JPH0640522B2 - Thin film resistor - Google Patents

Thin film resistor

Info

Publication number
JPH0640522B2
JPH0640522B2 JP60236653A JP23665385A JPH0640522B2 JP H0640522 B2 JPH0640522 B2 JP H0640522B2 JP 60236653 A JP60236653 A JP 60236653A JP 23665385 A JP23665385 A JP 23665385A JP H0640522 B2 JPH0640522 B2 JP H0640522B2
Authority
JP
Japan
Prior art keywords
thin film
resistor
sic
resistance
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60236653A
Other languages
Japanese (ja)
Other versions
JPS6295802A (en
Inventor
富造 松岡
惇 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60236653A priority Critical patent/JPH0640522B2/en
Publication of JPS6295802A publication Critical patent/JPS6295802A/en
Publication of JPH0640522B2 publication Critical patent/JPH0640522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Physical Vapour Deposition (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜抵抗体、特に、ファクシミリの感熱記録装
置のサーマルヘッド用発熱抵抗体や混成集積回路用抵抗
体および他の薄膜抵抗体を利用したデバイスに応用され
得る薄膜抵抗体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film resistor, in particular, a heating resistor for a thermal head of a thermal recording device of a facsimile, a resistor for a hybrid integrated circuit, and a device using another thin film resistor. The present invention relates to a thin film resistor that can be applied to.

従来の技術 これまでのサーマルヘッドや混成集積回路には窒化タン
タル薄膜抵抗体が多く用いられてきたが、抵抗値が低い
ことが主因となり、長寿命化に限界があった。特にサー
マルヘッド用薄膜抵抗体に関しては、使用条件が厳しい
ので、高抵抗で耐酸化性に優れた熱的に安定な薄膜抵抗
体が要望されている。
2. Description of the Related Art Tantalum nitride thin film resistors have been widely used in thermal heads and hybrid integrated circuits up to now, but their long resistance has been limited mainly because of their low resistance. In particular, thin film resistors for thermal heads are used under severe conditions, and therefore, thermally stable thin film resistors having high resistance and excellent oxidation resistance are required.

発明が解決しようとする問題点 より高精細度と高速(高効率)印字ができる信頼性の高
い感熱記録用サーマルヘッドが望まれているが、従来そ
れに用いられてきた窒化タンタル発熱抵抗体は抵抗率が
低いために所定の電気抵抗値を得ようとする発熱体セグ
メントの膜厚を1000Å以下と薄くする必要があり、
良質安定な薄膜が得られ難かった。薄い膜厚が一因とな
って耐酸化性が劣り、抵抗の経時変化が大きいので信頼
性が低かった。また上記酸化を防ぐためと発熱体表面の
耐摩耗性を向上させるために硬質の厚い保護膜層を必要
とし、これが熱効率を悪くする原因の1つになってい
た。
Problems to be Solved by the Invention There is a demand for a highly reliable thermal head for heat-sensitive recording capable of high-definition and high-speed (high efficiency) printing. Since the rate is low, it is necessary to reduce the film thickness of the heating element segment to obtain a predetermined electric resistance value to 1000 Å or less,
It was difficult to obtain a stable thin film of good quality. Owing to the thin film thickness, the oxidation resistance was inferior, and the resistance was largely changed over time, resulting in low reliability. Further, a hard thick protective film layer is required to prevent the above-mentioned oxidation and to improve the wear resistance of the surface of the heating element, and this is one of the causes of deteriorating the thermal efficiency.

本発明は抵抗率が高く、硬度も大きい熱的に安定な薄膜
を得ようとするものである。
The present invention is intended to obtain a thermally stable thin film having high resistivity and high hardness.

問題点を解決するための手段 SiCと、TiCまたはZrCとの混合ターゲットを用
い、スパッタリング法で形成した薄膜を抵抗体とする。
Means for Solving the Problems Using a mixed target of SiC and TiC or ZrC, a thin film formed by a sputtering method is used as a resistor.

作用 周期律表第4〜第6族の遷移元素と原子半径の小さい非
金属原子Si,B,CおよびNの化合物は硬質合金とし
て知られ、高い硬度と低い抵抗率を有する。熱力学的安
定性は第4族の遷移元素たとえばTiやZrを含むもの
が一般に高い。
Action A compound of the transition elements of Groups 4 to 6 of the periodic table and non-metal atoms Si, B, C and N having a small atomic radius is known as a hard alloy and has high hardness and low resistivity. Thermodynamic stability is generally high for those containing a Group 4 transition element such as Ti or Zr.

これら化合物はサーマルヘッド用抵抗体薄膜としては一
般に抵抗が低すぎる。従って他の硬質、高抵抗率化合物
との複合により高抵抗化を図ることができる。
The resistance of these compounds is generally too low for a resistor thin film for a thermal head. Therefore, it is possible to increase the resistance by compounding with another hard and high resistivity compound.

上記硬質合金のうち、熱力学的安定性の高いTiNとZ
rNを用い、この各々と高抵抗,高硬質で耐酸化性の優
れたSiCとの複合体薄膜をスパッタリング法にて形成
して作成された薄膜抵抗体は、抵抗率が従来よりも高
く、高硬質の熱的に安定なものであり、材質と共に薄膜
の厚さ効果により耐酸化性に優れている。
Of the above hard alloys, TiN and Z, which have high thermodynamic stability
A thin film resistor made by using rN and forming a composite thin film of each of them with SiC having high resistance, high hardness, and excellent oxidation resistance by a sputtering method has higher resistivity than conventional It is hard and thermally stable, and is excellent in oxidation resistance due to the thickness effect of the thin film together with the material.

実施例 SiCとTiN粉末を出発原料にし、各種重量比で混合
した。成形し熱処理することによってセラミック板と
し、スパッタリング用ターゲットを作成した。
Example SiC and TiN powder were used as starting materials and mixed in various weight ratios. A ceramic plate was formed by forming and heat-treating to prepare a sputtering target.

高周波マグネトロンスパッタ装置を用い、上記ターゲッ
トをスパッタして、グレーズドアルミナ基板上に薄膜を
形成した。代表的スパッタ条件を以下記す。
The target was sputtered using a high frequency magnetron sputtering device to form a thin film on the glazed alumina substrate. Typical sputtering conditions are shown below.

スパッタパワー:2KW/20cm直径ターゲット スパッタガスとガス圧:Ar,3×10-2Torr 基板温度:400℃ 基板−ターゲット距離:6cm 上記条件でたとえばTiN:SiC=1:2重量比のタ
ーゲットを10分間スパッタした場合、0.95μmの
膜厚の金属光沢を有す薄膜が得られた。サーマルヘッド
の一般の使用温度350℃を考慮して、スパッタ時の基
板温度はそれより少し高い400℃としたが、200〜
700℃の範囲で変化させても金属光沢のある同様な薄
膜を得ることができた。薄膜とターゲットの組成はオー
ジェ分光分折と原子吸光分折でほぼ同一であることが判
ったが、X線回折で薄膜はハローピークを示し、結晶相
の同定はできない。しかし、Ti,N,SiおよびCの
4元素からなる種々の硬質合金TiN,TiC,Si
,SiCおよびTiSi等の結合を有する複合合
金薄膜と考えられる。
Sputtering power: 2 KW / 20 cm diameter target Sputtering gas and gas pressure: Ar, 3 × 10 -2 Torr Substrate temperature: 400 ° C. Substrate-target distance: 6 cm Under the above conditions, for example, a target of TiN: SiC = 1: 2 weight ratio is 10 When sputtered for a minute, a thin film having a metallic luster having a film thickness of 0.95 μm was obtained. Considering the general operating temperature of the thermal head of 350 ° C, the substrate temperature during sputtering was set to 400 ° C, which is slightly higher than that.
It was possible to obtain a similar thin film having metallic luster even when the temperature was changed in the range of 700 ° C. The composition of the thin film and the target was found to be almost the same by Auger spectroscopy and atomic absorption spectroscopy, but the thin film shows a halo peak by X-ray diffraction, and the crystal phase cannot be identified. However, various hard alloys TiN, TiC, Si 3 composed of four elements of Ti, N, Si and C 3
It is considered to be a composite alloy thin film having a bond such as N 4 , SiC and TiSi 2 .

薄膜の硬度を測定した結果、組成に対する依存性が少
く、ヌープ硬度2000を得、SiC単体と同一で非常
に硬いことが明らかになった。このことは従来発熱抵抗
体上に設けていた保護膜層を抵抗体に耐酸化性があれば
無くすか、極力薄くできることを意味し、サーマルヘッ
ドを高効率化できる。ターゲットの組成を種々変えて薄
膜を作成し、その抵抗率の測定を行った。その結果を図
に示した。
As a result of measuring the hardness of the thin film, it was found that the dependence on the composition was small and a Knoop hardness of 2000 was obtained, which was very hard as the SiC alone. This means that the protective film layer conventionally provided on the heating resistor can be eliminated or made as thin as possible if the resistor has oxidation resistance, and the thermal head can be made highly efficient. A thin film was formed by changing the composition of the target variously, and the resistivity was measured. The results are shown in the figure.

TiNのみの組成では1×10-4Ω・cmの抵抗率を持っ
た薄膜が得られた。この抵抗率では従来の抵抗体薄膜の
値とほとんど同一で、発熱体セグメントの厚さを従来よ
り大きくすることができない。少くとも1×10-3Ω・
cm以上の値が必要である。そのためには図よりSiCの
含量を0.35重量比以上にすればよいことが判る。S
iCの含量が増すと抵抗率が増加し、0.8重量比のS
iCを含んだ場合には1×10-1Ω・cmになる。このよ
うに抵抗膜の抵抗率を組成を変化させることにより、ア
ナログ的に変えられることは、サーマルヘッドの発熱体
を設計する上で非常に有利である。このことも本発明の
薄膜抵抗体の特徴の1つになっている。
With the composition containing only TiN, a thin film having a resistivity of 1 × 10 −4 Ω · cm was obtained. This resistivity is almost the same as that of the conventional resistor thin film, and the thickness of the heating element segment cannot be made larger than that of the prior art. At least 1 × 10 -3 Ω
A value of cm or more is required. For that purpose, it is understood from the figure that the content of SiC should be 0.35 weight ratio or more. S
As the content of iC increases, the resistivity increases, and 0.8% by weight of S
When iC is included, it becomes 1 × 10 −1 Ω · cm. In this way, the resistivity of the resistance film can be changed in an analog manner by changing the composition, which is very advantageous in designing the heating element of the thermal head. This is also one of the characteristics of the thin film resistor of the present invention.

SiCが0.8重量比より多くなるとサーマルヘッドの
発熱体薄膜の厚さが数μm以上となり、エッチング加工
に対する困難さがででくる。一般に組成的にもSiCが
多い程エッチングがしずらい。従って適当な組成範囲は
SiCの重量比で0.35〜0.8がサーマルヘッド用
抵抗体薄膜として適当である。
If the SiC content exceeds 0.8 weight ratio, the thickness of the heating element thin film of the thermal head becomes several μm or more, and the etching process becomes difficult. Generally, in terms of composition, the greater the amount of SiC, the more difficult etching is. Therefore, a suitable composition range of 0.35 to 0.8 by weight ratio of SiC is suitable as a resistor thin film for a thermal head.

つぎにサーマルヘッドの発熱体最高温度である400℃
で耐酸化性のエージングテストを行った。一対の金電極
膜をつけたA基板上に3000Åの厚さの薄膜
を形成し、それを400℃の温度で空気中に保持し、抵
抗の変化を時間と共に調べた。その結果、各種組成膜で
2000時間後20%以内の抵抗上昇が見られた。一方
同じ構成で作成した窒化タンタル膜では24時間後抵抗
が2倍に増加していた。このことから本発明の抵抗体薄
膜は従来の窒化タンタル膜に比べ、優れた耐酸化性を持
つ材質であることが判る。
Next, the maximum temperature of the heating element of the thermal head is 400 ° C
Then, an aging test of oxidation resistance was performed. A thin film having a thickness of 3000 Å was formed on an A 2 O 3 substrate provided with a pair of gold electrode films, which was held in air at a temperature of 400 ° C., and the change in resistance was examined with time. As a result, the resistance increase within 20% was observed after 2000 hours for various composition films. On the other hand, the resistance of the tantalum nitride film formed with the same structure doubled after 24 hours. From this, it is understood that the resistor thin film of the present invention is a material having excellent oxidation resistance as compared with the conventional tantalum nitride film.

更にSiC−ZrN系について上記SiC−TiN系と
ほとんど同様な手法で検討を行った。ZrNはTiNと
電気的および化学的性質はよく似ている。TiNの場合
と同様に各種組成で金属光沢のある薄膜が得られ、X線
回折パターンもハローピークであり、硬度もTiNの場
合と同じであった。ただ組成に対する抵抗率が多少高め
であり、その変化を同じく図中に破線で示した。ZrN
単体では1.2×10-4Ω・cmでTiNの場合より20
%増しの抵抗率であるが、SiC含量が多くなるとSi
C−TiN系の組成対抵抗率変化に近づく。1×10-3
Ω・cm以上の抵抗率がやはりSiC含量で0.35重量
比以上で確集に得られる。耐酸化性のエージングテスト
もSiC−TiN系と同等の結果が得られた。
Further, the SiC-ZrN system was examined by almost the same method as the above-mentioned SiC-TiN system. ZrN is very similar in electrical and chemical properties to TiN. As with TiN, thin films having metallic luster were obtained with various compositions, the X-ray diffraction pattern had a halo peak, and the hardness was the same as that of TiN. However, the resistivity with respect to the composition is somewhat higher, and the change is shown by the broken line in the figure as well. ZrN
1.2 × 10 −4 Ω · cm alone, 20 compared to TiN
Although the resistivity is increased by%, when the SiC content increases, the Si content increases.
It approaches the composition versus resistivity change of the C-TiN system. 1 x 10 -3
A resistivity of Ω · cm or more can be obtained with a SiC content of 0.35 weight ratio or more. The oxidation resistance aging test also obtained the same result as that of the SiC-TiN system.

以上説明した高抵抗率,高硬度および耐酸化性に優れた
抵抗体薄膜は、上記サーマルヘッドのみならず、他の応
用たとえば混成集積回路用抵抗体や薄膜ヒータを利用し
たデバイスにも当然応用し得るものである。
The resistor thin film excellent in high resistivity, high hardness and oxidation resistance described above is naturally applied not only to the above thermal head but also to other applications such as a resistor for a hybrid integrated circuit and a device using a thin film heater. I will get it.

発明の効果 本発明の抵抗体薄膜は、1×10-3〜1×10-1Ω・cm
の抵抗率を有し、組成を変えることによって所望の抵抗
値を選ぶことができる。上記抵抗率により、例えば10
00Å〜数μmの従来より厚いサーマルヘッド用発熱体
を作成することができる。従って安定な材質自身の特性
と共に厚さ効果によって耐酸化性の優れた、すなわち高
信頼性の薄膜発熱抵抗体が得られる。また硬度がSiC
と同じであるので発熱抵抗体表面の保護層を無くすか、
極力薄くして熱効率の高いサーマルヘッドが作成でき
る。他の薄膜抵抗体を利用したデバイスに対しても安定
な種々の抵抗率を持つ抵抗体を提供し得る。
Effects of the Invention The resistor thin film of the present invention is 1 × 10 −3 to 1 × 10 −1 Ω · cm.
The desired resistance value can be selected by changing the composition. According to the above resistivity, for example, 10
A heating element for a thermal head having a thickness of 00Å to several μm, which is thicker than the conventional one, can be prepared. Therefore, a thin-film heating resistor having excellent oxidation resistance, that is, high reliability due to the thickness effect as well as the stable characteristics of the material itself can be obtained. The hardness is SiC
Since it is the same as the above, either remove the protective layer on the surface of the heating resistor,
It is possible to create a thermal head that is as thin as possible and has high thermal efficiency. It is possible to provide a resistor having various stable resistivities even for a device using another thin film resistor.

【図面の簡単な説明】[Brief description of drawings]

図は、SiCとTiNおよびSiCとZrNの混合比を
変えたターゲットから作成した薄膜抵抗体の抵抗率の組
成変化を示すグラフである。
The figure is a graph showing the composition change of the resistivity of the thin film resistor prepared from the targets with different mixing ratios of SiC and TiN and SiC and ZrN.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiCと、TiNまたはZrNの混合ター
ゲットを用い、スパッタリング法にて形成したことを特
徴とする薄膜抵抗体。
1. A thin-film resistor formed by a sputtering method using a mixed target of SiC and TiN or ZrN.
【請求項2】SiCと、TiNまたはZrNの重量比が
3.5:6.5から8:2の範囲にあることを特徴とす
る特許請求の範囲第1項記載の薄膜抵抗体。
2. The thin film resistor according to claim 1, wherein the weight ratio of SiC to TiN or ZrN is in the range of 3.5: 6.5 to 8: 2.
JP60236653A 1985-10-23 1985-10-23 Thin film resistor Expired - Lifetime JPH0640522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60236653A JPH0640522B2 (en) 1985-10-23 1985-10-23 Thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60236653A JPH0640522B2 (en) 1985-10-23 1985-10-23 Thin film resistor

Publications (2)

Publication Number Publication Date
JPS6295802A JPS6295802A (en) 1987-05-02
JPH0640522B2 true JPH0640522B2 (en) 1994-05-25

Family

ID=17003798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236653A Expired - Lifetime JPH0640522B2 (en) 1985-10-23 1985-10-23 Thin film resistor

Country Status (1)

Country Link
JP (1) JPH0640522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736099B2 (en) * 2005-12-16 2010-06-15 Cole Carbide Industries, Inc. Gear milling tool with replaceable cutting inserts
JP7538663B2 (en) 2020-09-03 2024-08-22 Jx金属株式会社 Sputtering target, manufacturing method thereof, and manufacturing method of magnetic recording medium

Also Published As

Publication number Publication date
JPS6295802A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
US4298505A (en) Resistor composition and method of manufacture thereof
US4517444A (en) Thermal printhead
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
JPS6325901A (en) Metal film resistor and composition regulated multilayer thin film system
EP0150579B1 (en) Thermal head
JP2582776B2 (en) Semiconductor device and manufacturing method thereof
JPH0640522B2 (en) Thin film resistor
JPH0640523B2 (en) Thin film resistor
US5530467A (en) Sputtering target, film resistor and thermal printer head
JPH077721B2 (en) Method of manufacturing thin film resistor
Fronz et al. Electrical and structural properties of Cr-SiO thin films
JPH0640521B2 (en) Thin film resistor
JPS61100476A (en) Thermal head and manufacture thereof
US5227231A (en) Electrical resistive material
JPH0712689B2 (en) Thermal head
JPS6367319B2 (en)
EP0471080B1 (en) Sputtering target, film resistor formed with the use thereof, and thermal printer head and associated methods of production
JPH0461201A (en) Thin-film resistor
JP2843982B2 (en) Thermal head
JPS62202753A (en) Thin film type thermal head
Mutscheller et al. Effect of deposition conditions on intrinsic stress, phase transformation and stress relaxation in tantalum thin films
JPH067522B2 (en) Thermal head
JPS6196704A (en) Manufacture of resistor
JPH0640525B2 (en) Thermal head
JPS62202754A (en) Thin film type thermal head