JPS62202754A - Thin film type thermal head - Google Patents

Thin film type thermal head

Info

Publication number
JPS62202754A
JPS62202754A JP61044252A JP4425286A JPS62202754A JP S62202754 A JPS62202754 A JP S62202754A JP 61044252 A JP61044252 A JP 61044252A JP 4425286 A JP4425286 A JP 4425286A JP S62202754 A JPS62202754 A JP S62202754A
Authority
JP
Japan
Prior art keywords
thermal head
resistance
thin film
heat
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61044252A
Other languages
Japanese (ja)
Other versions
JPH0712690B2 (en
Inventor
Naotoshi Yasuhara
安原 直俊
Michio Arai
三千男 荒井
Takeshi Nakada
剛 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61044252A priority Critical patent/JPH0712690B2/en
Publication of JPS62202754A publication Critical patent/JPS62202754A/en
Publication of JPH0712690B2 publication Critical patent/JPH0712690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thin film type thermal head of high heat resistance and resistivity having an adjustable temperature coefficient, by using a heat resistor containing a high-melting metal, a silicon, an oxygen, and a nitrogen, as main ingredients. CONSTITUTION:A glaze layer 2 is formed on the surface of a glazed ceramic substrate 1. On the glaze layer 2 a thin film resistance heating element 3 is formed by a sputtering process, and thereon an electric power supplying electrode 4 (Ni, Cr, and Al etc., especially Al) is formed by deposition or sputtering, and finally thereon a wear resistant protective film 6 (e.g., Sio) series, Ta2O5, SiC series, etc.) is formed by a sputtering process, etc. The heating resistor 3 is a nitrogen-oxide containing a silicon, and a high-melting metal M (at least one from among Ti, Mo, W, Hf, Ni, V, Zr, La, Ta, Fe, and Co). In a thermal head using the above heating resistor; the value of resistance is not varied even with application of many heat pulses, the heat resistance is enhanced, and, additionally, the values of resistivity and resistance temperature coefficient can be desirably obtained because of the variation to a great extent according to the content of the high-melting metal.

Description

【発明の詳細な説明】 [技術分野] 本発明は薄膜型サーマルヘッドに関し、特に改良された
薄膜発熱抵抗体を有する薄膜型サーマルヘッドに関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a thin film thermal head, and more particularly to a thin film thermal head having an improved thin film heating resistor.

[従来技術とその問題点] 薄膜発熱抵抗体を用いる薄膜型サーマルヘッドはコンピ
ュータ、ワードプロセッサ、ファクシミリ等における印
字ヘッドとして広く用いられている。サーマルヘッドは
抵抗発熱体のドツトを多数配列し、それらを選択的に通
電することにより所望のパターンないし文字の形に発熱
させ、印字リボンの色材を用紙面へ熱転写させるように
なっている。抵抗発熱体には種々のものが知られ、或い
は使用されているが、良く用いられる材料としてはNi
−Cr 1丁82N 、丁a−3i02、Cr−3i等
がある。
[Prior Art and its Problems] Thin-film thermal heads using thin-film heating resistors are widely used as print heads in computers, word processors, facsimile machines, and the like. The thermal head has a large number of resistive heating element dots arranged, and selectively energizes them to generate heat in a desired pattern or character shape, thereby thermally transferring the color material of the printing ribbon to the paper surface. Various resistance heating elements are known or used, but the most commonly used material is Ni.
-Cr 1-82N, Cr-3i02, Cr-3i, etc.

これらはサーマルヘッド用抵抗発熱体として1ぐれた特
性を有するが、種々の欠点も有する。合金等の金属系の
発熱抵抗体は耐熱性及び耐酸化性に劣り、印字に必要な
エネルギーを繰返し印加した場合、発熱によって発熱抵
抗体に酸化現象が発生し、抵抗値の増大を招き、印字特
性の低下を招く。
Although these have excellent properties as resistance heating elements for thermal heads, they also have various drawbacks. Metal-based heating resistors such as alloys have poor heat resistance and oxidation resistance, and when the energy necessary for printing is repeatedly applied, the heat generation causes oxidation of the heating resistor, leading to an increase in resistance value and causing printing problems. This leads to deterioration of characteristics.

また、これらの金属系の発熱抵抗体は繰返し通電による
熱パルスにより急激な熱サイクル下に置かれたとき大き
く熱膨張・収縮し、下地基板と表面耐摩耗性保護膜との
間に大きい応力を生じてクラックの原因となる。一方、
Ta5i02等の酸化物や窒化物等の場合には、熱伝導
率が小さいため発熱体内での均熱性に欠け、印字品質を
低下させた。
In addition, these metal heating resistors undergo large thermal expansion and contraction when placed under rapid thermal cycles due to heat pulses caused by repeated energization, creating large stress between the underlying substrate and the surface wear-resistant protective film. This causes cracks. on the other hand,
In the case of oxides and nitrides such as Ta5i02, their thermal conductivity is low, so they lack heat uniformity within the heating element, resulting in a decrease in printing quality.

また、金属系の発熱抵抗体は固有抵抗率が小さく、また
上記の化合物系の発熱抵抗体でも固有抵抗が小さく(T
a2Nで200〜300μΩcm1Ta−3i02でも
約2000μΩcm)、サーマルヘッドに必要な面積抵
抗1(7口前後を得ようとすると、数十への薄膜の発熱
抵抗体を実現しなければなら\ず、安定して製造するこ
とが困難である。典型的な製法はスパッタリング、イオ
ンブレーティング、CVD法などの周知の半導体プロセ
ス技術であるが、膜厚が1000人程度4いと工程制御
が困難である。また、これらの発熱体材料の抵抗温度係
数は成分比に対して比較的不感であり、所望値に制御す
ることが困難である。さらに、金属系では発熱体と電力
供給電極との間に反応が生じ、発熱抵抗体の抵抗値変動
や断線等の不良の発生の原因となる。
In addition, metal-based heating resistors have a small specific resistivity, and even the above-mentioned compound-based heating resistors have a small specific resistance (T
200 to 300μΩcm for a2N, about 2000μΩcm for Ta-3i02), and to obtain the area resistance of 1 (around 7 holes) required for a thermal head, it is necessary to realize several tens of thin film heating resistors, and it is not stable. Typical manufacturing methods are well-known semiconductor process techniques such as sputtering, ion blating, and CVD, but process control is difficult when the film thickness is about 1,000 layers. The temperature coefficient of resistance of these heating element materials is relatively insensitive to component ratios and is difficult to control to a desired value.Furthermore, in metallic systems, reactions occur between the heating element and the power supply electrodes. This may cause defects such as fluctuations in the resistance value of the heating resistor and disconnection.

[発明の目的] 従って、本発明の目的は、耐熱性が高く、寿命が長く、
固有抵抗率が大きく、しかも温度係数が調整可能な薄膜
発熱抵抗体を用いた薄膜型サーマルヘッドを提供するこ
とにある。
[Objective of the Invention] Therefore, the object of the present invention is to provide a material with high heat resistance, long life, and
It is an object of the present invention to provide a thin film type thermal head using a thin film heating resistor having a large specific resistivity and an adjustable temperature coefficient.

[発明の概要] 本発明は、薄膜発熱抵抗体として、高融点金属と、硅素
と、酸素と、窒素とを主成分として含有させたことを特
徴とする。すなわち、)f−3i−0−N系発熱抵抗体
である。ここにHは高融点金属でTi、No、 w 、
 Hf、 Ni1V 1Zr1La、 Ta、 Fe、
 Coより選ばれた少なくとも1種である。
[Summary of the Invention] The present invention is characterized in that a thin film heating resistor contains a high melting point metal, silicon, oxygen, and nitrogen as main components. That is, it is a f-3i-0-N type heating resistor. Here, H is a high melting point metal such as Ti, No, w,
Hf, Ni1V 1Zr1La, Ta, Fe,
At least one selected from Co.

高融点金属の存在により発熱体の抵抗率は繰返し熱パル
スによっても長期に変化せず、安定したサーマルヘッド
が得られる。また金属系の場合とちがい、酸−窒化物で
あるため熱膨張・収縮が小ざく、上下層との熱膨張係数
の差による大きい内部応力の発生、ひいてはクラックの
発生がない。
Due to the presence of the high melting point metal, the resistivity of the heating element does not change over a long period of time even with repeated heat pulses, resulting in a stable thermal head. Also, unlike metal-based materials, since it is an oxy-nitride, thermal expansion and contraction are small, and large internal stress due to the difference in thermal expansion coefficient between the upper and lower layers does not occur, and cracks do not occur.

金属が酸化物、窒化物の量比を越えれば熱伝導性が良く
なり均熱性が向上する。また、十分な酸素、窒素の存在
により経時酸化のおそれもなく特性が安定する。さらに
、高融点金属の含有率に対して固有抵抗率が大きく変化
するので、その含有量を制御することでサーマルヘッド
の特性の制御範囲が大きくなり、例えば104μΩcm
抵抗温度係数士1100pp/ ’Cのような発熱体抵
抗の設計も容易になし得る。このような高抵抗率では、
発熱体の薄膜はi ooo入前後前後適となり、成膜が
容易となる。
If the ratio of metal to oxide exceeds that of nitride, thermal conductivity will be improved and thermal uniformity will be improved. In addition, the presence of sufficient oxygen and nitrogen stabilizes the properties without fear of oxidation over time. Furthermore, since the specific resistivity changes greatly depending on the content of high-melting point metal, controlling the content increases the control range of the thermal head characteristics, for example, 104 μΩcm.
It is also possible to easily design a heating element resistance with a temperature coefficient of resistance of 1100 pp/'C. At such high resistivity,
The thin film of the heating element is suitable before and after entering the i ooo, making it easy to form the film.

[発明の詳細な説明] 本発明の薄膜型サーマルヘッドの構成の概要は第1図に
示されている。図中1はグレーズドセラミック基板であ
り、その表面にグレーズ層2が形成される。グレーズ層
2は磁器のうわぐずりに相当する酸化物であり、硅素及
びアルミニウムの酸化物を含む。グレーズ層2の上には
例えば公知のスパッタ法により本発明の薄膜抵抗発熱体
3が成膜され、さらに電力供給用電極(Ni、 Cr、
  Al等、特に酊)4が蒸着またはスパッタなどで成
膜され、最後に公知の耐摩耗性保護膜(例えば5i−0
系、Ta2O5、SiC系等)6がスパッタ法等で成膜
される。
[Detailed Description of the Invention] The outline of the structure of the thin film type thermal head of the present invention is shown in FIG. In the figure, 1 is a glazed ceramic substrate, on the surface of which a glazed layer 2 is formed. The glaze layer 2 is an oxide corresponding to a porcelain glaze, and contains oxides of silicon and aluminum. A thin film resistance heating element 3 of the present invention is formed on the glaze layer 2 by, for example, a known sputtering method, and a power supply electrode (Ni, Cr,
A film such as Al (especially 5i-0) is formed by vapor deposition or sputtering, and finally a known wear-resistant protective film (for example, 5i-0
type, Ta2O5, SiC type, etc.) 6 is formed into a film by sputtering method or the like.

発熱抵抗体3は本発明に従って、硅素と高融点金属M 
(Ti、 No、 W 、Iff、旧、V 、 Zr、
La、 Ta、Fe、 Coの少なくとも1種)とを含
む窒−酸化物である。この金属は種類によって作用上の
ちがいがあるが、しかし単独またはどの組合せを用いて
も発熱抵抗体の抵抗率と抵抗温度係数とはそれぞれ10
7〜102μΩcm及び−1500〜+500pl)m
 /’Cの範囲で大きく変動する。従って特定の高融点
金属含有率を選択することにより、所望の抵抗率に於い
て所望の温度係数の発熱体を設計しろる。例えば抵抗率
104μΩcmのものを選択すれば膜厚は1000Å以
上となしうる。一般に高融点金属は10〜60wt%の
範囲で選択しうる。この点については実施例により具体
的に示す。
According to the present invention, the heating resistor 3 is made of silicon and a high melting point metal M.
(Ti, No, W, If, old, V, Zr,
It is a nitride-oxide containing at least one of La, Ta, Fe, and Co). The functions of these metals differ depending on the type, but regardless of whether they are used alone or in any combination, the resistivity and temperature coefficient of resistance of the heating resistor are each 10.
7~102μΩcm and -1500~+500pl)m
It fluctuates greatly within the range of /'C. Therefore, by selecting a specific refractory metal content, one can design a heating element with a desired temperature coefficient at a desired resistivity. For example, if one with a resistivity of 104 μΩcm is selected, the film thickness can be 1000 Å or more. Generally, the high melting point metal can be selected in the range of 10 to 60 wt%. This point will be specifically illustrated in Examples.

si、OlNは耐熱性、耐酸化性の物質を形成しうるち
のであり、その比率を変えることにより耐熱性を保らな
がら抵抗率を変えることができる。
Si and OlN form a heat-resistant and oxidation-resistant substance, and by changing the ratio, the resistivity can be changed while maintaining heat resistance.

例えばSiO,300,4NO,3は抵抗率>>107
μΩcm、温度係数 < −1500ppm/ ’Cで
あるが、高融点金属Mの含有率が10wt%以上で10
7μΩcm以下、−1100F)l)/ ’C以上を得
ることができる。
For example, SiO, 300, 4NO, 3 has a resistivity of >>107
μΩcm, temperature coefficient <-1500ppm/'C, but when the content of high melting point metal M is 10wt% or more, 10
7μΩcm or less, -1100F)l)/'C or more can be obtained.

H、Si、0、Nの少なくとも2種を含有する耐摩耗保
護層6を選択すれば、本発明の発熱抵抗体は耐摩耗保護
層に良くなじみ、また熱膨張係数の差が少なくなり好ま
しい。さらに、電極4.5としてAlを用いれば、同様
に電極と発熱抵抗体とのなじみが良くなり好ましい。
It is preferable to select a wear-resistant protective layer 6 containing at least two of H, Si, 0, and N, since the heating resistor of the present invention will fit well into the wear-resistant protective layer and the difference in coefficient of thermal expansion will be reduced. Furthermore, it is preferable to use Al as the electrode 4.5, since the electrode and the heating resistor will fit better together.

本発明の発熱抵抗体は特にスパッタ法で製造することが
できる。例えば所望の組成比を有する固形物粉末を予め
製造し、それを圧縮成形してペレット化し、これをター
ゲットとしてArをスパッタガスとして用い、その伯必
要に応じて02、N2ガス等を共存させ、Arイオンを
ターゲットに衝撃させ、放出されたイオンないし原子を
基板上に付着させる。膜組成はペレットの組成及びスパ
ッタ条件を変えることにより調整しうる。
The heating resistor of the present invention can be manufactured particularly by a sputtering method. For example, a solid powder having a desired composition ratio is produced in advance, it is compression-molded into pellets, Ar is used as a sputtering gas using this as a target, and O2 gas, N2 gas, etc. are allowed to coexist as needed. A target is bombarded with Ar ions, and the released ions or atoms are deposited on a substrate. The film composition can be adjusted by changing the pellet composition and sputtering conditions.

X思± 組成H0x ””0.2500.42 NO,33のぺ
′ットをターゲラ1〜として1〜6mTOrrのA「を
スパッタガスとして用い、ターゲット−基板距離60m
m、 RF電力1〜10W/cm2、基板温度200〜
400℃の条件を調整して、上記組成の発熱抵抗体を製
作し、さらにAl主電極保護膜を順に成膜してサーマル
ヘラ下を作成した。
X composition H0x "" 0.2500.42 NO, 33 pet' is used as a target laser 1~, A' of 1~6 mTOrr is used as sputtering gas, target-substrate distance is 60 m.
m, RF power 1~10W/cm2, substrate temperature 200~
A heating resistor having the above composition was manufactured by adjusting the 400° C. condition, and an Al main electrode protective film was sequentially formed to create a thermal spatula bottom.

なお、保護膜にはSiの他にNoを少量含有させた。Note that the protective film contained a small amount of No in addition to Si.

得られたサーマルヘッドに対して、次ぎのテストを行っ
た。
The following tests were conducted on the obtained thermal head.

x=0.12のサンプルに対してパルス幅0.3m秒、
周期2m秒の熱パルスを加えたときの抵抗値変化率を第
2図に示した。またNoの含有率による抵抗率及び抵抗
温度係数を第3図に示した。なお対照サンプルとして従
来のTa2N発熱抵抗体八と、Zr−Si発熱抵抗体C
に対する耐熱パルステストの結果を第2図に併記した。
Pulse width 0.3 msec for sample x = 0.12,
Figure 2 shows the rate of change in resistance value when a heat pulse with a period of 2 msec was applied. Further, the resistivity and temperature coefficient of resistance depending on the No content are shown in FIG. As control samples, a conventional Ta2N heating resistor 8 and a Zr-Si heating resistor C were used.
The results of the heat resistance pulse test are also shown in Figure 2.

第2図のBは本発明による発熱抵抗体を用いたサーマル
ヘッドを示す。
B in FIG. 2 shows a thermal head using a heating resistor according to the present invention.

[作用効果] 第2図から分るように、本発明の)fo−3i〜0−N
系発熱抵抗体日を用いたサーマルヘッドは熱パルスを多
数加えても抵抗値が変らず、耐熱性が良い。
[Operation and Effect] As can be seen from FIG. 2, fo-3i to 0-N of the present invention
Thermal heads using heat-generating resistors have good heat resistance, with no change in resistance even when multiple heat pulses are applied.

従来の発熱抵抗体A(Ta2N)やC(Zr−3i)で
は成る一定数の熱パルスを越えると抵抗の変化が大きく
なる。
When a certain number of heat pulses are exceeded in conventional heating resistors A (Ta2N) and C (Zr-3i), the change in resistance becomes large.

第3図から分るように、本発明の発熱抵抗体は高融点金
属の含有指に応じてその抵抗率及び抵抗温度係数が大き
く変動する。従って高融点金属の含有率を調整すること
によってこれらの値を所望の値に設計することができる
As can be seen from FIG. 3, the resistivity and temperature coefficient of resistance of the heating resistor of the present invention vary greatly depending on the content of the high melting point metal. Therefore, these values can be designed to desired values by adjusting the content of the high melting point metal.

耐熱性の向上には発熱体面内の温度分布の均一化、及び
熱膨張係数の減少によるものと思われる。
The improvement in heat resistance is thought to be due to the uniformity of the temperature distribution within the plane of the heating element and the reduction in the coefficient of thermal expansion.

また、耐摩耗保護膜にNo、 Si、0、Hの少なくて
も3種を含有した材料を用いれば、相互間のなじみが良
くなって密着性が向上し、熱阿撃等に強くなり、クラン
ク・剥離等の発生が抑制される。また、本発明の発熱抵
抗体は、耐薬品性に優れ、アルカリや湿気の影響を受は
難い。
In addition, if a material containing at least three of No, Si, 0, and H is used for the wear-resistant protective film, the mutual compatibility will be improved, the adhesion will be improved, and the material will be resistant to heat attack, etc. Occurrence of cranking, peeling, etc. is suppressed. Further, the heating resistor of the present invention has excellent chemical resistance and is hardly affected by alkali or moisture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサーマルヘッドの構造を示す断面図、第2図は
本発明の発熱抵抗体を用いたサーマルヘッド及び従来例
の耐熱テストを示すグラフ、及び第3図は本発明のサー
マルヘッドにおいて発熱抵抗体中に含有される高融点金
属と抵抗率及び抵抗温度係数との関係を示すグラフであ
る。 ・−7′ 口隷背式子  Y q
FIG. 1 is a cross-sectional view showing the structure of a thermal head, FIG. 2 is a graph showing a heat resistance test of a thermal head using the heating resistor of the present invention and a conventional example, and FIG. 3 is a graph showing heat generation in the thermal head of the present invention. It is a graph showing the relationship between a high melting point metal contained in a resistor, resistivity, and resistance temperature coefficient.・−7′ Mouth slave Shikiko Y q

Claims (1)

【特許請求の範囲】 1、熱絶縁層を有する下地基板に、高融点金属と硅素と
窒素と酸素とを主成分とする発熱抵抗体薄膜を設け、そ
の表面に耐摩耗性保護膜を形成し、さらに前記抵抗体に
電力供給用電極を接続した、薄膜型サーマルヘッド。 2、高融点金属がTi、Mo、W、Hf、Ni、V、Z
r、La、Ta、Fe、Coよりなる群から選ばれる前
記第1項記載のサーマルヘッド。 3、耐摩耗性保護膜が硅素とOとNと高融点金属のうち
少なくとも2種の元素を含んでいる前記第1項記載のサ
ーマルヘッド。 4、電力供給用電極がAl単層である前記第1項ないし
第3項のいずれかに記載のサーマルヘッド。
[Scope of Claims] 1. A heating resistor thin film containing a high melting point metal, silicon, nitrogen, and oxygen as main components is provided on a base substrate having a thermally insulating layer, and a wear-resistant protective film is formed on the surface thereof. , a thin film type thermal head further comprising a power supply electrode connected to the resistor. 2. High melting point metal is Ti, Mo, W, Hf, Ni, V, Z
2. The thermal head according to item 1, which is selected from the group consisting of r, La, Ta, Fe, and Co. 3. The thermal head according to item 1, wherein the wear-resistant protective film contains at least two elements selected from silicon, O, N, and a high-melting point metal. 4. The thermal head according to any one of items 1 to 3 above, wherein the power supply electrode is an Al single layer.
JP61044252A 1986-03-03 1986-03-03 Thin-film thermal head Expired - Fee Related JPH0712690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044252A JPH0712690B2 (en) 1986-03-03 1986-03-03 Thin-film thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044252A JPH0712690B2 (en) 1986-03-03 1986-03-03 Thin-film thermal head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7121598A Division JP2870692B2 (en) 1998-03-06 1998-03-06 Thin-film thermal head

Publications (2)

Publication Number Publication Date
JPS62202754A true JPS62202754A (en) 1987-09-07
JPH0712690B2 JPH0712690B2 (en) 1995-02-15

Family

ID=12686336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044252A Expired - Fee Related JPH0712690B2 (en) 1986-03-03 1986-03-03 Thin-film thermal head

Country Status (1)

Country Link
JP (1) JPH0712690B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066963A (en) * 1989-04-18 1991-11-19 Canon Kabushiki Kaisha Ink jet head having heat-generating resistor comprised of a complex compound
EP0729834A2 (en) * 1995-03-03 1996-09-04 Canon Kabushiki Kaisha An ink-jet head, a substrate for an ink-jet head, and an ink-jet apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311037A (en) * 1976-07-19 1978-02-01 Toshiba Corp Thin film thermal head
JPS5325442A (en) * 1976-08-20 1978-03-09 Matsushita Electric Ind Co Ltd Thermal print head
JPS5492276A (en) * 1977-12-28 1979-07-21 Canon Inc Thermal head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311037A (en) * 1976-07-19 1978-02-01 Toshiba Corp Thin film thermal head
JPS5325442A (en) * 1976-08-20 1978-03-09 Matsushita Electric Ind Co Ltd Thermal print head
JPS5492276A (en) * 1977-12-28 1979-07-21 Canon Inc Thermal head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066963A (en) * 1989-04-18 1991-11-19 Canon Kabushiki Kaisha Ink jet head having heat-generating resistor comprised of a complex compound
EP0729834A2 (en) * 1995-03-03 1996-09-04 Canon Kabushiki Kaisha An ink-jet head, a substrate for an ink-jet head, and an ink-jet apparatus
EP0729834A3 (en) * 1995-03-03 1997-05-21 Canon Kk An ink-jet head, a substrate for an ink-jet head, and an ink-jet apparatus

Also Published As

Publication number Publication date
JPH0712690B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US4168343A (en) Thermal printing head
JPH0312551B2 (en)
JPS62202754A (en) Thin film type thermal head
JPS62202753A (en) Thin film type thermal head
JP2870692B2 (en) Thin-film thermal head
JPS62201264A (en) Membrane type thermal head
JPS62202756A (en) Thin film type thermal head
JPH0712691B2 (en) Thin-film thermal head
JPS62201263A (en) Membrane type thermal head
JPS62201265A (en) Membrane type thermal head
JPS62201266A (en) Membrane type thermal head
JPS62201262A (en) Membrane type thermal head
JP2990719B2 (en) Thermal head
JP2843982B2 (en) Thermal head
JPS6367319B2 (en)
JPS63216762A (en) Thermal head
JP2000246929A (en) Manufacture of thermal head
JPS623968A (en) Abrasion-resistant thin film thermal head
JPS6145543B2 (en)
JPH0583378B2 (en)
JPH0673966B2 (en) Thermal head
JPS63135260A (en) Thermal head
JPH0250847A (en) Thermal head and preparation thereof
JPH0649375B2 (en) Thermal head and method for producing the same
JPH0523042B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees