JP2870692B2 - Thin-film thermal head - Google Patents

Thin-film thermal head

Info

Publication number
JP2870692B2
JP2870692B2 JP7121598A JP7121598A JP2870692B2 JP 2870692 B2 JP2870692 B2 JP 2870692B2 JP 7121598 A JP7121598 A JP 7121598A JP 7121598 A JP7121598 A JP 7121598A JP 2870692 B2 JP2870692 B2 JP 2870692B2
Authority
JP
Japan
Prior art keywords
film
thin
thermal head
heating resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7121598A
Other languages
Japanese (ja)
Other versions
JPH10258535A (en
Inventor
直俊 安原
三千男 荒井
剛 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7121598A priority Critical patent/JP2870692B2/en
Publication of JPH10258535A publication Critical patent/JPH10258535A/en
Application granted granted Critical
Publication of JP2870692B2 publication Critical patent/JP2870692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、膜薄型サーマルヘッド
に関し、特に改良された薄膜発熱抵抗体を有する薄膜型
サーマルヘッドに関する。 【0002】 【従来技術とその問題点】薄膜発熱抵抗体を用いる薄膜
型サーマルヘッドはコンピュータのプリンタ、ワードプ
ロセッサ、ファクシミリ等における印字ヘッドとして広
く用いられている。サーマルヘッドは抵抗発熱体のドッ
ドを多数配列し、それらを選択的に通電することにより
所望のパターンないし文字の形に発熱させ、印字リボン
の色材を用紙面へ熱転写させたり、発色させたりるする
ようになっている。抵抗発熱体には種々のものが知ら
れ、或いは使用されているが、良く用いられる材料とし
てはNi−Cr、Ta2 N、Ta−SiO2 、Cr−S
i等がある。これらはサーマルヘッド用抵抗発熱体とし
て優れた特性を有するが、種々の欠点も有する。合金等
の金属系の発熱抵抗体は耐熱性及び耐酸化性に劣り、印
字に必要なエネルギーを繰り返し印加した場合、発熱に
よって発熱抵抗体に酸化現象が発生し、抵抗値の増大を
招き、印字特性の低下を招く。また、これらの金属系の
発熱抵抗体は繰返し通電による熱パルスにより急激な熱
サイクル下に置かれたとき大きく熱膨脹・収縮し、下地
基板と表面耐摩耗性保護膜との間に大きい応力を生じて
クラックの原因となる。 【0003】一方、TaSiO2 等の酸化物や窒化物等
の場合には、熱伝導率が小さいため発熱体内での均熱性
に欠け、印字品質を低下させた。また、金属系の発熱抵
抗体は抵抗率(固有抵抗)が小さく、また上記の化合物
系の発熱抵抗体でも抵抗率が小さく(Ta2 Nで200
〜300μΩcm、Ta−SiO2 でも約2000μΩ
cm)、サーマルヘッドに必要な面積抵抗1κΩ/□前
後を得ようとすると、数十Åの薄膜の発熱抵抗体を実現
しなければならず、安定して製造することが困難であ
る。典型的な製法はスパッタリング、イオンプレーティ
ング、CVD法などの周知の半導体プロセス技術である
が、膜厚が1000Å程度ないと工程制御が困難であ
る。また、これらの発熱体材料の抵抗温度係数は成分比
に対して比較的不感であり、所望値に制御することが困
難である。さらに、金属系では発熱体と電力供給電極と
の間に反応が生じ、発熱抵抗体の抵抗値変動や断線等の
不良の発生の原因となる。 【0004】 【発明が解決しようとする課題】従って、本発明の目的
は、耐熱性が高く、寿命が長く、抵抗率が大きく、しか
も温度係数が調整可能な薄膜発熱抵抗体を用いた薄膜型
サーマルヘッドを提供することにある。 【0005】 【発明の概要】本発明は、熱絶縁層を有する下地基板
に、Ti、Mo、W、Hf、Ni、V、Zr、La、F
e及びCoよりなる群から選ばれた少なくとも一種の高
融点金属と硅素と窒素と酸素とを主成分とする発熱抵抗
体薄膜を設け、その表面に、硅素と窒素と酸素とよりな
る前記発熱抵抗体薄膜よりも大きい抵抗を有する耐摩耗
性保護膜を形成し、さらに前記抵抗体に電力供給用電極
を接続した、薄膜型サーマルヘッドであり、前記耐摩耗
性保護膜は、前記発熱抵抗体薄膜中の前記高融点金属よ
りも少量の前記高融点金属の1種以上を含有する前記の
薄膜型サーマルヘッドであり、電力供給用電極がAl単
層である薄膜型サーマルヘッドである。 【0006】高融点金属の存在により発熱体の抵抗率は
繰返し熱パルスによっても長期に変化せず、安定したサ
ーマルヘッドが得られる。また金属系の場合とちがい、
酸−窒化物であるため熱膨脹・収縮が小さく、上下層と
の熱膨脹係数の差による大きい内部応力の発生、ひいて
はクラックの発生がない。金属が酸化物、窒化物の量比
を越えれば熱伝導性が良くなり均熱性が向上する。ま
た、十分な酸素、窒素の存在により経時酸化のおそれも
なく特性が安定する。さらに、高融点金属の含有率に対
して抵抗率が大きく変化するので、その含有量を制御す
ることでサーマルヘッドの特性の制御範囲が大きくな
り、例えば104 μΩcm抵抗温度係数±100ppm
/℃のような発熱体抵抗の設計も容易になし得る。この
ような高抵抗率では、発熱体の薄膜は1000Å前後が
好適となり、成膜が容易となる。 本発明はまた、耐摩
耗性保護膜が発熱抵抗体と同種の、しかし高抵抗の材料
から組成されるために、発熱抵抗体と耐摩耗性保護膜が
良くなじみ、また熱膨張係数の差が少ない。 【0007】 【発明の具体的な説明】本発明の薄膜型サーマルヘッド
の構成の概要は図1に示されている。図中1はグレーズ
ドセラミック基板であり、その表面にグレーズ層2が形
成される。グレーズ層2は磁器のうわぐすりに相当する
酸化物であり、硅素及びアルミニウムの酸化物を含む。
グレーズ層2の上には例えば公知のスパッタ法により本
発明の薄膜抵抗発熱体3が成膜され、さらに電力供給用
電極(Ni、Cr、Al等、特にAl)4が蒸着または
スパッタなどで成膜され、最後に公知の耐摩耗性保護膜
(例えばSi−O系、Ta25 、SiC系等)6がス
パッタ法等で成膜される。発熱抵抗体3は本発明に従っ
て、硅素と高融点金属M(Ti、Mo、W、Hf、N
i、V、Zr、La、Fe、Coの少なくとも1種)と
を含む窒−酸化物である。この金属は種類によって作用
上のちがいがあるが、しかし単独またはどの組合せを用
いても発熱抵抗体の抵抗率と抵抗温度係数とはそれぞれ
107 〜102 μΩcm及び−1500〜+500pp
m/℃の範囲で大きく変動する。従って特定の高融点金
属含有率を選択することにより、所望の抵抗率に於いて
所望の温度係数の発熱体を設計しうる。例えば抵抗率1
4 μΩcmのものを選択すれば膜厚は1000Å以上
となしうる。一般に高融点金属は10〜60wt%の範
囲で選択しうる。この点については実施例により具体的
に示す。 【0008】Si、O、Nは耐熱性、耐酸化性の物質を
形成しうるものであり、その比率を変えることにより耐
熱性を保ちながら抵抗率を変えることができる。例えば
Si0.30.40.3 は抵抗率>>107 μΩcm、温
度係数<−1500ppm/℃であるが、高融点金属M
の含有率が10wt%以上で107 μΩcm以下、−1
00ppm/℃以上を得ることができる。Si、O、N
の3種と場合によりさらにM(上記)の1種以上を含有
する耐摩耗保護層6を選択すれば、本発明の発熱抵抗体
は耐摩耗保護層に良くなじみ、また熱膨張係数の差が少
なくなり好ましい。さらに、電極4、5としてAlを用
いれば、同様に電極と発熱抵抗体とのなじみが良くなり
好ましい。 【0009】本発明の発熱抵抗体は特にスパッタ法で製
造することができる。例えば所望の組成比を有する固形
物粉末を予め製造し、それを圧縮成形してペレット化
し、これをターゲットとしてArをスパッタガスとして
用い、その他必要に応じてO2、N2 ガス等を共存さ
せ、Arイオンをターゲットに衝撃させ、放出されたイ
オンないし原子を基板上に付着させる。膜組成はペレッ
トの組成及びスパッタ条件を変えることにより調整しう
る。 【0010】 【実施例】組成Mox Si0.250.420.33のペレット
をターゲットとして1〜6mTorrのArをスパッタ
ガスとして用い、ターゲット−基板距離60mm、RF
電力1〜10w/cm2 、基板温度200〜400℃の
条件を調整して、上記組成の発熱抵抗体を製作し、さら
にAl電極、保護膜を順に成膜してサーマルヘッドを作
成した。なお、保護膜にはSiの他にMoを少量含有さ
せた。得られたサーマルヘッドに対して、次のテストを
行なった。x=0.12のサンプルに対してパルス幅
0.3m秒、周期2m秒の熱パルスを加えたときの抵抗
値変化率を図2に示した。またMoの含有率による抵抗
率及び抵抗温度係数を図3に示した。なお対象サンプル
として従来のTa2 N発熱抵抗体Aと、Zr−Si発熱
抵抗体Cに対する耐熱パルステストの結果を図2に併記
した。図2のBは本発明による発熱抵抗体を用いたサー
マルヘッドを示す。 【0011】 【発明の効果】図2から分るように、本発明のMo−S
i−O−N系発熱抵抗体Bを用いたサーマルヘッドは熱
パルスを多数加えても抵抗値が変わらず、耐熱性が良
い。従来の発熱抵抗体A(Ta2 N)やC(Zr−S
i)では或る一定の熱パルスを越えると抵抗の変化が大
きくなる。図3から分るように、本発明の発熱抵抗体は
高融点金属の含有量に応じてその抵抗率及び抵抗温度係
数が大きく変動する。従って高融点金属の含有率を調整
することによってこれらの値を所望の値に設計すること
ができる。耐熱性の向上には発熱体面内の温度分布の均
一化、及び熱膨張係数の減少によるものと思われる。ま
た、耐摩耗保護膜にMo、Si、O、Nの少なくても3
種を含有した材料を用いれば、相互間のなじみが良くな
って密着性が向上し、熱衝撃等に強くなり、クラック・
剥離等の発生が抑制される。また、本発明の発熱抵抗体
は耐薬品性に優れ、アルカリや湿気の影響を受け難い。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film thermal head, and more particularly to a thin-film thermal head having an improved thin-film heating resistor. [0002] Thin-film thermal heads using thin-film heating resistors are widely used as print heads in computer printers, word processors, facsimile machines and the like. The thermal head arranges a large number of resistive heating element dots and selectively energizes them to generate heat in a desired pattern or character shape, thereby thermally transferring or coloring the color material of the print ribbon to the paper surface. It is supposed to. The resistance heating element are known various ones, or have been used, Ni-Cr as a material often used, Ta 2 N, Ta-SiO 2, Cr-S
i. These have excellent characteristics as resistance heating elements for thermal heads, but also have various disadvantages. Metallic heating resistors such as alloys are inferior in heat resistance and oxidation resistance. When the energy required for printing is repeatedly applied, the heating resistor generates an oxidation phenomenon due to heat generation, resulting in an increase in resistance value and printing. This leads to deterioration of characteristics. In addition, these metal-based heating resistors greatly expand and contract when subjected to a rapid thermal cycle due to heat pulses caused by repeated energization, causing large stress between the underlying substrate and the surface wear-resistant protective film. It may cause cracks. On the other hand, in the case of oxides or nitrides such as TaSiO 2 , the thermal conductivity is low, so that the uniformity in the heating element is lacking, and the printing quality is deteriorated. Further, a metal-based heating resistor has a small resistivity (specific resistance), and the above-mentioned compound-based heating resistor also has a small resistivity (200 N in Ta 2 N).
~300μΩcm, Ta-SiO 2 even about 2000μΩ
cm), in order to obtain a sheet resistance of about 1 kΩ / □ required for a thermal head, it is necessary to realize a heating resistor having a thin film of several tens of mm, and it is difficult to stably manufacture the heating resistor. A typical manufacturing method is a well-known semiconductor process technology such as sputtering, ion plating, and CVD, but it is difficult to control the process unless the film thickness is about 1000 mm. Further, the resistance temperature coefficients of these heating element materials are relatively insensitive to the component ratio, and it is difficult to control them to desired values. Further, in the case of a metal-based material, a reaction occurs between the heating element and the power supply electrode, which causes a defect such as a change in the resistance value of the heating resistor and disconnection. Accordingly, an object of the present invention is to provide a thin-film type using a thin-film heating resistor having high heat resistance, a long life, a large resistivity, and an adjustable temperature coefficient. An object of the present invention is to provide a thermal head. SUMMARY OF THE INVENTION According to the present invention, Ti, Mo, W, Hf, Ni, V, Zr, La, F
a heating resistor thin film mainly composed of at least one refractory metal selected from the group consisting of e and Co, silicon, nitrogen and oxygen, and on the surface thereof, the heating resistor comprising silicon, nitrogen and oxygen. A thin-film thermal head in which a wear-resistant protective film having a resistance greater than that of the body thin film is formed, and a power supply electrode is connected to the resistor, wherein the wear-resistant protective film is formed of the heating resistor thin film. The thin-film thermal head according to claim 1, wherein the thin-film thermal head contains at least one kind of the high-melting-point metal in a smaller amount than the high-melting-point metal therein, and the power supply electrode is a single layer of Al. [0006] Due to the presence of the high melting point metal, the resistivity of the heating element does not change for a long time even by repeated heat pulses, and a stable thermal head can be obtained. Also unlike metal cases,
Since it is an oxy-nitride, thermal expansion and contraction are small, and there is no generation of large internal stress due to the difference in thermal expansion coefficient between the upper and lower layers, and thus no crack. When the amount of the metal exceeds the amount ratio of the oxide and the nitride, the thermal conductivity is improved and the heat uniformity is improved. In addition, the characteristics are stabilized without fear of oxidation with time due to the presence of sufficient oxygen and nitrogen. Further, since the resistivity greatly changes with respect to the content of the refractory metal, controlling the content thereof increases the control range of the characteristics of the thermal head, for example, 10 4 μΩcm, the temperature coefficient of resistance ± 100 ppm.
Heating element resistance such as / ° C can be easily designed. With such a high resistivity, the thickness of the thin film of the heating element is preferably around 1000 °, and the film formation becomes easy. According to the present invention, since the wear-resistant protective film is composed of the same kind of high-resistance material as the heat-generating resistor, the heat-generating resistor and the wear-resistant protective film fit well, and the difference in the coefficient of thermal expansion is small. Few. FIG. 1 schematically shows the structure of a thin film thermal head according to the present invention. In the figure, reference numeral 1 denotes a glazed ceramic substrate, on which a glaze layer 2 is formed. The glaze layer 2 is an oxide corresponding to the glaze of porcelain, and includes silicon and aluminum oxides.
The thin-film resistance heating element 3 of the present invention is formed on the glaze layer 2 by, for example, a known sputtering method, and a power supply electrode (Ni, Cr, Al, etc., particularly Al) 4 is formed by vapor deposition or sputtering. is film, the last known wear-resistant protective film (e.g., Si-O-based, Ta 2 O 5, SiC system, etc.) 6 is formed by sputtering or the like. According to the present invention, the heating resistor 3 is made of silicon and high melting point metal M (Ti, Mo, W, Hf, N
i, V, Zr, La, Fe, and Co). This metal has a different function depending on the kind, but the resistivity and the temperature coefficient of resistance of the heating resistor are 10 7 to 10 2 μΩcm and −1500 to +500 pp, respectively, singly or in any combination.
It fluctuates greatly in the range of m / ° C. Therefore, by selecting a specific refractory metal content, a heating element having a desired temperature coefficient at a desired resistivity can be designed. For example, resistivity 1
0 4 thickness by selecting those μΩcm can without the least 1000 Å. Generally, the high melting point metal can be selected in the range of 10 to 60 wt%. This point will be specifically described with reference to examples. [0008] Si, O, and N can form a heat-resistant and oxidation-resistant substance. By changing the ratio, the resistivity can be changed while maintaining the heat resistance. For example, Si 0.3 O 0.4 N 0.3 has a resistivity >> 10 7 μΩcm and a temperature coefficient <−1500 ppm / ° C.
Is 10 wt% or more and 10 7 μΩcm or less, −1
00 ppm / ° C or more can be obtained. Si, O, N
If the abrasion-resistant protective layer 6 containing at least one of the above three types and optionally M (above) is selected, the heating resistor of the present invention is well adapted to the abrasion-resistant protective layer, and the difference in the coefficient of thermal expansion is small. It is preferable because it is less. Furthermore, if Al is used for the electrodes 4 and 5, the affinity between the electrodes and the heating resistor is similarly improved, which is preferable. The heating resistor of the present invention can be manufactured by a sputtering method. For example, a solid material powder having a desired composition ratio is produced in advance, and it is compression-molded and pelletized. Using this as a target, Ar is used as a sputtering gas, and O 2 , N 2 gas, and the like are coexisted as necessary. , Ar ions are bombarded on the target, and the released ions or atoms are deposited on the substrate. The film composition can be adjusted by changing the composition of the pellet and the sputtering conditions. DETAILED DESCRIPTION OF THE INVENTION A pellet having a composition of Mo x Si 0.25 O 0.42 N 0.33 is used as a target and Ar of 1 to 6 mTorr is used as a sputtering gas.
By adjusting the conditions of power of 1 to 10 w / cm 2 and substrate temperature of 200 to 400 ° C., a heating resistor having the above composition was manufactured, and further, an Al electrode and a protective film were sequentially formed to form a thermal head. The protective film contained a small amount of Mo in addition to Si. The following test was performed on the obtained thermal head. FIG. 2 shows the resistance value change rate when a heat pulse having a pulse width of 0.3 ms and a period of 2 ms was applied to the sample of x = 0.12. FIG. 3 shows the resistivity and the temperature coefficient of resistance depending on the Mo content. FIG. 2 also shows the results of a heat-resistant pulse test on a conventional Ta 2 N heating resistor A and a Zr—Si heating resistor C as target samples. FIG. 2B shows a thermal head using the heating resistor according to the present invention. As can be seen from FIG. 2, the Mo-S of the present invention is used.
The thermal head using the i-O-N-based heating resistor B does not change its resistance value even when a large number of heat pulses are applied, and has good heat resistance. Conventional heating resistors A (Ta 2 N) and C (Zr-S
In the case of i), the resistance changes greatly after a certain heat pulse. As can be seen from FIG. 3, the resistivity and the temperature coefficient of resistance of the heating resistor of the present invention greatly vary depending on the content of the high melting point metal. Therefore, these values can be designed to be desired values by adjusting the content of the high melting point metal. It is considered that the improvement in heat resistance is due to the uniformity of the temperature distribution in the plane of the heating element and the decrease in the coefficient of thermal expansion. Further, at least 3 of Mo, Si, O, and N is contained in the wear-resistant protective film.
If a material containing seeds is used, the compatibility between them will be improved, and the adhesion will be improved.
The occurrence of peeling or the like is suppressed. Further, the heat generating resistor of the present invention has excellent chemical resistance and is hardly affected by alkali or moisture.

【図面の簡単な説明】 【図1】図1はサーマルヘッドの構造を示す断面図であ
る。 【図2】図2は本発明の発熱抵抗体を用いたサーマルヘ
ッド及び従来例の耐熱テストを示すグラフである。 【図3】図3は本発明のサーマルヘッドにおいて発熱抵
抗体中に含有される高融点金属と抵抗率及び抵抗温度係
数との関係を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a structure of a thermal head. FIG. 2 is a graph showing a thermal head using a heating resistor of the present invention and a heat resistance test of a conventional example. FIG. 3 is a graph showing the relationship between the refractory metal contained in the heating resistor and the resistivity and the temperature coefficient of resistance in the thermal head of the present invention.

フロントページの続き (56)参考文献 特開 昭53−11037(JP,A) 特開 昭53−25442(JP,A) 特開 昭54−92276(JP,A) 特開 昭61−276201(JP,A) (58)調査した分野(Int.Cl.6,DB名) B41J 2/335 Continuation of the front page (56) References JP-A-53-11037 (JP, A) JP-A-53-25442 (JP, A) JP-A-54-92276 (JP, A) JP-A-61-276201 (JP) , A) (58) Fields surveyed (Int. Cl. 6 , DB name) B41J 2/335

Claims (1)

(57)【特許請求の範囲】 1.熱絶縁層を有する下地基板に、Ti、Mo、W、H
f、Ni、V、Zr、La、Fe及びCoよりなる群か
ら選ばれた少なくとも一種の高融点金属と硅素と窒素と
酸素とを主成分とする発熱抵抗体薄膜を設け、その表面
に、硅素と窒素と酸素とよりなり前記発熱抵抗体薄膜よ
りも大きい抵抗を有する耐摩耗性保護膜を形成し、さら
に前記抵抗体に電力供給用電極を接続した、薄膜型サー
マルヘッド。 2.前記耐摩耗性保護膜は、前記発熱抵抗体薄膜中の前
記高融点金属よりも少量の前記高融点金属の1種以上を
含有する請求項1の薄膜型サーマルヘッド。 3.電力供給用電極がAl単層である前記第1項記載の
薄膜型サーマルヘッド。
(57) [Claims] Ti, Mo, W, H on a base substrate having a heat insulating layer
a heating resistor thin film mainly composed of at least one refractory metal selected from the group consisting of f, Ni, V, Zr, La, Fe, and Co, silicon, nitrogen and oxygen; A thin-film thermal head, comprising: a wear-resistant protective film comprising nitrogen, oxygen and nitrogen, and having a resistance higher than that of the heat-generating resistor thin film; and connecting a power supply electrode to the resistor. 2. 2. The thin-film thermal head according to claim 1, wherein said wear-resistant protective film contains at least one kind of said high melting point metal in said heating resistor thin film in a smaller amount than said high melting point metal. 3. 2. The thin-film thermal head according to claim 1, wherein the power supply electrode is an Al single layer.
JP7121598A 1998-03-06 1998-03-06 Thin-film thermal head Expired - Fee Related JP2870692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121598A JP2870692B2 (en) 1998-03-06 1998-03-06 Thin-film thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121598A JP2870692B2 (en) 1998-03-06 1998-03-06 Thin-film thermal head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61044252A Division JPH0712690B2 (en) 1986-03-03 1986-03-03 Thin-film thermal head

Publications (2)

Publication Number Publication Date
JPH10258535A JPH10258535A (en) 1998-09-29
JP2870692B2 true JP2870692B2 (en) 1999-03-17

Family

ID=13454244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121598A Expired - Fee Related JP2870692B2 (en) 1998-03-06 1998-03-06 Thin-film thermal head

Country Status (1)

Country Link
JP (1) JP2870692B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086558A1 (en) * 2010-12-25 2012-06-28 京セラ株式会社 Thermal head and thermal printer comprising same
WO2023045598A1 (en) * 2021-09-22 2023-03-30 东莞市维万特智能科技有限公司 Atomizing core, atomizer, aerosol generating device, and atomizing core preparation method

Also Published As

Publication number Publication date
JPH10258535A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US4168343A (en) Thermal printing head
GB2072100A (en) Thermal printhead
JPH07132628A (en) Thermal head and production thereof
JP2870692B2 (en) Thin-film thermal head
JPH0712692B2 (en) Thin-film thermal head
JPH0712690B2 (en) Thin-film thermal head
JPH0312551B2 (en)
JPS62202753A (en) Thin film type thermal head
JPH0712691B2 (en) Thin-film thermal head
JPS62201264A (en) Membrane type thermal head
US4862195A (en) Overcoating layer for thermal printing head
JPS62201265A (en) Membrane type thermal head
JPS62201266A (en) Membrane type thermal head
JPS62201262A (en) Membrane type thermal head
JP2775884B2 (en) Thermal head
JP2999909B2 (en) Thermal head, method of manufacturing the same, and thermal printer using the same
JPS62201263A (en) Membrane type thermal head
JPS623968A (en) Abrasion-resistant thin film thermal head
US4742361A (en) Thermal print head
JPS6367319B2 (en)
JP2646751B2 (en) Thermal head
JPS62198101A (en) Heating resistor and manufacture of the same
JPS63135260A (en) Thermal head
JP2000246929A (en) Manufacture of thermal head
WO2022255987A1 (en) Heater and method for producing a heater

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981208

LAPS Cancellation because of no payment of annual fees