JPH0712692B2 - Thin-film thermal head - Google Patents
Thin-film thermal headInfo
- Publication number
- JPH0712692B2 JPH0712692B2 JP61044254A JP4425486A JPH0712692B2 JP H0712692 B2 JPH0712692 B2 JP H0712692B2 JP 61044254 A JP61044254 A JP 61044254A JP 4425486 A JP4425486 A JP 4425486A JP H0712692 B2 JPH0712692 B2 JP H0712692B2
- Authority
- JP
- Japan
- Prior art keywords
- thermal head
- thin
- resistance
- film
- refractory metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 37
- 239000003870 refractory metal Substances 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 239000010408 film Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229910018557 Si O Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910007735 Zr—Si Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910019819 Cr—Si Inorganic materials 0.000 description 1
- 229910018106 Ni—C Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229960003753 nitric oxide Drugs 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 235000019391 nitrogen oxide Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N97/00—Electric solid-state thin-film or thick-film devices, not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electronic Switches (AREA)
Description
【発明の詳細な説明】 [技術分野] 本発明は薄膜型サーマルヘッドに関し、特に改良された
薄膜発熱抵抗体を有する薄膜型サーマルヘッドに関す
る。Description: TECHNICAL FIELD The present invention relates to a thin film thermal head, and more particularly to a thin film thermal head having an improved thin film heating resistor.
[従来技術とその問題点] 薄膜発熱抵抗体を用いる薄膜型サーマルヘッドはコンピ
ュータ、ワードプロセッサ、ファクシミリ等における印
字ヘッドとして広く用いられている。サーマルヘッドは
抵抗発熱体のドットを多数配列し、それらを選択的に通
電することにより所望のパターンないし文字の形に発熱
させ、印字リボンの色材を用紙面へ熱転写させるように
なっている。抵抗発熱体には種々のものが知られ、或い
は使用されているが、良く用いられる材料としてはNi-C
r、Ta2N、Ta-SiO2、Cr-Si等がある。これらはサーマル
ヘッド用抵抗発熱体としてすぐれた特性を有するが、種
々の欠点も有する。合金等の金属系の発熱抵抗体は耐熱
性及び耐酸化性に劣り、印字に必要なエネルギーを繰返
し印加した場合、発熱によって発熱抵抗体に酸化現象が
発生し、抵抗値の増大を招き、印字特性の低下を招く。
また、これらの金属系の発熱抵抗体は繰返し通電による
熱パルスにより急激な熱サイクル下に置かれたとき大き
く熱膨脹・収縮し、下地基板と表面耐摩耗性保護膜との
間に大きい応力を生じてクラックの原因となる。一方、
TaSiO2等の酸化物や窒化物等の場合には、熱伝導率が小
さいため発熱体内での均熱性に欠け、印字品質を低下さ
せた。また、金属系の発熱抵抗体は固有抵抗率が小さ
く、また上記の化合物系の発熱抵抗体でも固有抵抗が小
さく(Ta2Nで200〜300μΩcm、Ta-SiO2でも約2000μΩc
m)、サーマルヘッドに必要な面積抵抗1kΩ/□前後を
得ようとすると、数+Åの薄膜の発熱抵抗体を実現しな
ければならず、安定して製造することが困難である。典
型的な製法はスパッタリング、イオンプレーティング、
CVD法などの周知の半導体プロセス技術であるが、膜厚
が1000Å程度ないと工程制御が困難である。また、これ
らの発熱体材料の抵抗温度係数は成分比に対して比較的
不感であり、所望値に制御することが困難である。さら
に、金属系では発熱体と電力供給電極との間に反応が生
じ、発熱抵抗体の抵抗値変動や断線等の不良の発生の原
因となる。[Prior Art and its Problems] A thin film thermal head using a thin film heating resistor is widely used as a print head in computers, word processors, facsimiles and the like. The thermal head has a large number of dots of resistance heating elements arranged and selectively energized to generate heat in a desired pattern or in the shape of characters, thereby thermally transferring the color material of the printing ribbon onto the paper surface. Various types of resistance heating elements are known or used, but Ni-C is often used as the material.
r, Ta 2 N, Ta-SiO 2 , Cr-Si and the like. These have excellent characteristics as resistance heating elements for thermal heads, but also have various drawbacks. Metal-based heating resistors such as alloys are inferior in heat resistance and oxidation resistance, and when the energy required for printing is repeatedly applied, heat generation causes an oxidation phenomenon in the heating resistors, causing an increase in resistance and printing. It causes deterioration of characteristics.
Further, these metallic heating resistors undergo large thermal expansion and contraction when placed in a rapid thermal cycle due to heat pulses due to repeated energization, and generate large stress between the underlying substrate and the surface abrasion-resistant protective film. Cause cracks. on the other hand,
In the case of oxides such as TaSiO 2 and nitrides, the thermal conductivity was low, so the thermal uniformity in the heating element was poor, and the print quality was degraded. In addition, the metal-based heating resistor has a small specific resistance, and even the compound-based heating resistor has a small specific resistance (Ta 2 N is 200 to 300 μΩcm, Ta-SiO 2 is about 2000 μΩc.
m), in order to obtain the area resistance of about 1 kΩ / □ required for the thermal head, it is necessary to realize a thin film heating resistor of several + Å, and it is difficult to manufacture it stably. Typical manufacturing methods are sputtering, ion plating,
This is a well-known semiconductor process technology such as the CVD method, but process control is difficult unless the film thickness is approximately 1000Å. Further, the temperature coefficient of resistance of these heating element materials is relatively insensitive to the component ratio, and it is difficult to control it to a desired value. Further, in the metal system, a reaction occurs between the heating element and the power supply electrode, which causes a variation in the resistance value of the heating resistor and a defect such as disconnection.
[発明の目的] 従って、本発明の目的は、耐熱性が高く、寿命が長く、
固有抵抗率が大きく、しかも温度係数が調整可能な薄膜
発熱抵抗体を用いた薄膜型サーマルヘッドを提供するこ
とにある。[Object of the Invention] Accordingly, an object of the present invention is to have high heat resistance, long life,
Another object of the present invention is to provide a thin film type thermal head using a thin film heat generating resistor having a large specific resistance and an adjustable temperature coefficient.
[発明の概要] 本発明は、薄膜発熱抵抗体として、高融点金属と、硅素
と、ホウ素と、酸素と、窒素とを主成分として含有させ
たことを特徴とする。すなわち、M-Si-B-O-N系発熱抵抗
体である。ここにMは高融点金属でTi、Mo、w、Hf、N
i、V、Zr、La、Ta、Fe、Co及びCrより選ばれた少なく
とも1種である。[Outline of the Invention] The present invention is characterized in that a high-melting-point metal, silicon, boron, oxygen, and nitrogen are contained as main components as a thin-film heating resistor. That is, it is an M-Si-BON heating resistor. Where M is a refractory metal such as Ti, Mo, w, Hf, N
It is at least one selected from i, V, Zr, La, Ta, Fe, Co and Cr.
高融点金属の存在により発熱体の抵抗率は繰返し熱パル
スによっても長期に変化せず、安定したサーマルヘッド
が得られる。また金属系の場合とちがい、酸−窒化物で
あるため熱膨脹・収縮が小さく、上下層との熱膨脹係数
の差による大きい内部応力の発生、ひいてはクラックの
発生がない。金属や窒化ホウ素、硅素の量比を増やせば
熱伝導性が良くなり均熱性が向上し、また十分な窒素の
存在により経時酸化のおそれもなく特性が安定する。さ
らに、高融点金属の含有率に対して固有抵抗率及び抵抗
温度係数が大きく変化するので、その含有量を制御する
ことでサーマルヘッドの特性の制御範囲が大きくなり、
例えば104μΩcmのような発熱体抵抗の設計も容易にな
し得る。このような高抵抗率では、発熱体の薄膜は1000
Å前後が好適となり、成膜が容易となる。Due to the presence of the refractory metal, the resistivity of the heating element does not change over a long period of time by repeated heat pulses, and a stable thermal head can be obtained. Also, unlike the metal type, since it is an oxy-nitride, the thermal expansion / contraction is small, and a large internal stress due to the difference in thermal expansion coefficient between the upper and lower layers does not occur, and cracks do not occur. Increasing the amount ratio of metal, boron nitride, and silicon improves the thermal conductivity and improves the soaking property, and the presence of sufficient nitrogen stabilizes the properties without fear of oxidation over time. Furthermore, since the specific resistance and the temperature coefficient of resistance change significantly with respect to the content of the refractory metal, controlling the content increases the control range of the characteristics of the thermal head,
For example, it is possible to easily design a heating element resistance such as 10 4 μΩcm. With such a high resistivity, the thin film of the heating element is 1000
Å Before and after is suitable, film formation becomes easy.
[発明の具体的な説明] 本発明の薄膜型サーマルヘッドの構成の概要は第1図に
示されている。図中1はグレーズドセラミック基板であ
り、その表面にグレーズ層2が形成される。グレーズ層
2は磁器のうわぐすりに相当する酸化物であり、硅素及
びアルミニウム酸化物を含み、またより好ましくはさら
に発熱抵抗体に用いられる高融点金属と同じものを含
む。グレーズ層2の上には例えば公知のスパッタ法によ
り本発明の薄膜抵抗発熱体3が成膜され、さらに電力供
給用電極(Ni、Cr、Al等、特にAl)4が蒸着またはスパ
ッタなどで成膜され、最後に公知の耐摩耗性保護膜(例
えばBP系、Si-O系、Al-Si-O系等)6がスパッタ法等で
成膜される。[Detailed Description of the Invention] The outline of the configuration of the thin-film thermal head of the present invention is shown in FIG. In the figure, 1 is a glaze ceramic substrate, and a glaze layer 2 is formed on the surface thereof. The glaze layer 2 is an oxide corresponding to the glaze of a porcelain, contains silicon and aluminum oxide, and more preferably contains the same refractory metal used as a heating resistor. The thin-film resistance heating element 3 of the present invention is formed on the glaze layer 2 by, for example, a known sputtering method, and the power supply electrodes (Ni, Cr, Al, etc., especially Al) 4 are formed by vapor deposition or sputtering. Finally, a known wear-resistant protective film (eg, BP type, Si—O type, Al—Si—O type) 6 is formed by a sputtering method or the like.
発熱抵抗体3は本発明に従って、硅素とホウ素と高融点
金属M(Ti、Mo、W、Hf、Ni、V、Zr、La、Cr、Ta、F
e、Coの少なくとも1種)とを含む窒−酸化物である。
本発明で特に重要なのはホウ素を含むことである。この
高融点金属は種類によって作用上のちがいがあるが、し
かし単独またはどの組合せを用いても発熱抵抗体の抵抗
率と抵抗温度係数とはそれぞれ107〜102μΩcm及び−15
00〜+500ppm/℃の範囲で大きく変動する。従って特定
の高融点金属含有率を選択することにより、所望の抵抗
率及び温度係数の発熱体を設計しうる。例えば抵抗率10
4μΩcmのものを選択すれば膜厚は1000Å以上となしう
る。一般に高融点金属は10〜60wt%の範囲で選択しう
る。この点については実施例により具体的に示す。B、
Si、O、Nは耐熱性、耐酸化性の酸化物を形成しうるも
のであり、その比率を変えることにより耐熱性を保ちな
がら抵抗率を変えることができる。例えばSi0.34B0.06O
0.15N0.33抵抗率>>107μΩcm、温度係数<−1500ppm/
℃であるが、高融点金属Mの含有率が10wt%以上で107
μΩcm以下、−100ppm/℃以上を得ることができる。According to the present invention, the heating resistor 3 is made of silicon, boron, a refractory metal M (Ti, Mo, W, Hf, Ni, V, Zr, La, Cr, Ta, F).
Nitrogen-oxide containing at least one of e and Co).
Of particular importance to the present invention is the inclusion of boron. This refractory metal has a difference in action depending on the type, but the resistivity and the temperature coefficient of resistance of the heating resistor are 10 7 to 10 2 μΩcm and −15 respectively, either alone or in any combination.
It fluctuates greatly in the range of 00 to + 500ppm / ℃. Therefore, by selecting a specific refractory metal content, a heating element having a desired resistivity and temperature coefficient can be designed. For example, resistivity 10
The film thickness can be made 1000 Å or more by selecting 4 μΩcm. Generally, the refractory metal can be selected in the range of 10 to 60 wt%. This point will be specifically shown by Examples. B,
Si, O, and N are capable of forming heat-resistant and oxidation-resistant oxides, and by changing the ratio thereof, the resistivity can be changed while maintaining heat resistance. For example Si 0.34 B 0.06 O
0.15 N 0.33 Resistivity >> 10 7 μΩcm, Temperature Coefficient <-1500ppm /
However, if the content of refractory metal M is 10 wt% or more, 10 7
It is possible to obtain μΩcm or less and −100 ppm / ° C. or more.
M、Si、B、O、Nの少なくとも2種を含有するグレー
ズ層2を選択すれば、本発明の発熱抵抗体は下地基板の
面に良くなじみ、また熱膨脹係数の差が少なくなり好ま
しい。また耐摩耗保護層6に対しても同様とすればさら
に好都合である。When the glaze layer 2 containing at least two kinds of M, Si, B, O and N is selected, the heating resistor of the present invention is well adapted to the surface of the base substrate and the difference in thermal expansion coefficient is small, which is preferable. Further, it is more convenient if the same is applied to the wear-resistant protective layer 6.
本発明の発熱抵抗体は特にスパッタ法で製造することが
できる。例えば所望の組成比を有する固形物粉末を予め
製造し、それを圧縮成形してペレット化し、これをター
ゲットとしてArをスパッタガスとして用い、その他必要
に応じてO2、N2ガス等を共存させ、Arイオンをターゲッ
トに衝撃させ、放出されたイオンないし原子を基板上に
付着させる。膜組成はペレットの組成及びスパッタ条件
を変えることにより調整しうる。The heating resistor of the present invention can be manufactured by the sputtering method. For example, a solid powder having a desired composition ratio is manufactured in advance, compression-molded into pellets, and this is used as a target with Ar as a sputtering gas, and O 2 and N 2 gas are allowed to coexist as necessary. , Ar ions are bombarded with the target to deposit the released ions or atoms on the substrate. The film composition can be adjusted by changing the composition of the pellet and the sputtering conditions.
実施例 組成MOxSi0.34B0.06O0.15N0.33のペレットをターゲット
として1〜6mTorrのArをスパッタガスとして用い、ター
ゲット−基板距離60mm、RF電力1〜10W/cm2、基板温度2
00〜400℃の条件を調整して、上記組成の発熱抵抗体を
製作し、さらにAl電極、保護膜を順に成膜してサーマル
ヘッドを作成した。なお、基板表面層及び保護層にはS
i、Bの他にMoを少量含有させた。得られたサーマルヘ
ッドに対して、次ぎのテストを行った。Example A pellet of composition MO x Si 0.34 B 0.06 O 0.15 N 0.33 was used as a target and Ar of 1 to 6 mTorr was used as a sputtering gas. The target-substrate distance was 60 mm, the RF power was 1 to 10 W / cm 2 , and the substrate temperature was 2.
By adjusting the condition of 00 to 400 ° C., a heating resistor having the above composition was manufactured, and then an Al electrode and a protective film were sequentially formed to form a thermal head. In addition, S is used for the substrate surface layer and the protective layer.
A small amount of Mo was contained in addition to i and B. The following test was performed on the obtained thermal head.
x=0.12のサンプルに対してパルス幅0.3m秒、周期1m秒
の熱パルスを加えたときの抵抗値変化率を第2図に示し
た。またMoの含有率による抵抗率及び抵抗温度係数を第
3図に示した。なお対照サンプルとして従来のTa2N発熱
抵抗体Aと、Zr-Si発熱抵抗体Cに対する耐熱パルステ
ストの結果を第2図に併記した。第2図のBは本発明に
よる発熱抵抗体を用いたサーマルヘッドを示す。FIG. 2 shows the rate of change in resistance when a heat pulse with a pulse width of 0.3 msec and a period of 1 msec was applied to a sample of x = 0.12. The resistivity and the temperature coefficient of resistance depending on the Mo content are shown in FIG. The results of the heat resistance pulse test for the conventional Ta 2 N heating resistor A and the Zr-Si heating resistor C as control samples are also shown in FIG. FIG. 2B shows a thermal head using the heating resistor according to the present invention.
[作用効果] 第2図から分るように、本発明のMo-Si-B-O-N系発熱抵
抗体Bを用いたサーマルヘッドは熱パルスを多数加えて
も抵抗値が変らず、耐熱性が良い。従来の発熱抵抗体A
(Ta2N)やC(Zr-Si)では或る一定数の熱パルスを越え
ると抵抗の変化が大きくなる。[Effects] As can be seen from FIG. 2, the thermal head using the Mo-Si-BON heating resistor B of the present invention does not change its resistance value even if a large number of heat pulses are applied, and has good heat resistance. Conventional heating resistor A
With (Ta 2 N) and C (Zr-Si), the resistance changes significantly when a certain number of heat pulses is exceeded.
第3図から分るように、本発明の発熱抵抗体は高融点金
属の含有量に応じてその抵抗率及び抵抗温度係数が大き
く変動する。従って高融点金属の含有率を調整すること
によってこれらの値を所望の値に設計することができ
る。As can be seen from FIG. 3, the resistance and temperature coefficient of resistance of the heat-generating resistor of the present invention greatly vary depending on the content of the refractory metal. Therefore, these values can be designed to desired values by adjusting the content of the refractory metal.
耐熱性の向上は、発熱体面内の温度分布の均一化、及び
熱膨脹係数の減少によるものと思われる。また下地基板
の表面層及び/または耐摩耗保護膜にMo、Si、B、O、
Nを含有した材料を用いれば、相互間のなじみが良くな
って密着性が向上し、熱衝撃等に強くなり、クラック・
剥離等の発生が抑制される。また、本発明の発熱抵抗体
は耐薬品性に優れ、アルカリや湿気の影響を受け難い。The improvement in heat resistance is considered to be due to the uniform temperature distribution in the plane of the heating element and the decrease in the coefficient of thermal expansion. In addition, Mo, Si, B, O, and
If N-containing material is used, it becomes more compatible with each other and the adhesion is improved, and it becomes stronger against thermal shock and cracks.
The occurrence of peeling and the like is suppressed. Further, the heating resistor of the present invention has excellent chemical resistance and is hardly affected by alkali and moisture.
第1図はサーマルヘッドの構造を示す断面図、第2図は
本発明の発熱抵抗体を用いたサーマルヘッド及び従来例
の耐熱テストを示すグラフ、及び第3図は本発明のサー
マルヘッドにおいて発熱抵抗体中に含有される高融点金
属と抵抗率及び抵抗温度係数との関係を示すグラフであ
る。FIG. 1 is a sectional view showing the structure of a thermal head, FIG. 2 is a graph showing a thermal head using the heating resistor of the present invention and a heat resistance test of a conventional example, and FIG. 3 is a graph showing heat generation in the thermal head of the present invention. 3 is a graph showing the relationship between the high melting point metal contained in the resistor and the resistivity and temperature coefficient of resistance.
Claims (4)
W、Hf、Ni、V、Zr、La、Cr、Ta、Fe及びCoよりなる群
から選ばれた少なくとも一種の高融点金属と硅素とホウ
素と酸素と窒素とを主成分とする発熱抵抗体薄膜を設
け、その表面に耐摩耗性保護膜を形成し、さらに前記抵
抗体に電力供給用電極を接続した、薄膜型サーマルヘッ
ド。1. A base substrate having a heat insulating layer, Ti, Mo,
Heating resistor thin film containing at least one refractory metal selected from the group consisting of W, Hf, Ni, V, Zr, La, Cr, Ta, Fe and Co, silicon, boron, oxygen and nitrogen as main components. A thin-film thermal head in which a wear-resistant protective film is formed on the surface, and a power supply electrode is connected to the resistor.
窒素と前記高融点金属とのうち少なくとも3種を含んで
いるグレーズである前記第1項記載の薄膜型サーマルヘ
ッド。2. The thin film type thermal head according to claim 1, wherein the surface layer of the base substrate is a glaze containing at least three kinds of silicon, boron, oxygen, nitrogen and the refractory metal.
素と前記高融点金属とのうち少なくとも2種を含んでい
る前記第1項または第2項記載の薄膜型サーマルヘッ
ド。3. The thin-film thermal head according to claim 1, wherein the wear-resistant protective film contains at least two kinds of silicon, boron, oxygen, nitrogen and the refractory metal.
ないし第3項のいずれかに記載の薄膜型サーマルヘッ
ド。4. The thin-film thermal head according to claim 1, wherein the power supply electrode is an A1 single layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61044254A JPH0712692B2 (en) | 1986-03-03 | 1986-03-03 | Thin-film thermal head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61044254A JPH0712692B2 (en) | 1986-03-03 | 1986-03-03 | Thin-film thermal head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62202756A JPS62202756A (en) | 1987-09-07 |
JPH0712692B2 true JPH0712692B2 (en) | 1995-02-15 |
Family
ID=12686390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61044254A Expired - Fee Related JPH0712692B2 (en) | 1986-03-03 | 1986-03-03 | Thin-film thermal head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0712692B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0736881B1 (en) * | 1995-03-09 | 2000-05-24 | Philips Patentverwaltung GmbH | Electrical resistance device with CrSi resistance layer |
JP5638627B2 (en) * | 2010-12-25 | 2014-12-10 | 京セラ株式会社 | Thermal head and thermal printer equipped with the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5311037A (en) * | 1976-07-19 | 1978-02-01 | Toshiba Corp | Thin film thermal head |
JPS5325442A (en) * | 1976-08-20 | 1978-03-09 | Matsushita Electric Ind Co Ltd | Thermal print head |
-
1986
- 1986-03-03 JP JP61044254A patent/JPH0712692B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5311037A (en) * | 1976-07-19 | 1978-02-01 | Toshiba Corp | Thin film thermal head |
JPS5325442A (en) * | 1976-08-20 | 1978-03-09 | Matsushita Electric Ind Co Ltd | Thermal print head |
Also Published As
Publication number | Publication date |
---|---|
JPS62202756A (en) | 1987-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4574292A (en) | Thermal head | |
GB2072100A (en) | Thermal printhead | |
US4168343A (en) | Thermal printing head | |
US4709243A (en) | Thermal head and method for manufacture thereof | |
JPH0712692B2 (en) | Thin-film thermal head | |
JP2870692B2 (en) | Thin-film thermal head | |
JPH0712690B2 (en) | Thin-film thermal head | |
JPH0712691B2 (en) | Thin-film thermal head | |
JPS62202753A (en) | Thin film type thermal head | |
JPS62201264A (en) | Membrane type thermal head | |
JPS62201265A (en) | Membrane type thermal head | |
JPS62201266A (en) | Membrane type thermal head | |
JPS62201262A (en) | Membrane type thermal head | |
JP2775884B2 (en) | Thermal head | |
JPS623968A (en) | Abrasion-resistant thin film thermal head | |
JPS62201263A (en) | Membrane type thermal head | |
JPS6367319B2 (en) | ||
JPS6145543B2 (en) | ||
JPS63135260A (en) | Thermal head | |
JPH0583378B2 (en) | ||
JPS59205702A (en) | Thin film resistor and thermosensitive recording head using same | |
JPH0523042B2 (en) | ||
JPS6156111B2 (en) | ||
JPH03208672A (en) | Thermal head | |
JPS6395601A (en) | Resistance thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |