ基板を用意
し、高周波スパッタ(RFスバ・ν)9)法(こより、
第3図(A)(こb示すように、この基板12の基板面
12aの全面にT j、 −B −S jN−O発熱抵
抗体24を成膜する。この−「」−B−8i −N−○
発熱抵抗体24はTi(チタン)、B(はう素)、Sj
(シリコン)、N(窒素)及び○(M素)から成り、T
 i % 10〜20重ii%、87815〜30重量
%、5itl−2重量%、Nを30〜40重量%及び○
を2〇−26重量%含む。 第4図は発熱抵抗体24の成膜に用いたタケッ1〜の構
成を示り一図−Cあり、第4図(A)はターゲーットの
平面図及び第4図CB)は第4図(△)のIV B  
IV B線(こ沿って取った断面図である。 ターゲットの構成及び形成材料は任意好適な構成及び形
成材料とすることかできるか、この実施例で用いるダー
ゲッ1−は、第4図にも示すよう(こ、円盤形状の丁j
Nターゲット28、扇形状のBNターゲ・yト30及び
チップ状の8102ターゲツト32から成る。5102
ターゲ・ン1〜32の平面形状を一辺15mmの矩形と
し、またBNNターケラト3の開き角e8e=20’と
した。 尚、第4図(A)中、BNターゲット3oに点をイー1
しで示J゛。 T i −B−81,−N−〇発熱抵抗体24の成膜時
には、TiNターゲット28上にBNターゲット30と
Sin、ターゲット32とを載置して用い、反応性スパ
ッタを行なって発熱抵抗体24を成膜する。発熱抵抗体
24の成膜では、スパッタガスとして常温及び常圧に換
算してN2%10体積%、02を2体積%及び△rを8
8体積%含むN2.02及びArの混合ガスを用い、基
板近傍におけるスパッタガス圧を1xlO−2Torr
及びスパッタ電力を200Wとした。 T i Nターゲット28上に載置するSi−Cつ2タ
ーケツト32の載置個数を一定個数例えは5個(こ保持
したままBNNターケラ1〜3の載置個数を変化させる
ことによって、発熱抵抗体24か含む元素の組成割合を
変化させ制御する。 第2図に、上述のターゲットを用いて成膜した膜24の
組成を示す。第2図は、TiNタ−ゲッ]−28上に載
置したSiO□ターゲット32の総個数を5個として一
定に保持し1とままBNクゲット30の総個数mを変化
させC成膜しを場合(乙成膜された膜24か含む各元素
Ti、B、Si、N、○の組成割合を示した図であり、
縦軸に成膜され1と膜24か含む各元素の組成^り合(
重量%)を及び横軸にBNターゲットの開き角θの総和
−m・θ(de9)を取って示したものである。図中、
T1、N、8、○及びSiの組成の変化をそれぞれ符号
口、ム、O3・及び×でプロワ1〜して表し1と。 第2図からも理解できるように、BNターゲット30の
開き角θの総和−m・0を減少させると8の組成割合(
j減少しTiの組成割合は増加する。これと共に開き角
0の総和が減少するに従って、スパッタ率の高い○の組
成割合はS]02ターゲットの載置個数を一定に保持し
ているにもかかわらす増加し、Siの組成割合は1〜2
重量%の範囲てほぼ一定となり、Nの組成割合は減少す
る。 第1図に、第4図に示すターゲットを用いて成膜し1と
膜24の電気的特性と、第4図に示すタゲットにおいで
Si○2ターゲット32を省略し用いないで成膜した膜
の電気的特性とを示す。第1図は開き角θの総和=mθ
としで成膜した膜の比抵抗と抵抗温度係数TCRとを示
ず図てあり、横軸に開き角θの総和を、左側の縦軸に比
抵抗(mΩ・cm)及び右側の縦軸に抵抗温度係数下C
日(ppm/’ C)を取って示しjとものである。図
中、符号0及び△てプロットした実線は第4図に示すタ
ーゲットにおいてTiNターゲット28上に8102タ
ーゲツト32を載置しないで成膜したTi−B−N膜の
比抵抗及び抵抗温度係数の変化を、また符号・及びムで
プロットした実線は第4図(こ示すターゲットにa3い
てTiNタケ・ント28」二(こ5102タ−ゲ・ント
32を載置して成膜したTi−B−N−3i−○膜24
の比抵抗及び抵抗温度係数の変化を表す。 第1図及び第2図からも理解できるように、Bの組成割
合の減少に伴なって、Tj−B−NS 」−−○膜24
の比抵抗は減少すると共に温度抵抗係数TCPの値は零
に近づいてゆく。またTIB−N−8j−○膜24の場
合と同様、TiB−N膜でのBの組成割合は開き角0の
総和の減少に伴ない減少し、従ってBの組成割合の減少
に伴なって、Ti−B−N膜の比抵抗は減少すると共に
温度抵抗係数TCRの値は零に近づいてゆく。このよう
にT i −B−N −S i−〇膜24の比抵抗及び
抵抗温度係数の変化の様子は、大まかにばTj−B−N
膜と同様の傾向を示す。 これらTj−B−N−8】−O膜24及びTjB −N
膜の比抵抗を比較すれば、B7:15〜30重量%の割
合で含むTi−B−N−3i−〇膜24の比抵抗は、B
の組成割合か20〜25重量%の範囲てはTi−B−N
膜の比抵抗よりも大きくなり、またBの組成範囲か20
重量%以下の範囲及び25重量%以上の範囲てはTi−
B−N膜の比抵抗よりも小さくなる。しかしこれら膜の
比抵抗の差は比較的小さい。ま7.:: T i −B
−NSj−○膜24及びTj−B−N膜の抵抗温度係数
TCPを比較すれば、T j、 −B −N−3i−〇
膜24の抵抗温度係数は、T i−B −N膜のそれよ
りも大幅に零に近い値となり、従って使用環境温度が変
動してもTi−B−N−8j−○膜24を流れる電流の
変動量をTi−B−N膜よりも大幅に小さくすることが
できる。 この出願の発明者は実験により、次の■〜■を確認し1
と。0)Ti−B−N−8i−〇膜24の比抵抗をサー
マルヘッドの発熱抵抗体に適した値とする1とめには、
Siの組成割合を1〜2重量%及び○の組成割合を20
〜26重量%の範囲とするのかよく、この範囲を越えで
Si、○を添加しlと場合にはTj、Bの組成割合を調
整ジノてもTjB−N−81−○膜24の比抵抗はサー
マルヘッドの発熱抵抗体に適した値とはならずこれより
も大幅に小さな値となる。■サーマルへ・ンドの発熱抵
抗体に適した発熱抵抗体を得るためには、T」を15重
量%、Bを25重量%、Nを35重量%、○を24重量
%及びSiを1重量%含む発熱抵抗体24を成膜するの
か、最も好ましい。 ここでは第3図(A)に示す工程段階(こ占いて、−例
としで、8Nターゲツト30の開き角θの総和を80°
としてTi−B−3i−N−○発熱抵抗体24を成膜し
たものとする。この成膜した発熱抵抗体24の表面抵抗
は約3500Ω/口であった。このような表面抵抗の発
熱抵抗体24を用いればその形状をミアング型の形状(
第7図(B)?照)に加工せず(こより簡素な形状例え
ばリボン型の形状(第7図(A)参照)に加工しても、
サーマルヘッドにおいで実用上壁まれる高い抵抗値の発
熱抵抗体14を形成することかできる。 発熱抵抗体2/4を成膜したのち、次に第3図(B)に
も示すように、発熱抵抗体24上に給電体26を形成す
る。 次いて、第3図(C)にも示すように、発熱抵抗体24
及び給電体26を平面形状かリボン状となるようにバタ
ー−−ングしくリボン型の発熱抵抗体14を形成し、そ
ののち発熱抵抗体140発熱部14aを露出するように
給電体26姦バタングしC発熱部14aをはざみ相離間
する給電体16及び18を発熱抵抗体14上に形成する
。 次に、第6図にも示すように、給電体16.18及び発
熱部14a上に、SiC2から成る耐酸化膜20を形成
()、ざらに耐酸化膜20上に膜1り2+ImのTa2
05から成る耐摩耗膜22を形成し、所定個数の印字素
子107a−所定位置に配胃して成るザ ンルヘッドを
完成する。 ミアンダ型の発熱抵抗体1711を形成するのではなく
、リボン型の発熱抵抗体14を形成することによって、
フォトリソエツチングにより発熱抵抗体24をバターニ
ングした際の歩留りを向上−づることかできると共に印
字素子10の微細化か容易になる。 第5図はサーマルヘラ1〜における電流変化の説明に供
する図である。第5図(B)は所定の印字濃度で印字す
るに必要な印加電力でザーマルへ・ントを駆動する1と
め発熱抵抗体14に印加し1とパルス幅2msの定電圧
駆動パルスの波形を示す図であり、縦軸に印加電圧及び
横軸に時間(ms)を取って示した。ま1.:第5図(
A)は第5図CB)に示す波形の定電圧駆動パルスを印
加した際の発熱抵抗体14を流れる電流の変化を示すも
のであり、縦軸に発熱抵抗体14を流れる電流及び横軸
に時間(ms)を取って示した。第5図(A)中、サー
マルヘッドの発熱抵抗体14を上述し1と実施例で形成
した表面抵抗3500Ω/口のリボン型のTi−B  
N  Si−○膜及び抵抗温度係数−2200ppm/
’ Cのリボン型のTa5i−一〇膜とした場合(こ、
発熱抵抗体14を流れる電流の変化をそれぞれ実線及び
点線で示し1と。 T 1−B−N−8i−0及びTa−3i−○膜いずれ
の場合も発熱抵抗体14の抵抗温度係数か負であるため
、定電圧駆動パルスの印加により発熱抵抗体14の温度
か上昇すると、第5図からも理解できるように、発熱抵
抗体14の抵抗は減少し電流か増加する。(〕かしなか
ら電流変化率へ1loo/i(%)はT a −3i 
−0膜の場合にはほぼ20〜30%であるのに対し上述
した実施例の11−△ρ−N−81−〇膜の場合にはほ
ぼ8%となり、電流変化率を非常に低く抑えることかで
きる。プリンタやファクシミリで(よ印字時の電流変化
率を10%以内とすることか望まれており、従って電流
変化率8%は実用上充分に満足できる値である。 この発明は上述した実施例にのみ限定されるものではな
く、従って各構成成分の形状、個数、寸法、膜厚、形成
条件、成膜方法及びそのほかを任意好適に変更]−るこ
とかできる。 例えば成膜に用いるターゲット及びスパッタガスとして
一ト述の実施例で述へ1ともののほか、以下に挙げる(
1)〜(2)のものを用いてもよい。 (1)・ターゲット:T1、B及び5102の3種の物
質から成る混合ターゲット ・スパッタガス:常温及び常圧に換算してArを50体
積%及びN2を50体積%含む八r及びN2の混合ガス (2)・ターゲラh:TjBN及びSiC2の2種の物
質から成る混合ターゲット ・スパックガス:常温及び常圧に換算1ノでArを90
体積%及びN2を10体積%含むAr及びN2の混合ガ
ス (発明の効果) 上述し1.:説明からも明らかなように、この発明の発
熱抵抗体によれば、王j、B及びNのみから成る抵抗体
ベースにSi及び○の2種の元素を添加しノたものと考
えることかでき、これらS]及びOの添加量に応じて発
熱抵抗体の電気的性質特に抵抗温度係数を変化させるこ
とができる。 この発明の発熱抵抗体をサーマルへ・ントに供する場合
、発熱抵抗体はTit10〜20重里%、Bを15〜3
0重里%、Nを30〜40重量%、Sjを1〜2重量%
、及び○を20〜26重量%含むようにするのが好まし
い。このような組成範囲で各元素を含む発熱抵抗体を形
成することによって、ミアンダ型よりも簡素な形状例え
ばリボン状の形状となしてもサーマルヘッドの発熱抵抗
体として実用に適した高い抵抗値を有する発熱抵抗体を
形成でき、従ってサーマルへ・ントの発熱抵抗体の駆動
用トライバICの低電流化が容易となり、低電流で動作
するドライバIC%用いることによって生産コストの低
減を図れるという利点を生じる。さらにサーマルヘッド
においてリボシ型の発熱抵抗体を形成することにJ:っ
て、発熱抵抗体の微細化か容易となるという利点を主し
る。 ()かも上述のような組成範囲で各元素を含む発熱抵抗
体を形成すること(こよって、より零に近い値の低い抵
抗温度係数を有し従って通電による抵抗値の減少が少な
い発熱抵抗体を形成することかてき、従ってサーマルヘ
ッド駆動時(こ印加電力の制御が容易になる。
[It has a temperature coefficient of resistance so low as to be suitable for practical use, and a specific resistance (a) as high as L/l, suitable for practical use.
Ru. Please note that the drawings (schematic to the extent that you can understand the invention)
There is no doubt that this is the case ().The embodiment B is an example of a heat generating resistor for a thermal head; Example (I will explain the details.) FIGS. 3(A) to 3(C) are cross-sectional views showing step by step the manufacturing process of the beam-marhet, and the heating resistor of this example has the structure shown in FIG. 6. An example of the manufacturing process for case 1 is shown below. First, a glazed alumina substrate is prepared as the insulating substrate 12, and subjected to high frequency sputtering (RF sputtering)9) method.
As shown in FIG. 3(A), a Tj, -B-SjN-O heating resistor 24 is formed on the entire substrate surface 12a of this substrate 12. -N-○
The heating resistor 24 is made of Ti (titanium), B (boron), Sj
(silicon), N (nitrogen) and ○ (M element), T
i% 10-20% by weight, 87815-30% by weight, 5itl-2% by weight, 30-40% by weight of N, and ○
Contains 20-26% by weight. FIG. 4 shows the structure of the brackets 1 to 1 used for forming the heating resistor 24, and FIG. 4(A) is a plan view of the target, and FIG. △) IV B
This is a cross-sectional view taken along line IV B. The structure and forming material of the target may be any suitable structure and forming material. As shown (this, disk-shaped plate)
It consists of an N target 28, a fan-shaped BN target 30, and a chip-shaped 8102 target 32. 5102
The planar shape of the targets 1 to 32 was a rectangle with a side of 15 mm, and the opening angle of the BNN target 3 was set to e8e = 20'. In addition, in Fig. 4 (A), point E1 to BN target 3o.
Show it J゛. T i -B-81, -N-〇When forming the heating resistor 24, a BN target 30, a Sin target 32, and a BN target 30 are placed on the TiN target 28, and reactive sputtering is performed to form the heating resistor. 24 is formed into a film. In the film formation of the heating resistor 24, the sputtering gases were 10% by volume of N2, 2% by volume of 02, and 8% by volume of Δr, calculated at room temperature and pressure.
Using a mixed gas of N2.02 and Ar containing 8% by volume, the sputtering gas pressure near the substrate was set to 1xlO-2Torr.
And the sputtering power was 200W. By changing the number of BNN targets 1 to 3 while keeping the number of Si-C targets 32 placed on the TiN target 28 at a fixed number, for example 5, the heating resistor can be changed. Fig. 2 shows the composition of the film 24 formed using the above-mentioned target. In the case where the total number of SiO□ targets 32 placed is kept constant as 5 and the total number m of BN target 30 is changed while remaining 1 to form a C film (B) each element including Ti, It is a diagram showing the composition ratio of B, Si, N, and ○,
The vertical axis shows the composition of each element formed in the film 1 and film 24 (
% by weight) and the total sum of the opening angles θ of the BN target -m·θ(de9) is plotted on the horizontal axis. In the figure,
The changes in the composition of T1, N, 8, ○, and Si are expressed as 1 and 1 by code entry, O3, and ×, respectively. As can be understood from FIG. 2, when the sum of the opening angles θ of the BN target 30 -m・0 is decreased, the composition ratio of 8 (
j decreases and the composition ratio of Ti increases. At the same time, as the sum of the opening angles 0 decreases, the composition ratio of ○ with a high sputtering rate increases even though the number of S]02 targets mounted is kept constant, and the composition ratio of Si increases from 1 to 1. 2
It becomes almost constant within the range of weight %, and the composition ratio of N decreases. FIG. 1 shows the electrical characteristics of films 1 and 24 formed using the target shown in FIG. 4, and a film formed without using the Si○2 target 32 in the target shown in FIG. The electrical characteristics of Figure 1 shows the sum of opening angles θ = mθ
The resistivity and temperature coefficient of resistance (TCR) of the film deposited on the film are not shown, and the horizontal axis represents the sum of the opening angles θ, the vertical axis on the left represents the resistivity (mΩ cm), and the vertical axis on the right represents the specific resistance (mΩ・cm). Resistance temperature coefficient lower C
It is expressed by taking the day (ppm/'C) and showing it as j. In the figure, solid lines plotted with symbols 0 and △ indicate changes in specific resistance and temperature coefficient of resistance of the Ti-B-N film formed without placing the 8102 target 32 on the TiN target 28 in the target shown in FIG. The solid lines plotted with the symbols and symbols are shown in Figure 4 (Figure 4). N-3i-○ membrane 24
represents the change in resistivity and temperature coefficient of resistance. As can be understood from FIGS. 1 and 2, as the composition ratio of B decreases, the Tj-B-NS"--○ film 24
As the specific resistance decreases, the value of the temperature resistance coefficient TCP approaches zero. Also, as in the case of TIB-N-8j-○ film 24, the composition ratio of B in the TiB-N film decreases as the sum of the opening angles 0 decreases, and therefore, as the composition ratio of B decreases. As the specific resistance of the Ti-B-N film decreases, the value of the temperature resistance coefficient TCR approaches zero. In this way, the changes in the resistivity and temperature coefficient of resistance of the T i -B-N -S i-〇 film 24 can be roughly expressed as Tj-B-N
It shows the same tendency as the film. These Tj-B-N-8]-O film 24 and TjB-N
Comparing the specific resistances of the films, the specific resistance of the Ti-B-N-3i-〇 film 24 containing B7 at a ratio of 15 to 30% by weight is
The composition ratio of Ti-B-N is in the range of 20 to 25% by weight.
It is larger than the specific resistance of the film, and the composition range of B is 20
Ti-
The resistivity is smaller than that of the BN film. However, the difference in resistivity between these films is relatively small. 7. :: T i -B
Comparing the temperature coefficient of resistance TCP of the -NSj-○ film 24 and the Tj-B-N film, the resistance temperature coefficient of the Tj, -B -N-3i-○ film 24 is the same as that of the Ti-B-N film. The value is much closer to zero than that, and therefore, even if the operating environment temperature changes, the amount of fluctuation in the current flowing through the Ti-B-N-8j-○ film 24 is significantly smaller than that of the Ti-B-N film. be able to. The inventor of this application confirmed the following ■~■ through experiments and 1
and. 0) The first step is to set the specific resistance of the Ti-B-N-8i-〇 film 24 to a value suitable for the heating resistor of the thermal head.
The composition ratio of Si is 1 to 2% by weight, and the composition ratio of ○ is 20%.
The specific resistance of the TjB-N-81-○ film 24 can be adjusted by adjusting the composition ratio of Tj and B. is not a value suitable for the heating resistor of the thermal head, and is much smaller than this value. ■In order to obtain a heating resistor suitable for thermal heating, 15% by weight of T, 25% by weight of B, 35% by weight of N, 24% by weight of ○, and 1% by weight of Si are required. It is most preferable to form a film of the heating resistor 24 containing %. Here, we will explain the process steps shown in FIG.
Assume that a Ti-B-3i-N-○ heating resistor 24 is formed as a film. The surface resistance of the heat generating resistor 24 thus formed was about 3500 Ω/hole. If a heating resistor 24 with such a surface resistance is used, its shape can be changed to a miang-type shape (
Figure 7 (B)? Even if it is processed into a simpler shape, such as a ribbon shape (see Figure 7 (A)),
In a thermal head, it is possible to form a heating resistor 14 with a high resistance value that is practically used as a wall. After forming the heating resistor 2/4, the power supply body 26 is then formed on the heating resistor 24, as shown in FIG. 3(B). Next, as shown in FIG. 3(C), the heating resistor 24
Then, the ribbon-shaped heating resistor 14 is formed by buttering the power supply body 26 so that it has a planar shape or a ribbon shape, and then the power supply body 26 is buttered so as to expose the heating portion 14a of the heating resistor 140. Power feeders 16 and 18 are formed on the heat generating resistor 14, sandwiching the heat generating portion 14a and spaced apart from each other. Next, as shown in FIG. 6, an oxidation-resistant film 20 made of SiC2 is formed on the power supply body 16, 18 and the heat generating part 14a (), and a Ta2 film of 2+Im is roughly formed on the oxidation-resistant film 20.
A wear-resistant film 22 made of 0.05 is formed, and a printhead consisting of a predetermined number of printing elements 107a arranged at predetermined positions is completed. By forming the ribbon-shaped heating resistor 14 instead of forming the meander-shaped heating resistor 1711,
It is possible to improve the yield when patterning the heating resistor 24 by photolithography, and it is also easier to miniaturize the printing element 10. FIG. 5 is a diagram for explaining changes in current in the thermal spatulas 1 to 1. FIG. 5(B) shows the waveform of a constant voltage driving pulse with a pulse width of 2 ms applied to the first heating resistor 14 for driving the thermal head with the applied power necessary to print at a predetermined printing density. FIG. 3 shows the applied voltage on the vertical axis and the time (ms) on the horizontal axis. 1. :Figure 5 (
A) shows the change in the current flowing through the heating resistor 14 when a constant voltage drive pulse with the waveform shown in Figure 5 CB) is applied, where the vertical axis represents the current flowing through the heating resistor 14, and the horizontal axis represents the current flowing through the heating resistor 14. The time (ms) is shown. In FIG. 5(A), the heat generating resistor 14 of the thermal head is a ribbon-shaped Ti-B with a surface resistance of 3500 Ω/hole formed in the above-mentioned 1 and Example.
N Si-○ film and resistance temperature coefficient -2200ppm/
'C ribbon-shaped Ta5i-10 film (this,
Changes in the current flowing through the heating resistor 14 are shown by solid lines and dotted lines, respectively. In both the T1-B-N-8i-0 and Ta-3i-○ films, the temperature coefficient of resistance of the heating resistor 14 is negative, so the temperature of the heating resistor 14 increases by applying a constant voltage drive pulse. Then, as can be understood from FIG. 5, the resistance of the heating resistor 14 decreases and the current increases. (] 1loo/i (%) from current change rate is T a -3i
In the case of -0 film, it is approximately 20 to 30%, while in the case of 11-△ρ-N-81-〇 film of the above-mentioned example, it is approximately 8%, suppressing the current change rate very low. I can do it. In printers and facsimile machines, it is desired that the current change rate during printing be within 10%, and therefore, a current change rate of 8% is a value that is sufficiently satisfactory for practical use. Therefore, the shape, number, dimensions, film thickness, formation conditions, film formation method, and others of each component can be changed as desired.For example, the target used for film formation and the sputtering In addition to those mentioned in the above-mentioned examples, gases are listed below (
1) to (2) may also be used. (1) Target: Mixed target consisting of three substances, T1, B and 5102 Sputtering gas: Mixture of 8R and N2 containing 50 volume% Ar and 50 volume% N2 when converted to room temperature and pressure Gas (2) - Targera h: Mixed target consisting of two substances, TjBN and SiC2 - Spack gas: 90% Ar at 1 NO converted to room temperature and normal pressure
Mixed gas of Ar and N2 containing 10% by volume and 10% by volume of N2 (effects of the invention) 1. :As is clear from the description, according to the heating resistor of the present invention, it can be considered that two types of elements, Si and ○, are added to the resistor base consisting only of B, B, and N. The electrical properties, particularly the temperature coefficient of resistance, of the heating resistor can be changed depending on the amounts of S] and O added. When the heating resistor of this invention is subjected to thermal heating, the heating resistor has a Ti of 10 to 20% and a B of 15 to 3%.
0 weight%, N 30-40% by weight, Sj 1-2% by weight
, and 20 to 26% by weight. By forming a heating resistor containing each element in such a composition range, it is possible to achieve a high resistance value suitable for practical use as a heating resistor for a thermal head even if the shape is simpler than the meandering type, such as a ribbon shape. Therefore, it is easy to reduce the current of the driver IC for driving the heating resistor of the thermal head, and the advantage is that production costs can be reduced by using a driver IC that operates at a low current. arise. Furthermore, the main advantage of forming a ribbed heating resistor in a thermal head is that it is easy to miniaturize the heating resistor. (2) Forming a heat generating resistor containing each element in the composition range as described above (Thus, a heat generating resistor having a low temperature coefficient of resistance closer to zero and whose resistance value decreases less when energized) This makes it easier to control the applied power when driving the thermal head.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は成膜された膜の電気的特性を示す図、第2図は
成膜された膜の組成を示す図、第3図(A)〜(C)は
サーマルヘッドの製造工程を概略的に示す図、 第4図(A)〜(B)はターゲットの構成の一例を示す
図、 第5図(A)〜(B)はサーマルヘッドにおける電流変
化の説明に供する図、 第6図はサーマルヘッドの印字素子の構成例を示す図、 第7図(A)〜(B)はサーマルヘッドの発熱抵抗体の
平面形状を示す図である。 14.24・・・発熱抵抗体。 特許出願人   沖電気工業株式会社 開き角θの総和(cje9.) 成膜された膜の電気的特性 第1図 成膜された膜の組成 第2図 と サーマルヘッド−の印字素子の構成例 =22 4a
Figure 1 shows the electrical characteristics of the deposited film, Figure 2 shows the composition of the deposited film, and Figures 3 (A) to (C) outline the manufacturing process of the thermal head. 4(A) to 4(B) are diagrams showing an example of the structure of the target. 5(A) to 5(B) are diagrams for explaining current changes in the thermal head. 6. 7A and 7B are diagrams showing a configuration example of a printing element of a thermal head, and FIGS. 7A and 7B are diagrams showing a planar shape of a heating resistor of a thermal head. 14.24... Heat generating resistor. Patent applicant: Oki Electric Industry Co., Ltd. Total of opening angles θ (cje9.) Electrical characteristics of the deposited film Figure 1 Composition of the deposited film Figure 2 and configuration example of the printing element of the thermal head = 22 4a

Claims (2)

【特許請求の範囲】[Claims] (1)Ti、B、Si、N及びOから成ることを特徴と
する発熱抵抗体。
(1) A heating resistor comprising Ti, B, Si, N and O.
(2)Tiを10〜20重量%、Bを15〜30重量%
、Siを1〜2重量%、Nを30〜40重量%及びOを
20〜26重量%含むことを特徴とする請求項1に記載
の発熱抵抗体。
(2) 10-20% by weight of Ti, 15-30% by weight of B
, 1 to 2% by weight of Si, 30 to 40% by weight of N, and 20 to 26% by weight of O.
JP2161896A 1990-06-20 1990-06-20 Heating resistor Pending JPH0453203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161896A JPH0453203A (en) 1990-06-20 1990-06-20 Heating resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161896A JPH0453203A (en) 1990-06-20 1990-06-20 Heating resistor

Publications (1)

Publication Number Publication Date
JPH0453203A true JPH0453203A (en) 1992-02-20

Family

ID=15744071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161896A Pending JPH0453203A (en) 1990-06-20 1990-06-20 Heating resistor

Country Status (1)

Country Link
JP (1) JPH0453203A (en)

Similar Documents

Publication Publication Date Title
CN100352661C (en) Thermal head and method for manufacturing same
US6767081B2 (en) Thermal head
JP2006199047A (en) Thermal printer head and its manufacturing method
JPH0453203A (en) Heating resistor
JP2002043102A (en) Thin-film resistor and its manufacturing method
WO1999063553A1 (en) Thick film resistor compositions for making heat-transfer tapes and use thereof
JPH0453202A (en) Heating resistor
JP2932661B2 (en) Manufacturing method of thermal head
JP2870692B2 (en) Thin-film thermal head
JP2775884B2 (en) Thermal head
JP2507118B2 (en) Thermal head manufacturing method
JP4925535B2 (en) Thermal head
JPS63170901A (en) Heating resistor and manufacture of the same
JP2001246770A (en) Thermal print head and method of making the same
JPH0232864A (en) Thermal head
JPS6255712B2 (en)
JPH069163B2 (en) Thin film heating resistor
JP2837963B2 (en) Thermal head
JP4925536B2 (en) Thermal head
JPS63278204A (en) Heating resistor
JPS59205702A (en) Thin film resistor and thermosensitive recording head using same
JPS6046269A (en) Heat generating resistor for thermal head
JP2000135804A (en) Thermal head
JPH02147253A (en) Thermal head
JPH01152074A (en) Manufacture of thermal head