JPS63135260A - Thermal head - Google Patents
Thermal headInfo
- Publication number
- JPS63135260A JPS63135260A JP61283877A JP28387786A JPS63135260A JP S63135260 A JPS63135260 A JP S63135260A JP 61283877 A JP61283877 A JP 61283877A JP 28387786 A JP28387786 A JP 28387786A JP S63135260 A JPS63135260 A JP S63135260A
- Authority
- JP
- Japan
- Prior art keywords
- heating resistor
- resistance
- thermal head
- resistor
- metal silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000004767 nitrides Chemical class 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 42
- 238000002844 melting Methods 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 5
- 229910052719 titanium Inorganic materials 0.000 abstract description 5
- 229910052715 tantalum Inorganic materials 0.000 abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 3
- 238000005121 nitriding Methods 0.000 abstract description 3
- 229910052721 tungsten Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 238000007740 vapor deposition Methods 0.000 abstract description 2
- 238000007733 ion plating Methods 0.000 abstract 1
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910052758 niobium Inorganic materials 0.000 abstract 1
- 229910052702 rhenium Inorganic materials 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 239000010408 film Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910008479 TiSi2 Inorganic materials 0.000 description 6
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- -1 T'a Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910021359 Chromium(II) silicide Inorganic materials 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004479 Ta2N Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N97/00—Electric solid-state thin-film or thick-film devices, not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は感熱型記録装置に用いられるサーマルヘッドに
関し、特に、その発熱抵抗体の改良に関するものである
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermal head used in a heat-sensitive recording device, and particularly relates to an improvement of a heating resistor thereof.
(従来の技術とその問題点)
従来、薄膜型サーマルヘッドの発熱抵抗体材料としては
、NiCr、Ta2N、Ta0xNy等が用いられてい
たが、これらの比抵抗は150〜1000μΩ・鍔と比
較的低いものであC,また構造的に安定した薄膜を得る
上ではその膜厚を200A以上に設定せざるを得す、従
ってこれによりその発熱抵抗体膜のシート抵抗が500
Ω1口以下となるものであった。また耐熱性に優れた発
熱抵抗体として、高融点金属(Ta、Ti。(Conventional technology and its problems) Conventionally, NiCr, Ta2N, Ta0xNy, etc. have been used as heating resistor materials for thin-film thermal heads, but the resistivity of these is relatively low at 150 to 1000 μΩ・tsuba. Moreover, in order to obtain a structurally stable thin film, the film thickness must be set to 200A or more.
It was less than 1Ω. In addition, high melting point metals (Ta, Ti) are used as heating resistors with excellent heat resistance.
Or、 W、 Mo、 Zr+ 1−1f、 V、 N
b、 Re+ Fe、 Co、 Ni等〕のシリサイド
、中でもT’a、 Ti、 Crのシリティドが多用さ
れているが1例えばCr S l 2はその比抵抗が1
400±100μΩ・ωと最も高いもののTiやTaの
それに比べて比較的耐熱性に劣り。Or, W, Mo, Zr+ 1-1f, V, N
silicides such as T'a, Ti, and Cr are often used. For example, Cr S l 2 has a specific resistance of 1.
The heat resistance is relatively inferior to that of Ti and Ta, which has the highest value of 400±100μΩ・ω.
またTiやTaのシリサイドは耐熱性の点でOr等より
もとりわけ優れてはいるもののcrsI2のそれに比べ
てその比抵抗が高々100μΩ・(7)程度と低くなり
、結局の処、サーマルヘッドの発熱抵抗体についてはト
ータル的に満足のいくものが得られていないのが現状と
なる。In addition, although Ti and Ta silicides are particularly superior to Or etc. in terms of heat resistance, their specific resistance is lower than that of crsI2, at most 100 μΩ・(7), and as a result, the thermal head generates heat. The current situation is that a totally satisfactory resistor has not been obtained.
而してこの様に比抵抗の低い材料をサーマルヘッドの発
熱抵抗体に用いると1例えば2発熱抵抗体を2m5ec
以下の短い時間で300−500°Cの所定の温度とな
す場合1発熱抵抗体に大電流を流さ゛なければならず、
よって大電流容量の?!!源が必要となり好ましくない
。Therefore, if a material with such low resistivity is used for the heating resistor of a thermal head, 1, for example, 2 heating resistors will be 2m5ec.
In order to reach a predetermined temperature of 300-500°C in the following short time, a large current must be passed through the heating resistor.
Therefore, does it have a large current capacity? ! ! This is not desirable as it requires a source.
また、各発熱抵抗体の一端が複数個共通の導体に接続さ
れているサーマルヘッドにおいては。Also, in a thermal head in which one end of each heating resistor is connected to a common conductor.
この共通導体の抵抗による電力損失によって多数の発熱
抵抗体を同時に発熱させる場合と少数の発熱抵抗体を発
熱させる場合とでは1発熱抵抗体に加わる電力に差を生
じ、印字濃度のバラツキを発生させてしまうという問題
を有していた。Due to the power loss due to the resistance of this common conductor, there is a difference in the power applied to one heating resistor when a large number of heating resistors are made to generate heat at the same time and when a small number of heating resistors are made to generate heat, resulting in variations in print density. The problem was that the
この様な聞届は9発熱抵抗体の高抵抗化により解消され
るものであるが9反面以下の如く別の問題が生ずるもの
となる。Although this problem can be solved by increasing the resistance of the heating resistor, other problems arise as described below.
即ち、従来の比較的比抵抗の小さい材料を用いて高抵抗
の発熱抵抗体を得る方法として、ミアンダ形状のように
抵抗体パターンの巾に対する長さの比を犬きく設定する
ことが提案されている。然るにこの様な形状を用いるこ
とは、パターンが微細化し歩留シの点で問題が有るだけ
でなく、抵抗体パターンが大面積を占め印字品質の優れ
た高密度発熱抵抗体を得るには不向きであった。また一
方、比抵抗の高い材料を用いて高抵抗の発熱抵抗体を得
る方法としては、特開昭53−11037号公報にTa
−5i02系。That is, as a method of obtaining a high-resistance heating resistor using a conventional material with a relatively low resistivity, it has been proposed to set the ratio of the length to the width of the resistor pattern to be very high, such as in a meander shape. There is. However, using such a shape not only causes problems in terms of yield due to the miniaturization of the pattern, but also occupies a large area of the resistor pattern, making it unsuitable for obtaining a high-density heating resistor with excellent printing quality. Met. On the other hand, as a method for obtaining a high-resistance heating resistor using a material with high specific resistance, Japanese Patent Application Laid-open No. 11037/1983 describes Ta
-5i02 series.
Ta−N−8i02系の材料を用いた発熱抵抗体が開示
されているが、このものはスパッタリング法によりター
ゲットのTaとS i O2との面積比を変えることに
より抵抗体の比抵抗を変化させる方法であって、従って
所望の比抵抗を有する発熱抵抗体を得るにはターゲット
をその都度いちいち交換しなければならないといった実
用上の問題を有しており、更にはその比抵抗の可変範囲
も10〜10μΩ・mの如く狭いという欠点も有してい
た。A heat-generating resistor using a Ta-N-8i02-based material has been disclosed, but the specific resistance of the resistor is changed by changing the area ratio of Ta and SiO2 in the target using a sputtering method. This method has practical problems in that the target must be replaced each time to obtain a heating resistor with a desired resistivity, and furthermore, the variable range of resistivity is limited to 10%. It also had the disadvantage of being narrow, such as ~10 μΩ·m.
(問題点を解決するための手段)
本発明はこの様な事情に鑑みなされたものであって、絶
縁性基板上に少なくとも発熱抵抗体。(Means for Solving the Problems) The present invention has been made in view of the above circumstances, and includes at least a heating resistor on an insulating substrate.
電極及び保護膜を有してなるサーマルヘッドにおいて、
前記発熱抵抗体が高融点金属シリサイドの窒化物よ構成
ることを特徴とするサーマルヘッドを要旨とすることに
より、従来の問題を一掃した比抵抗の高いしかも耐熱性
に優れたサーマルヘッドを提供せんとするものである。In a thermal head having an electrode and a protective film,
By providing a thermal head characterized in that the heating resistor is composed of a nitride of high-melting point metal silicide, the present invention provides a thermal head with high resistivity and excellent heat resistance, which eliminates the problems of conventional methods. That is.
本発明のサーマルヘッドにおける発熱抵抗体は、′#に
、高融点金属シリサイドに対する窒化率を適宜変えるこ
とによって10〜10μΩ・口の範囲で任意にその比抵
抗を変化制御せしめることが可能となり、また高融点金
属シリサイドの窒化物のみならず高融点金属の窒化物及
びシリコン窒化物も同様に耐熱性に優れているため。In the heat generating resistor in the thermal head of the present invention, by appropriately changing the nitriding rate of the high melting point metal silicide, it is possible to arbitrarily control the specific resistance within the range of 10 to 10 μΩ. This is because not only high melting point metal silicide nitrides but also high melting point metal nitrides and silicon nitrides have excellent heat resistance.
これらの混合物からなる発熱抵抗体も何ら支障無く利用
でき1以上を踏まえても実用性が極めて高い発熱抵抗体
が提供できるものである。A heating resistor made of a mixture of these can also be used without any problem, and even considering the above points, a heating resistor with extremely high practicality can be provided.
高融点金属シリサイドの具体例としてはl Ta IT
i、 Or、 W、 Mo、 Zr、 Hf、 V、
Nb、 R,e、 Fe。A specific example of high melting point metal silicide is l Ta IT
i, Or, W, Mo, Zr, Hf, V,
Nb, R, e, Fe.
Co、Ni等のシリサイドが挙げられ、中でもT1やT
aは耐熱性が特に優れていることで好ましく用いられる
。これらの高融点金属シリサイドは、スパッタリング法
、イオンブレーティング法9反応性蒸着等の方法によっ
て基板上にその窒化物として形成されるものである。Examples include silicides such as Co and Ni, among which T1 and T
A is preferably used because it has particularly excellent heat resistance. These high-melting-point metal silicides are formed as nitrides on a substrate by methods such as sputtering, ion blasting, and reactive vapor deposition.
本発明におけるサーマルヘッドの他の構成要素、即ち、
基板、電極、保護膜等については公知のものを採用し得
ること勿論である。Other components of the thermal head in the present invention, namely:
Of course, known substrates, electrodes, protective films, etc. can be used.
以下9本発明による発熱抵抗体をその製造方法を混えて
詳述する。Hereinafter, nine heating resistors according to the present invention will be described in detail, including a manufacturing method thereof.
製造例1
コーニング7059ガラス基板をスパッタ装置内で50
0°Cに加熱し、 TiSi2ターゲットを用いて、
アルゴンと窒素の混合ガス雰囲気中で几F電力200W
にて5分間スパッタを行ないガラス基板上に発熱抵抗体
を形成する。この時、全ガス圧を1.5 x 10
’Torrと一定にし、窒素分圧を変えた。Manufacturing example 1 A Corning 7059 glass substrate was placed in a sputtering device for 50
Heated to 0°C and using a TiSi2 target,
200W F power in a mixed gas atmosphere of argon and nitrogen
Sputtering was carried out for 5 minutes to form a heating resistor on the glass substrate. At this time, the total gas pressure is 1.5 x 10
' Torr was kept constant, and the nitrogen partial pressure was varied.
得られた発熱抵抗体の各窒素分圧時のシート抵抗A f
:第1図に示す。Sheet resistance A f of the obtained heating resistor at each nitrogen partial pressure
: Shown in Figure 1.
製造例2
製造例1において、全ガス圧をAOXlo”’−2To
rrに変えて一定にした以外は全て製造例1と同様にし
て発熱抵抗体を得た。得られた発熱抵抗体の各窒素分圧
時のシート抵抗Bを第1図に示す。Production Example 2 In Production Example 1, the total gas pressure was set to AOXlo"'-2To
A heating resistor was obtained in the same manner as in Production Example 1 except that rr was changed to a constant value. The sheet resistance B of the obtained heating resistor at each nitrogen partial pressure is shown in FIG.
製造例3
コーニング7059ガラス基板をスパッタ装置内で45
0°Cに加熱し、 CrSi2ターゲットを用いて、
アルゴンと窒素の混合ガス雰囲気中でRF電力200W
にて5分間スパッタを行ないガラス基板上に発熱抵抗体
を形成する。この時。Manufacturing example 3 A Corning 7059 glass substrate was placed in a sputtering device for 45 minutes.
Heated to 0°C and using a CrSi2 target,
RF power 200W in a mixed gas atmosphere of argon and nitrogen
Sputtering was carried out for 5 minutes to form a heating resistor on the glass substrate. At this time.
全ガス圧を1.5 X 10−2Torr と一定に
し、窒素分圧を変えた。得られた発熱抵抗体の各窒素分
圧時の7−ト抵抗Cを第1図に示す。The total gas pressure was kept constant at 1.5×10 −2 Torr, and the nitrogen partial pressure was varied. FIG. 1 shows the 7-t resistance C of the obtained heating resistor at each nitrogen partial pressure.
製造例4
コーニング7Q59ガラス基板上にsT’+si2ター
ゲットを用いて、全ガス圧1.5 X 1O−2Tor
r 、窒素分圧0.14 X io Torr、
RFi力200Wにて、基板加熱温度を400°C23
00°C,200°Cに変えて夫々5分間スパッタを行
カい発熱抵抗体を形成した。Production example 4 Using sT'+si2 target on Corning 7Q59 glass substrate, total gas pressure 1.5 x 1O-2 Tor
r, nitrogen partial pressure 0.14 X io Torr,
RFi power 200W, substrate heating temperature 400°C23
Sputtering was performed at 00°C and 200°C for 5 minutes each to form a heating resistor.
以上製造例1〜3の結果より、第1図において、窒素分
圧を変えることによって’1’ i S i 2−N2
系では10〜107Ω/口の範囲で、 また。From the results of Production Examples 1 to 3 above, in FIG. 1, by changing the nitrogen partial pressure, '1' i S i 2-N2
In the system, it is in the range of 10 to 107Ω/mouth.
0rSi2−N2系では102〜107Ω/口の範囲で
そのシート抵抗値を任意に広範囲にわたって可変制御で
きることが判る。また、製造例1と製造例2とより窒素
分圧とシート抵抗の関係の傾きは9例えば全ガス圧とい
ったスパッタ時の条件によって適宜変えられることが判
る。従って。It can be seen that in the 0rSi2-N2 system, the sheet resistance value can be controlled arbitrarily over a wide range within the range of 102 to 107 Ω/portion. Further, from Manufacturing Examples 1 and 2, it can be seen that the slope of the relationship between nitrogen partial pressure and sheet resistance can be changed as appropriate depending on the conditions during sputtering, such as the total gas pressure. Therefore.
ものである。It is something.
また H造例1,3.4で得られた発熱抵抗体の耐熱経
時安定性を調べたところ第1表の如き結果を得た。尚、
この際の条件としては、各発熱抵抗体上に8102を保
護膜として設け、空気中200°Cにて200時間の設
定をした。Furthermore, the heat resistance and aging stability of the heating resistors obtained in H-Building Examples 1 and 3.4 were investigated, and the results shown in Table 1 were obtained. still,
The conditions at this time were that 8102 was provided as a protective film on each heating resistor, and the temperature was set in air at 200° C. for 200 hours.
熱抵抗体は窒素濃度に依らず抵抗値変化率は±0.1%
以下であり、極めて高い耐熱経時安定性を示している。The resistance value change rate of the thermal resistor is ±0.1% regardless of nitrogen concentration.
The temperature is below, indicating extremely high heat resistance and aging stability.
また製造例4の結果によれば。Also, according to the results of Production Example 4.
通常TiSi2膜は、耐熱経時安定性を得るために結晶
化させることより、450°C〜500°Cにて形成す
るものであるが、 Ti5i2−N2系の発熱抵抗体
の形成温度を200“Cまで下げても、抵抗値変化率は
±0.1%以下となるもので、その形成温度500°C
の場合と同じ様に極めて高い耐熱経時安定性を示してい
る。即ち+ TiSi2を窒化することによって低い
温度での発熱抵抗体形成が可能となるものである。Normally, TiSi2 film is formed at 450°C to 500°C by crystallizing it to obtain heat resistance and stability over time. Even if the temperature is lowered to 500°C, the resistance value change rate is ±0.1% or less
As in the case of , it shows extremely high heat resistance and stability over time. That is, by nitriding +TiSi2, it is possible to form a heating resistor at a low temperature.
(実施例) 以下本発明を実施例に基づき説明する。(Example) The present invention will be explained below based on examples.
実施例1
グレーズ層が形成されているアルミナ絶縁性基板上に汚
染防止層として5102を約1μmスパッタリングによ
り形成した後、基板@度500”CKて窒!分圧0.1
4 x 1O−2T□B、全ガス圧1.5 X iO’
l’orrの条件でTiSi2ターゲットをスパッタし
て基板上に発熱抵抗体膜を形成した。更にこれにAI!
−0u−Si合金より成る電極層を形成した後、フォト
リングラフィ、ドライエツチング及びウェットエツチン
グにて所定のパターンを形成し、再びS iNx (X
今30%)膜を保護膜としてスパッタリングにより形成
し、抵抗値3にΩのサーマルヘッドを得た。Example 1 After forming 5102 as a contamination prevention layer on an alumina insulating substrate on which a glaze layer has been formed by sputtering to a thickness of about 1 μm, the substrate was coated with nitrogen at a temperature of 500” and a partial pressure of 0.1.
4 x 1O-2T□B, total gas pressure 1.5 x iO'
A heating resistor film was formed on the substrate by sputtering a TiSi2 target under the conditions of l'orr. Furthermore, AI!
After forming an electrode layer made of -0u-Si alloy, a predetermined pattern is formed by photolithography, dry etching, and wet etching, and SiNx (X
A thermal head with a resistance value of 3 Ω was obtained by forming a film (currently 30%) as a protective film by sputtering.
実施例2
実施例1においてTiSi2ターゲツ)t−スパッタす
る際、基板加熱温度を400°Cに変えた以外は実施例
1と同様にして抵抗値3にΩのサーマル5ツドを得た。Example 2 A thermal 5-piece with a resistance value of 3 and Ω was obtained in the same manner as in Example 1 except that the substrate heating temperature was changed to 400° C. during t-sputtering using the TiSi2 target.
実施例3 実施例1において発熱抵抗体膜を形成する際。Example 3 When forming the heating resistor film in Example 1.
基板加熱温度を450°C1窒素分圧0.14 X I
Q−2Torr、全ガス圧1.5 X 10 Tor
r、 ’!た0rSi2をターゲットとして用いた以外
は実施例1と同様にして抵抗値500Ωのサーマルヘッ
ドを得た。Substrate heating temperature: 450°C 1 Nitrogen partial pressure: 0.14 x I
Q-2 Torr, total gas pressure 1.5 x 10 Torr
r,'! A thermal head having a resistance value of 500Ω was obtained in the same manner as in Example 1 except that 0rSi2 was used as the target.
比較例1
実施例1において発熱抵抗体膜の形成時に窒素ガスを導
入せずA「ガx(1,5X10 Torr)のみにて
TiSi2をスパッタし、他は実施例1と同様にして抵
抗値100Ωのサーマルヘッドを得た。Comparative Example 1 In Example 1, nitrogen gas was not introduced during the formation of the heating resistor film, and TiSi2 was sputtered only using A gas (1.5 x 10 Torr), and the other conditions were the same as in Example 1, so that the resistance value was 100 Ω. I got a thermal head.
比較例2
実施例3において発熱抵抗体膜の形成時に窒素ガスを導
入せずArガス(1,5X10 Torr)のみにて
Cr S i 2をスパッタし、他は実施例3と同様に
して抵抗値500Ωのサーマルヘッドを得た。Comparative Example 2 In Example 3, when forming the heat generating resistor film, CrSi 2 was sputtered only with Ar gas (1.5×10 Torr) without introducing nitrogen gas, and the other conditions were the same as in Example 3 to determine the resistance value. A 500Ω thermal head was obtained.
(発明の効果)
以上実施例1〜3.比較例1,2で得られたサーマルヘ
ッドについて、パルス周期1 m5ecの条件でペタ黒
印字(黒率100%)を1×108ドツト実施した後の
発熱抵抗体の抵抗値変化率を調べたところ第2表に示す
如き結果を得た。(Effect of the invention) Examples 1 to 3 above. Regarding the thermal heads obtained in Comparative Examples 1 and 2, the rate of change in the resistance value of the heating resistor after performing peta black printing (black rate 100%) of 1 x 108 dots under the condition of a pulse period of 1 m5ec was investigated. The results shown in Table 2 were obtained.
以上詳述した様に9本発明の高融点金属シリサイドの窒
化物より成る発熱抵抗体を用いたサーマルヘッドは、そ
の抵抗体中の窒素濃度を適宜変えることにより、比抵抗
の高いものまで任意にその値を得ることができ、しかも
発熱抵抗体膜形成を低温で行っても耐熱性に優れた抵抗
値変化の極めて少ないサーマルヘッドが提供でき、生産
性の向上にも十分く寄与できるものである。As detailed above, the thermal head using the heating resistor made of nitride of high melting point metal silicide according to the present invention can be made to have a high resistivity by appropriately changing the nitrogen concentration in the resistor. It is possible to provide a thermal head that can obtain this value, has excellent heat resistance, and exhibits extremely little change in resistance value even when the heating resistor film is formed at low temperatures, and can fully contribute to improving productivity. .
第1図は本発明の発熱抵抗体を製造する際の窒素分圧と
シート抵抗との関係を示すグラフである。FIG. 1 is a graph showing the relationship between nitrogen partial pressure and sheet resistance when manufacturing the heating resistor of the present invention.
Claims (1)
を有してなるサーマルヘッドにおいて、前記発熱抵抗体
が高融点金属シリサイドの窒化物より成ることを特徴と
するサーマルヘッド。1. A thermal head comprising at least a heating resistor, an electrode, and a protective film on an insulating substrate, wherein the heating resistor is made of a nitride of high-melting point metal silicide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61283877A JPS63135260A (en) | 1986-11-28 | 1986-11-28 | Thermal head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61283877A JPS63135260A (en) | 1986-11-28 | 1986-11-28 | Thermal head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63135260A true JPS63135260A (en) | 1988-06-07 |
Family
ID=17671333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61283877A Pending JPS63135260A (en) | 1986-11-28 | 1986-11-28 | Thermal head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63135260A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6328303B1 (en) * | 1997-11-13 | 2001-12-11 | Canon Kabushiki Kaisha | Image forming apparatus with built-in surface reverse path |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5325442A (en) * | 1976-08-20 | 1978-03-09 | Matsushita Electric Ind Co Ltd | Thermal print head |
JPS5859094A (en) * | 1981-10-05 | 1983-04-07 | Seiko Epson Corp | Thermal head |
JPS61276201A (en) * | 1985-05-30 | 1986-12-06 | 日本電信電話株式会社 | Heating resistance element for thermal head |
-
1986
- 1986-11-28 JP JP61283877A patent/JPS63135260A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5325442A (en) * | 1976-08-20 | 1978-03-09 | Matsushita Electric Ind Co Ltd | Thermal print head |
JPS5859094A (en) * | 1981-10-05 | 1983-04-07 | Seiko Epson Corp | Thermal head |
JPS61276201A (en) * | 1985-05-30 | 1986-12-06 | 日本電信電話株式会社 | Heating resistance element for thermal head |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6328303B1 (en) * | 1997-11-13 | 2001-12-11 | Canon Kabushiki Kaisha | Image forming apparatus with built-in surface reverse path |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6323305A (en) | Highly stable metal film and manufacture of the same | |
US4168343A (en) | Thermal printing head | |
US4849605A (en) | Heating resistor and method for making same | |
JPS598231B2 (en) | Thermal head for thermal recording | |
JPS63135260A (en) | Thermal head | |
US4709243A (en) | Thermal head and method for manufacture thereof | |
JP2870692B2 (en) | Thin-film thermal head | |
JPS6367319B2 (en) | ||
JPS62202753A (en) | Thin film type thermal head | |
JP2843982B2 (en) | Thermal head | |
JPH0461201A (en) | Thin-film resistor | |
JPH0712692B2 (en) | Thin-film thermal head | |
JPS62202754A (en) | Thin film type thermal head | |
JPH0712691B2 (en) | Thin-film thermal head | |
JPS62201262A (en) | Membrane type thermal head | |
JPS62201263A (en) | Membrane type thermal head | |
JPS62201265A (en) | Membrane type thermal head | |
JPS62201266A (en) | Membrane type thermal head | |
JPH0640522B2 (en) | Thin film resistor | |
JPS6145543B2 (en) | ||
JPH07188911A (en) | Sputtering target, film resistor formed by using the same and thermal printer head | |
JPS639731B2 (en) | ||
JPS6046029B2 (en) | thermal head | |
JPS6293901A (en) | Thermal head and manufacture of the same | |
JPS6145544B2 (en) |