JPS62201265A - Membrane type thermal head - Google Patents

Membrane type thermal head

Info

Publication number
JPS62201265A
JPS62201265A JP61044250A JP4425086A JPS62201265A JP S62201265 A JPS62201265 A JP S62201265A JP 61044250 A JP61044250 A JP 61044250A JP 4425086 A JP4425086 A JP 4425086A JP S62201265 A JPS62201265 A JP S62201265A
Authority
JP
Japan
Prior art keywords
thermal head
heat generating
metal
generating resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61044250A
Other languages
Japanese (ja)
Inventor
Naotoshi Yasuhara
安原 直俊
Michio Arai
三千男 荒井
Takeshi Nakada
剛 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61044250A priority Critical patent/JPS62201265A/en
Publication of JPS62201265A publication Critical patent/JPS62201265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a membrane type thermal head having high heat resistance, long life and high inherent resistivity and adjustable in temp. coefficient, by providing a heat generating resistor membrane based on a high m.p. metal, aluminum and nitrogen to substrate having a heat insulating layer and forming an abrasion resistant protective film on the surface thereof and, further connecting a power supply electrode to said resistor membrane. CONSTITUTION:A glaze layer 2 is formed to the surface of a glazed ceramic substrate 1. The glaze layer 2 comprises oxide corresponding to the glaze of porcelain and contains silicon oxide and aluminum oxide. A membrane heat generating resistor 3 is formed on the glaze layer 2 in a film form and a power supply electrode 4 is further formed in a film form and, at last, an abrasion resistance protective film (e.g., an Al-O-N system, an Al-O system, an Al-Si-O system) 6 is formed in a film form. The heat generating resistor 3 is an oxide containing aluminum and a high m.p. metal (at least one of Ti, Mo, W, Hf, Ni, V, Zr, La, Cr, Ta, Fe and Co). This high m.p. metal is used alone or in combination thereof and largely varies in the resistivity range of 10<7>-10<2>muOMEGAcm of the heat generating resistor in both cases.

Description

【発明の詳細な説明】 し技術分野] 本発明は薄膜型サーマルヘッドに関し、特に改良された
薄膜発熱抵抗体を有する薄膜型サーマルヘッドに関する
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a thin film thermal head, and more particularly to a thin film thermal head having an improved thin film heating resistor.

[従来技術とその問題点] 薄膜発熱抵抗体を用いる薄膜型サーマルヘッドはコンピ
ュータ、ワードプロセッサ、ファクシミリ等における印
字ヘッドとして広く用いられている。サーマルヘッドは
抵抗発熱体のドツトを多数配列し、それらを選択的に通
電することにより所望のパターンないし文字の形に発熱
させ、印字リボンの色材を用紙面へ熱転写させるように
なっている。抵抗発熱体には種々のものが知られ、或い
は使用されているが、良く用いられる材料としてはNi
−Cr 、Ta2N 、 Ta−8i02 、cr−s
i等がある。
[Prior Art and its Problems] Thin-film thermal heads using thin-film heating resistors are widely used as print heads in computers, word processors, facsimile machines, and the like. The thermal head has a large number of resistive heating element dots arranged, and selectively energizes them to generate heat in a desired pattern or character shape, thereby thermally transferring the color material of the printing ribbon to the paper surface. Various resistance heating elements are known or used, but the most commonly used material is Ni.
-Cr, Ta2N, Ta-8i02, cr-s
There are i etc.

これらはサーマルヘッド用抵抗発熱体としてすぐれた特
性を有するが、種々の欠点も有する。合金等の金属系の
発熱抵抗体は耐熱性及び耐酸化性に劣り、印字に必要な
エネルギーを繰返し印加した場合、発熱ににって発熱抵
抗体に酸化現象が発生し、抵抗値の増大を招き、印字特
性の低下を招く。
Although these have excellent properties as resistance heating elements for thermal heads, they also have various drawbacks. Metal-based heating resistors such as alloys have poor heat resistance and oxidation resistance, and when the energy required for printing is repeatedly applied, oxidation occurs in the heating resistor due to heat generation, causing an increase in resistance value. This may lead to deterioration of printing characteristics.

また、これらの金属系の発熱抵抗体は繰返し通電による
熱パルスにより急激な熱サイクル下に置かれたとき大き
く熱膨張・収縮し、下地基板と表面耐摩耗性保護膜との
間に大きい応力を牛してクランクの原因となる。一方、
Ta5i02等の酸化物や窒化物等の場合には、熱伝導
率が小さいため発熱体内での均熱性に欠け、印字品質を
低下させた。
In addition, these metal heating resistors undergo large thermal expansion and contraction when placed under rapid thermal cycles due to heat pulses caused by repeated energization, creating large stress between the underlying substrate and the surface wear-resistant protective film. It causes the cow to crank. on the other hand,
In the case of oxides and nitrides such as Ta5i02, their thermal conductivity is low, so they lack heat uniformity within the heating element, resulting in a decrease in printing quality.

また、金属系の発熱抵抗体は固有抵抗率が小さく、また
上記の化合物系の発熱抵抗体でも固有抵抗が小さく(T
a2Nで200〜300μΩcm1Ta−3i02でも
約2000μΩcm>、4ノーマルヘツドに必要な面積
抵抗1違/目前後を得ようとすると、数十への薄膜の発
熱抵抗体を実現しなければならべず、安定して製造する
ことが困難である。曲型的な製法はスパッタリング、イ
オンブレーティング、CVD法などの周知の半導体プロ
セス技術であるが、膜厚が1000人程度ないと工程制
御が困難である。また、これらの発熱体月利の抵抗温度
係数は成分比に対して比較的不感であり、所望値に制御
することが困難である。さらに、金属系では発熱体と電
力供給電極との間に反応が生じ、発熱抵抗体の抵抗値変
動や断線等の不良の発生の原因となる。
In addition, metal-based heating resistors have a small specific resistivity, and the compound-based heating resistors mentioned above also have a small specific resistance (T
200 to 300 μΩcm for a2N, approximately 2000 μΩcm for Ta-3i02>, and in order to obtain the sheet resistance of around 1 difference/m2 required for 4 normal heads, it is necessary to realize a heating resistor of tens of thin films, which is unstable. difficult to manufacture. The curved manufacturing method is a well-known semiconductor process technology such as sputtering, ion blasting, or CVD, but it is difficult to control the process unless the film thickness is about 1,000. Furthermore, the temperature coefficient of resistance of these heating elements is relatively insensitive to the component ratio, and it is difficult to control them to a desired value. Furthermore, in the case of a metal type, a reaction occurs between the heating element and the power supply electrode, which causes defects such as fluctuations in the resistance value of the heating resistor and disconnection.

[発明の目的] 従って、本発明の目的は、耐熱性が高く、寿命が長く、
固有抵抗率が大きく、しかも温度係数か調整可能な薄膜
発熱抵抗体を用いた薄膜型サーマルヘッドを提供するこ
とにある。
[Objective of the Invention] Therefore, the object of the present invention is to provide a material with high heat resistance, long life, and
An object of the present invention is to provide a thin film type thermal head using a thin film heating resistor having a large specific resistivity and an adjustable temperature coefficient.

[発明の概要] 本発明は、薄膜発熱抵抗体として、高融点金属と、アル
ミニウムと、窒素とを主成分として含有させたことを特
徴とする。すなわち、M−Al2−N系発熱抵抗体であ
る。ここにHは高融点金属で11、No、 w 1tH
,Ni、 V 、 Zr、 1−alTa、 Fe1C
o及びCrより選ばれた少なくとも1種である。
[Summary of the Invention] The present invention is characterized in that a thin film heating resistor contains a high melting point metal, aluminum, and nitrogen as main components. That is, it is an M-Al2-N heating resistor. Here H is a high melting point metal, 11, No, w 1tH
, Ni, V, Zr, 1-alTa, Fe1C
It is at least one selected from o and Cr.

高融点金属の存在により発熱体の抵抗率は繰返し熱パル
スによっても長期に変化せず、安定したサーマルヘッド
が得られる。また金属系の場合とちがい、酸−窒化物で
あるため熱膨張・収縮が小さく、上下層との熱膨張係数
の差による大きい内部応力の発生、ひいてはクラックの
発生がない。
Due to the presence of the high melting point metal, the resistivity of the heating element does not change over a long period of time even with repeated heat pulses, resulting in a stable thermal head. Also, unlike metal-based materials, since it is an oxy-nitride, thermal expansion and contraction are small, and large internal stress due to the difference in thermal expansion coefficient between the upper and lower layers does not occur, and cracks do not occur.

金属やAlNの最沈を増やせば熱伝導性が良くなり均熱
性が向上し、サーマルヘッドとしての電力効率の向上が
計られる。また、十分な酸素の存在により経時酸化のお
それもなく特性が安定する。
Increasing the subsidence of metal or AlN improves thermal conductivity, improves heat uniformity, and improves power efficiency as a thermal head. Further, due to the presence of sufficient oxygen, the properties are stabilized without fear of oxidation over time.

さらに、高融点金属の含有率に対して固有抵抗率が大き
く変化するので、その含有量を制御することでサーマル
ヘッドの特性の制御範囲が大きくなり、例えば104μ
Ωcm抵抗温度係数±1100pI)/ ’Cのような
発熱体抵抗の設計も容易になし得る。このような高抵抗
率では、発熱体の薄膜は1000人前後が好適となり、
成膜が容易となる。
Furthermore, since the specific resistivity changes greatly depending on the content of high melting point metal, controlling the content increases the control range of the characteristics of the thermal head.
It is also possible to easily design a heating element resistance such as Ωcm resistance temperature coefficient ±1100 pI)/'C. With such a high resistivity, the thin film of the heating element should preferably have a thickness of around 1000.
Film formation becomes easy.

[発明の詳細な説明] 本発明の薄膜型サーマルヘッドの構成の概要は第1図に
示されている。図中1はグレーズドセラミック基板であ
り、その表面にグレーズ層2が形成される。グレーズ層
2は磁器のうわぐすりに相当する酸化物であり、硅素及
びアルミニウムの酸化物を含み、またより好ましくはさ
らに発熱抵抗−4一 体層に用いられる高融点金属と同じものを含む。
[Detailed Description of the Invention] The outline of the structure of the thin film type thermal head of the present invention is shown in FIG. In the figure, 1 is a glazed ceramic substrate, on the surface of which a glazed layer 2 is formed. The glaze layer 2 is an oxide corresponding to a porcelain glaze, and contains oxides of silicon and aluminum, and more preferably also contains the same high melting point metal used in the heating resistor-4 integral layer.

グレーズ層2の上には例えば公知のスパッタ法により本
発明の薄膜抵抗発熱体3が成膜され、さらに電力供給用
電極(旧、Cr、  Al等、特にAl )4が蒸着ま
たはスパッタなどで成膜され、最後に公知の耐摩耗性保
護膜(例えばA2−0−N系、Al−0系、Al1−3
i−0系等)6がスパッタ法等で成膜される。
A thin film resistance heating element 3 of the present invention is formed on the glaze layer 2 by, for example, a known sputtering method, and a power supply electrode (formerly made of Cr, Al, etc., especially Al) 4 is formed by vapor deposition or sputtering. Finally, a known wear-resistant protective film (e.g. A2-0-N system, Al-0 system, Al1-3 system) is applied.
(i-0 series, etc.) 6 is formed by sputtering or the like.

発熱抵抗体3は本発明に従って、アルミニウムと高融点
金属M (Ti、 No、 W 、Hf、 Ni、 V
 、 Zr1La、 Cr1Ta、 Fe1Coの少な
くとも1種)とを含む酸化物である。この高融点金属は
種類によって作用上のちがいがあるが、しかし単独また
はどの組合せを用いても発熱抵抗体の抵抗率107〜1
02μΩcmの範囲で大きく変動する。更には特定の高
融点金属を選択することにより、所望の抵抗率及び温度
係数の発熱体を設計しうる。例えば抵抗率104μΩc
mのものを選択すれば膜厚は1000Å以上となしうる
。一般に高融点金属は20〜60wt%の範囲で選択し
うる。この点については実施例により具体的に示す。
According to the present invention, the heating resistor 3 is made of aluminum and a high melting point metal M (Ti, No, W, Hf, Ni, V
, Zr1La, Cr1Ta, and Fe1Co). These high melting point metals have different effects depending on the type, but regardless of whether they are used alone or in any combination, the resistivity of the heating resistor is 107 to 1.
It fluctuates greatly within the range of 0.02 μΩcm. Furthermore, by selecting a specific high-melting point metal, it is possible to design a heating element with a desired resistivity and temperature coefficient. For example, resistivity 104μΩc
If m is selected, the film thickness can be 1000 Å or more. Generally, the high melting point metal can be selected in a range of 20 to 60 wt%. This point will be specifically illustrated in Examples.

ANは耐熱性、耐酸性の窒化物を形成しうるちのであり
、その比率を変えることにより耐熱性を保ちイ【から抵
抗率を変えることができる。例えば酊Nは抵抗率>>1
07μΩcm、温度係数 く−1500ppm/ °C
であるが、高融点金属Mの含有率が10W1%以」ニで
107μΩcm以下、−100ppm/ °C以上を得
ることができる。
AN can form a heat-resistant and acid-resistant nitride, and by changing the ratio, it is possible to maintain heat resistance and change the resistivity. For example, drunkenness N has a resistivity of >>1
07μΩcm, temperature coefficient -1500ppm/°C
However, when the content of the high melting point metal M is 10W1% or more, it is possible to obtain a value of 107 μΩcm or less and −100 ppm/°C or more.

H,Al、Hのうち少なくとも2種を含有する耐摩耗保
護層6を選択すれば、本発明の発熱抵抗体は耐摩耗保護
層に良くなじみ、また熱膨張係数の差が少なくなり好ま
しい。さらに、電極4,5としてA12を用いれば、同
様に電極と発熱抵抗体とのなじみが良くなり好ましい。
It is preferable to select a wear-resistant protective layer 6 containing at least two of H, Al, and H, since the heating resistor of the present invention will fit well into the wear-resistant protective layer and the difference in thermal expansion coefficient will be reduced. Furthermore, it is preferable to use A12 for the electrodes 4 and 5, as this also improves the fit between the electrodes and the heating resistor.

本発明の発熱抵抗体は特にスパッタ法で製造することが
できる。例えば所望の組成比を有する固形物粉末を予め
製造し、それを圧縮成形してペレッ1〜化し、これをタ
ーゲットとしてArをスパッタガスとして用い、その他
必要に応じてN2ガス等を共存させ、Arイオンをター
ゲットに衝撃させ、放出されたイオンないし原子を基板
上に付着させる。膜組成はペレットの組成及びスパッタ
条件を変えることにより調整しうる。
The heating resistor of the present invention can be manufactured particularly by a sputtering method. For example, solid powder having a desired composition ratio is produced in advance, compression molded to form pellets 1 to 1, and this is used as a target using Ar as a sputtering gas, with N2 gas etc. coexisting as necessary. Ions are bombarded with a target, and the released ions or atoms are deposited on a substrate. The film composition can be adjusted by changing the pellet composition and sputtering conditions.

実施例 組成14o  Aで 。、23  NO,45のペレッ
トをタープッl〜として1〜6mTorrのArをスパ
ッタガスとして用い、ターゲット−基板距離60#、R
[電力1〜10W / cnF、基板温度200〜40
0℃の条件を調整して、上記組成の発熱抵抗体を製作し
、ざらにAl電極、保護膜を順に成膜してサーマルヘッ
ドを作成した。
Example composition 14oA. , 23 NO, 45 pellets were used as the sputtering gas, Ar of 1 to 6 mTorr was used as the sputtering gas, and the target-substrate distance was 60 #, R.
[Power 1~10W/cnF, substrate temperature 200~40
A heating resistor having the above composition was manufactured by adjusting the 0°C conditions, and a thermal head was created by roughly forming an Al electrode and a protective film in this order.

なお、基板表面層及び保護層にはAl及びSiの他にN
oを少量含有させた。得られたサーマルヘッドに対して
、次ぎのテストを行った。
Note that the substrate surface layer and the protective layer contain N in addition to Al and Si.
Contains a small amount of o. The following tests were conducted on the obtained thermal head.

x= 0.32のサンプルに対してパルス幅0.3m秒
、周期2m秒の熱パルスを加えたときの抵抗値変化率を
第2図に示した。またNoの含有率による抵抗率及び抵
抗温度係数を第3図に示した。なお対照サンプルとして
従来のTa2N発熱抵抗体Aと、Zr−8i発熱抵抗体
Cに対する耐熱パルスデストの結果を第2図に併記した
。第2図のBは本発明による発熱抵抗体を用いたサーマ
ルヘッドを示す。
Figure 2 shows the rate of change in resistance when a heat pulse with a pulse width of 0.3 msec and a period of 2 msec was applied to a sample with x = 0.32. Further, the resistivity and temperature coefficient of resistance depending on the No content are shown in FIG. As control samples, the results of heat resistance pulse testing for a conventional Ta2N heating resistor A and a Zr-8i heating resistor C are also shown in FIG. B in FIG. 2 shows a thermal head using a heating resistor according to the present invention.

[作用効果] 第2図から分るように、本発明の)to−Al −N未
発熱抵抗体Bを用いたサーマルヘッドは熱パルスを多数
加えても抵抗値が変らず、耐熱性が食い。従来の発熱抵
抗体A(Ta2N)やC(Zr−3i)では成る一定数
の熱パルスを越えると抵抗の変化が大きくなる。
[Function and Effect] As can be seen from Fig. 2, the thermal head using the to-Al-N non-heating resistor B of the present invention does not change its resistance value even when a large number of heat pulses are applied, and its heat resistance deteriorates. . When a certain number of heat pulses are exceeded in conventional heating resistors A (Ta2N) and C (Zr-3i), the change in resistance becomes large.

第3図から分るように、本発明の発熱抵抗体は高融点金
属の含有量に応じてその抵抗率及び抵抗温度係数が大き
く変動する。従って高融点金属の含有率を調整すること
によってこれらの値を所望の値に設計することができる
As can be seen from FIG. 3, the resistivity and temperature coefficient of resistance of the heating resistor of the present invention vary greatly depending on the content of the high melting point metal. Therefore, these values can be designed to desired values by adjusting the content of the high melting point metal.

耐熱性の向上には発熱体面内の温度分布の均一化、及び
熱膨張係数の減少によるものと思われる。
The improvement in heat resistance is thought to be due to the uniformity of the temperature distribution within the plane of the heating element and the reduction in the coefficient of thermal expansion.

また発熱体中に^lを含むためにAI2電極を用いても
それが発熱体中へ拡散するおそれがなく、従って安価な
Al電極を給電用に用いることができる。また、耐摩耗
保護膜にMo、Al、Nを含有した材料を用いれば、相
互間のなじみが良くなって密着性が向上し、熱衝撃等に
強くなり、クラック・剥離等の発生が抑制される。また
、本発明の発熱抵抗体は耐薬品性に優れ、アルカリや湿
気の影響を受は難い。
Furthermore, since the heating element contains ^l, even if the AI2 electrode is used, there is no fear that it will diffuse into the heating element, and therefore an inexpensive Al electrode can be used for power supply. In addition, if a material containing Mo, Al, and N is used for the wear-resistant protective film, the mutual compatibility will be improved, the adhesion will be improved, and it will be resistant to thermal shock, etc., and the occurrence of cracks and peeling will be suppressed. Ru. Further, the heating resistor of the present invention has excellent chemical resistance and is hardly affected by alkali or moisture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサーマルヘッドの構造を示す断面図、第2図は
本発明の発熱抵抗体を用いたサーマルヘッド及び従来例
の耐熱テストを示すグラフ、及び第3図は本発明のサー
マルヘッドにおいて発熱抵抗体中に含有される高融点金
属と抵抗率及び抵抗温度係数との関係を示すグラフであ
る。
FIG. 1 is a cross-sectional view showing the structure of a thermal head, FIG. 2 is a graph showing a heat resistance test of a thermal head using the heating resistor of the present invention and a conventional example, and FIG. 3 is a graph showing heat generation in the thermal head of the present invention. It is a graph showing the relationship between a high melting point metal contained in a resistor, resistivity, and resistance temperature coefficient.

Claims (1)

【特許請求の範囲】 1、熱絶縁層を有する下地基板に、高融点金属とアルミ
ニウムと窒素とを主成分とする発熱抵抗体薄膜を設け、
その表面に耐摩耗性保護膜を形成し、さらに前記抵抗体
に電力供給用電極を接続した、薄膜型サーマルヘッド。 2、高融点金属がTi、Mo、W、Hf、Ni、V、Z
r、La、Cr、Ta、Fe、Coよりなる群から選ば
れる前記第1項記載のサーマルヘッド。 3、耐摩耗性保護膜が窒素と、アルミニウムと、高融点
金属のうち少なくとも2種の元素を含んでいる前記第1
項記載のサーマルヘッド。 4、電力供給用電極がAl単層である前記第1項ないし
第3項のいずれかに記載のサーマルヘッド。
[Claims] 1. A heat generating resistor thin film containing a high melting point metal, aluminum and nitrogen as main components is provided on a base substrate having a heat insulating layer,
A thin film type thermal head, which has a wear-resistant protective film formed on its surface, and further has a power supply electrode connected to the resistor. 2. High melting point metal is Ti, Mo, W, Hf, Ni, V, Z
2. The thermal head according to item 1, which is selected from the group consisting of r, La, Cr, Ta, Fe, and Co. 3. The first wear-resistant protective film contains at least two elements selected from nitrogen, aluminum, and a high melting point metal.
Thermal head described in section. 4. The thermal head according to any one of items 1 to 3 above, wherein the power supply electrode is an Al single layer.
JP61044250A 1986-03-03 1986-03-03 Membrane type thermal head Pending JPS62201265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044250A JPS62201265A (en) 1986-03-03 1986-03-03 Membrane type thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044250A JPS62201265A (en) 1986-03-03 1986-03-03 Membrane type thermal head

Publications (1)

Publication Number Publication Date
JPS62201265A true JPS62201265A (en) 1987-09-04

Family

ID=12686282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044250A Pending JPS62201265A (en) 1986-03-03 1986-03-03 Membrane type thermal head

Country Status (1)

Country Link
JP (1) JPS62201265A (en)

Similar Documents

Publication Publication Date Title
US4574292A (en) Thermal head
US4690872A (en) Ceramic heater
US4168343A (en) Thermal printing head
US5530467A (en) Sputtering target, film resistor and thermal printer head
JPS62201265A (en) Membrane type thermal head
JP2870692B2 (en) Thin-film thermal head
JPS62201264A (en) Membrane type thermal head
JPS62202753A (en) Thin film type thermal head
JPH0312551B2 (en)
JPS62202754A (en) Thin film type thermal head
JPS62202756A (en) Thin film type thermal head
JPS62201263A (en) Membrane type thermal head
US4862195A (en) Overcoating layer for thermal printing head
JPS62202755A (en) Thin film type thermal head
JPS62201266A (en) Membrane type thermal head
JP2990719B2 (en) Thermal head
JPS62201262A (en) Membrane type thermal head
JPH06227015A (en) Wear-resistant protective film for thermal head and preparation thereof
EP0471080B1 (en) Sputtering target, film resistor formed with the use thereof, and thermal printer head and associated methods of production
JPS623968A (en) Abrasion-resistant thin film thermal head
JPH0523042B2 (en)
JPS6395601A (en) Resistance thin film
JPS63135260A (en) Thermal head
JPH0640522B2 (en) Thin film resistor
WO2022255987A1 (en) Heater and method for producing a heater