JPS6156111B2 - - Google Patents
Info
- Publication number
- JPS6156111B2 JPS6156111B2 JP56164775A JP16477581A JPS6156111B2 JP S6156111 B2 JPS6156111 B2 JP S6156111B2 JP 56164775 A JP56164775 A JP 56164775A JP 16477581 A JP16477581 A JP 16477581A JP S6156111 B2 JPS6156111 B2 JP S6156111B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- heating resistor
- thermal head
- tantalum nitride
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 42
- 239000010409 thin film Substances 0.000 claims description 42
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 24
- 239000011241 protective layer Substances 0.000 claims description 22
- 230000006866 deterioration Effects 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 13
- 229910004156 TaNx Inorganic materials 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 27
- 239000010410 layer Substances 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000005546 reactive sputtering Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- -1 tantalum nitrides Chemical class 0.000 description 1
- 238000007651 thermal printing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/335—Structure of thermal heads
Landscapes
- Electronic Switches (AREA)
- Non-Adjustable Resistors (AREA)
Description
本発明は、絶縁体基板上に発熱抵抗体及び発熱
抵抗体劣化防止層を設けた薄膜型サーマルヘツド
に関する。
熱印字方式において使用されるサーマルヘツド
は、例えばグレーズドセラミツクの如き電気的に
絶縁された平坦な基板上に複数個の点状発熱抵抗
体を形成させており、使用に際しては、記録すべ
き情報に応じて電気的導体(電極)を通して必要
な発熱抵抗体に電流を流して発熱させ、これを感
熱記録紙に接触させることにより、印字を行なう
ものである。発熱抵抗体としては、薄膜型、厚膜
型、半導体型等の各種のものが存在するが、この
うちでも薄膜型発熱抵抗体は、一般にサーマルヘ
ツドの応答性を高め得る、消費電力が少ない、耐
熱性に優れ、寿命が長く、信頼性に優れている等
の利点を有しているので、特に有用であるとされ
ている。薄膜型抵抗発熱体としては、窒化タンタ
ル(Ta2N)、ニクロム等が知られているが、耐熱
性、信頼性、比抵抗の大きさ、製作の容易さ等の
点から前者が特に広く使用されている。この様に
広く使用されている窒化タンタル薄膜において
も、常温と高温とが繰返されるという過酷な使用
条件の下では、熱衝撃の為に窒化タンタルの劣化
が比較的短時間内に進行して抵抗値が増大し、感
熱記録紙に対するサーマルヘツドの印字性能が低
下することは避け難い。この為、通常は窒化タン
タル薄膜からなる抵抗発熱体上にSiO2等からな
る熱劣化防止保護層を設け、必要ならば更にその
上方にTa2O5等の耐摩耗層を設けてサーマルヘツ
ドとして使用している。しかしながら、この様な
構成の薄膜型サーマルヘツドにおいても、長時間
使用時の抵抗変化は満足すべきものとは言い難
い。特に、最近ではサーマルヘツドの高速駆動に
対する要求に応えて、通電パルスを短くしつつ発
色を良好に行なわせる為に、大電流の使用による
高温状態で印字を行なう様になりつつある。しか
るに、この場合には、発熱抵抗体の受ける熱衝撃
は更に大きくなるので、発熱抵抗体たるTa2Nと
熱劣化防止保護層たるSiO2との間の熱膨張率の
大きな差が、両者の界面に大きな熱ひずみを生じ
させることとなり、その結果、両者が分離して発
熱抵抗体の劣化が促進され、抵抗値が増大するこ
とは防止し得ない。
そこで、本発明者は、窒化タンタルを発熱抵抗
体とする薄膜型サーマルヘツドの前述の如き問題
点を解決すべく種々研究を重ねた結果、TaNx
(但し0.4≦x≦0.7)で示される窒化タンタルを
発熱抵抗体とし、TaNy(但し1.0≦y≦2.0)で
示される窒化タンタルを熱劣化防止保護層とする
場合には、両者の界面には熱ひずみが実質的に発
生せず、従つて大電流の使用による高温状態にお
いても両者の剥離による発熱抵抗体の劣化を生じ
難い薄膜型サーマルヘツドが得られることを見出
した。本発明は、この様な新しい知見に基いて完
成されたものである。
第1図は、反応スパツタリング法により絶縁体
基板上に窒化タンタル薄膜を形成させる場合の反
応ガスである窒素ガスの分圧と窒化タンタル薄膜
の比抵抗(ρ:曲線)及び抵抗温度係数
(TCR:曲線)との関係の一例を示すグラフで
ある。この場合、窒素ガス分圧が1.0×10-5〜4.0
×10-5Torrである窒素―アルゴン混合ガス(1.5
×10-3Torr)中でタンタルをターゲツトとして
反応スパツタリング法により窒化タンタル薄膜を
形成させると、窒化タンタル結晶の組成は、
TaNx(但し0.4≦x≦0.7)に相当するものとす
る。この薄膜は、ρ=250μΩcm程度、TCR=
Oppm/deq程度であり、発熱抵抗体として優れ
た特性を有している。窒素―アルゴン混合ガス
(1.5×10-3Torr)中の窒素分圧を増大させて窒化
タンタル薄膜を形成させると、薄膜中の窒素含有
量が増加し、その結果、比抵抗は増大し、抵抗温
度係数は負側に大きくなる。混合ガス中の窒素分
圧が1.0×10-4Torrを上回ると、窒化タンタル結
晶の組成は、TaNy(但し1.0≦y≦2.0)に相当
するものとなる。この薄膜は、ρ=600μΩcm以
上、TCR=−1000ppm/deq以下であり、電流は
実質上流れ難くなる。従つて、絶縁体基板上に
TaNx(但し0.4≦x≦0.7)なる第一の窒化タン
タル薄膜及びTaNy(但し1.0≦y≦2.0)なる第
二の窒化タンタル薄膜を形成させる場合には、第
一の窒化タンタル薄膜が抵抗発熱体として優れた
特性を発揮し、第二の窒化タンタル薄膜が抵抗発
熱体の熱劣化防止保護層としての機能を発揮する
ことになる。
第2図及び第3図に公知の薄膜型サーマルヘツ
ドと本発明薄膜型サーマルヘツドとを対比して示
す。
公知の薄膜型サーマルヘツドの概要を示す第2
図において、ガラス、グレーズドセラミツクの如
き基板1には、Au/Cr二層膜の如き電極3、
Ta2N薄膜等の発熱抵抗体5、SiO2等の発熱抵抗
体劣化防止保護層7及びTa2O5等の耐摩耗層9が
順次設けられている。これに対し本発明薄膜型サ
ーマルヘツドを示す第3図においては、電極13
を備えた基板11上に厚さ500〜2000Å程度の
TaNx(xは前記の通り)なる組成の発熱抵抗体
15、厚さ5000Å〜1.5μm程度のTaNy(yは前
記の通り)なる組成の発熱抵抗体劣化防止保護層
17及び必要に応じTiN、Ta2O5等の耐摩耗層1
9が設けられている。
上記の如く、発熱抵抗体15及び発熱抵抗体劣
化防止保護層17が、組成的に類似はするが互い
に異なる特定の窒化タンタルで構成されている本
発明薄膜型サーマルヘツドによれば、以下の如き
効果が奏される。
(i) 発熱抵抗体と保護層との間の熱膨張率の相違
が小さいので、両者の界面に熱ひずみが集中す
ることを大巾に緩和することが出来る。
(ii) 窒化タンタルは、SiO2に比して、熱伝導に
優れているので、発熱抵抗体で発生した熱がよ
り速やかに表面に到達する。従つて、応答性に
優れたサーマルヘツドとなる。
(iii) 保護層においては、窒素含有量の増大に伴つ
て結晶粒径が小さくなるので、保護層上に
Ta2O5、TiN等の耐摩耗層を更に形成させる場
合に、界面に両者の混合層が形成され易い。従
つて、保護層と耐摩耗層とのなじみが良く、両
層は強力に付着するので、熱ひずみの集中が緩
和され、耐熱衝撃性が向上する。
本発明の薄膜型サーマルヘツドは、通常次の様
にして製造される。グレーズドセラミツク等の公
知の絶縁体基板上にAu/Cr二層膜の如き公知の
電極部材を設けた状態で、常法に従つて窒素―ア
ルゴン混合ガス雰囲気中でタンタルをターゲツト
として反応スパツタリング法を行ない、発熱抵抗
体としての窒化タンタル薄膜を形成させる。窒素
―アルゴン混合ガスの圧力は、通常6.0×10-4〜
6.0×10-3Torr程度であり、より好ましくは1.0×
10-3〜2.0×10-3Torr程度とするのが良い。又窒
素の分圧は、通常1.0×10-5〜4.0×10-5Torr程
度、好ましくは1.5×10-5〜2.5×10-5程度とす
る。次いで、窒素―アルゴン混合ガス中の窒素分
圧を高めて上記と同様の反応スパツタリングを行
ない、TaNx(xは上記に同じ)なる発熱抵抗体
上にTaNy(yは上記に同じ)なる組成の保護層
を形成させる。この保護層形成時の窒素―アルゴ
ン混合ガスの圧力は、上記と同様であるが、窒素
の分圧は、通常1.0×10-4〜6.0×10-3Torr程度、
好ましくは2.0×10-4〜1.5×10-3Torr程度とす
る。
尚、本発明においては、発熱抵抗体及びその保
護層の夫々を全体として同一の組成とする必要は
ない。例えば、TaNx(xは前記に同じ)なる組
成範囲内において発熱抵抗体中の窒素含有量を下
方から上方に向けて漸次連続的に又は不連続的に
増大させたり、又TaNy(yは前記に同じ)なる
組成範囲内において保護層中の窒素含有量を下方
から上方に向けて連続的又は不連続的に増大させ
ても良い。この様な薄膜型サーマルヘツドを製造
する場合には、窒素―アルゴン混合ガス中の窒素
分圧を必要に応じ増大させれば良い。
実施例 1
プラズマスパツタ装置を使用し、窒素ガス分圧
2.0×10-5Torrの窒素―アルゴン混合ガス雰囲気
(1.5×10-3Torr)中で、厚さ0.3mmのガラス基板
上に反応スパツタリングにより約1000ÅのTaNx
(x=約0.5)を主とする結晶構造の窒化タンタル
薄膜発熱抵抗体を形成させる。次いで、窒素分圧
を2.0×10-4Torrとして約1000ÅのTaNy(y=約
1)を主とする窒化タンタル保護層を形成させ、
更に窒素ガス雰囲気(1.5×10-3Torr)中で約
8000ÅのTaNy(y=約2)を主とする窒化タン
タル保護層を形成させる。
上記の如くして得られた試料(T―1とする)
に60Hz、5msecのパルス電力を印加し、30分毎に
0.5W/mm2ずつ電力を増大させ、発熱抵抗体の抵
抗変化率を調べた。結果は、第4図に示す通りで
ある。
比較例 1
実施例1と同様にして厚さ0.3mmのガラス基板
上に厚さ約1000ÅのTaNx(x=約0.5)なる組成
の窒化タンタル薄膜発熱抵抗体を形成させた後、
その上に約9000ÅのSiO2からなる保護層を形成
させ、試料(S―1とする)を得る。
実施例1と同様にしてパルス電力を印加した場
合の発熱抵抗体の抵抗変化率は、第4図に示す通
りである。
第4図から明らかな如く、本発明薄膜型サーマ
ルヘツドは、熱ひずみの集中が少ない為、耐熱衝
撃性に著るしく優れている。
実施例 2
厚さ0.3mmのガラス基板上に厚さ0.1μmのTa2N
からなる発熱抵抗体、厚さ0.5μmのTaNからな
る発熱抵抗体劣化防止保護層及び厚さ3μmの
TiNからなる耐摩耗層を順次形成させ、本発明に
よる薄膜型サーマルヘツド素子とした。
かくして得られた素子に60Hz、5msecのパルス
により15W/mm2の電力を24時間印加して熱劣化加
速試験を行なつた後、発熱抵抗体の抵抗変化率を
調べた。素子5個についての結果を第1表に示
す。
比較例 2
厚さ0.3mmのガラス基板上に厚さ0.3μmのTa―
SiO2からなる発熱抵抗体、厚さ0.5μmのSiO2か
らなる発熱抵抗体劣化防止保護層及び厚さ3μm
のTaN―Au(Au含有量3重量%)からなる耐摩
耗層を順次形成させ、特開昭55―82677号による
薄膜型サーマルヘツド素子とした。
実施例2と同様にして行なつた熱劣化加速試験
の結果を第1表に示す。
The present invention relates to a thin film type thermal head in which a heating resistor and a layer for preventing deterioration of the heating resistor are provided on an insulating substrate. The thermal head used in the thermal printing method has a plurality of dot-shaped heating resistors formed on an electrically insulated flat substrate such as glazed ceramic, and when used, the thermal head is used to record information. Accordingly, printing is performed by passing a current through an electric conductor (electrode) to a necessary heat-generating resistor to generate heat, and bringing this into contact with heat-sensitive recording paper. There are various types of heating resistors, such as thin-film type, thick-film type, and semiconductor type. Among these, thin-film type heating resistors generally improve the responsiveness of the thermal head, consume less power, and It is said to be particularly useful because it has advantages such as excellent heat resistance, long life, and excellent reliability. Tantalum nitride (Ta 2 N), nichrome, etc. are known as thin-film resistance heating elements, but the former is particularly widely used due to its heat resistance, reliability, high specific resistance, and ease of manufacturing. has been done. Even with this widely used tantalum nitride thin film, under harsh usage conditions where room temperature and high temperature are repeated, tantalum nitride deteriorates in a relatively short period of time due to thermal shock and resists resistance. As the value increases, it is inevitable that the printing performance of the thermal head on heat-sensitive recording paper will deteriorate. For this reason, a thermal deterioration prevention protective layer made of SiO 2 or the like is usually provided on the resistance heating element made of a tantalum nitride thin film, and if necessary, a wear-resistant layer made of Ta 2 O 5 or the like is further provided above it to form a thermal head. I am using it. However, even in a thin film type thermal head having such a structure, the change in resistance during long-term use cannot be said to be satisfactory. In particular, in recent years, in response to the demand for high-speed drive of thermal heads, printing is being performed at high temperatures using large currents in order to shorten the energizing pulse and achieve good color development. However, in this case, the thermal shock to which the heating resistor is subjected becomes even greater, and the large difference in thermal expansion coefficient between Ta 2 N, which is the heating resistor, and SiO 2 , which is the protective layer to prevent thermal deterioration, causes A large thermal strain will be generated at the interface, and as a result, the two will separate, accelerating deterioration of the heating resistor, and increasing the resistance value cannot be prevented. Therefore, the inventors of the present invention have conducted various studies to solve the above-mentioned problems of thin film thermal heads using tantalum nitride as a heating resistor, and found that TaNx
When tantalum nitride expressed by (however 0.4≦x≦0.7) is used as a heating resistor and tantalum nitride expressed by TaNy (however 1.0≦y≦2.0) is used as a protective layer to prevent thermal deterioration, the interface between the two It has been found that a thin-film thermal head can be obtained in which substantially no thermal strain occurs, and therefore the heat generating resistor is less likely to deteriorate due to peeling off even in high temperature conditions due to use of a large current. The present invention was completed based on such new knowledge. Figure 1 shows the partial pressure of nitrogen gas, which is a reaction gas, when forming a tantalum nitride thin film on an insulating substrate by the reactive sputtering method, the specific resistance (ρ: curve), and the temperature coefficient of resistance (TCR: 12 is a graph illustrating an example of the relationship between In this case, the nitrogen gas partial pressure is 1.0×10 -5 ~ 4.0
×10 -5 Torr nitrogen-argon mixed gas (1.5
When a tantalum nitride thin film is formed by a reactive sputtering method using tantalum as a target in
It corresponds to TaNx (0.4≦x≦0.7). This thin film has ρ = about 250μΩcm, TCR =
Oppm/deq or so, and has excellent characteristics as a heating resistor. When a tantalum nitride thin film is formed by increasing the nitrogen partial pressure in a nitrogen-argon mixed gas (1.5×10 -3 Torr), the nitrogen content in the thin film increases, and as a result, the specific resistance increases and the resistance decreases. The temperature coefficient increases on the negative side. When the nitrogen partial pressure in the mixed gas exceeds 1.0×10 −4 Torr, the composition of the tantalum nitride crystal becomes equivalent to TaNy (1.0≦y≦2.0). In this thin film, ρ=600 μΩcm or more and TCR=−1000 ppm/deq or less, making it substantially difficult for current to flow. Therefore, on an insulator substrate
When forming a first tantalum nitride thin film of TaNx (however, 0.4≦x≦0.7) and a second tantalum nitride thin film of TaNy (however, 1.0≦y≦2.0), the first tantalum nitride thin film is a resistance heating element. As a result, the second tantalum nitride thin film functions as a protective layer for preventing thermal deterioration of the resistance heating element. FIGS. 2 and 3 show a conventional thin film thermal head and a thin film thermal head of the present invention in comparison. The second section provides an overview of a known thin-film thermal head.
In the figure, a substrate 1 such as glass or glazed ceramic has an electrode 3 such as an Au/Cr double layer film,
A heating resistor 5 such as a Ta 2 N thin film, a protective layer 7 for preventing deterioration of the heating resistor 7 such as SiO 2 , and an abrasion resistant layer 9 such as Ta 2 O 5 are sequentially provided. On the other hand, in FIG. 3 showing the thin film type thermal head of the present invention, the electrode 13
on the substrate 11 with a thickness of about 500 to 2000 Å.
A heating resistor 15 having a composition of TaNx (x is as described above), a heating resistor deterioration prevention protective layer 17 having a thickness of approximately 5000 Å to 1.5 μm and having a composition of TaNy (y is as described above), and TiN, Ta as necessary. 2 Wear-resistant layer 1 such as O 5
9 is provided. As described above, according to the thin film type thermal head of the present invention in which the heating resistor 15 and the heating resistor deterioration prevention protective layer 17 are composed of specific tantalum nitrides that are similar in composition but different from each other, the following can be achieved. The effect is produced. (i) Since the difference in coefficient of thermal expansion between the heating resistor and the protective layer is small, concentration of thermal strain at the interface between the two can be largely alleviated. (ii) Tantalum nitride has better thermal conductivity than SiO 2 , so the heat generated in the heating resistor reaches the surface more quickly. Therefore, the thermal head has excellent responsiveness. (iii) In the protective layer, the crystal grain size decreases as the nitrogen content increases;
When further forming a wear-resistant layer of Ta 2 O 5 , TiN, etc., a mixed layer of both is likely to be formed at the interface. Therefore, the protective layer and the wear-resistant layer have good compatibility, and both layers adhere strongly to each other, so that concentration of thermal strain is alleviated and thermal shock resistance is improved. The thin film type thermal head of the present invention is usually manufactured as follows. With a known electrode member such as an Au/Cr double-layer film provided on a known insulating substrate such as glazed ceramic, reactive sputtering was performed using tantalum as a target in a nitrogen-argon mixed gas atmosphere according to a conventional method. Then, a tantalum nitride thin film is formed as a heating resistor. The pressure of nitrogen-argon mixed gas is usually 6.0×10 -4 ~
About 6.0×10 -3 Torr, more preferably 1.0×
It is best to set it at about 10 -3 to 2.0×10 -3 Torr. Further, the partial pressure of nitrogen is usually about 1.0 x 10 -5 to 4.0 x 10 -5 Torr, preferably about 1.5 x 10 -5 to 2.5 x 10 -5 Torr . Next, the partial pressure of nitrogen in the nitrogen-argon mixed gas is increased and the same reaction sputtering as above is performed to protect the composition of TaNy (y is the same as above) on the heating resistor of TaNx (x is the same as above). Form a layer. The pressure of the nitrogen-argon mixed gas during the formation of this protective layer is the same as above, but the partial pressure of nitrogen is usually about 1.0×10 -4 to 6.0×10 -3 Torr,
Preferably, it is about 2.0×10 −4 to 1.5×10 −3 Torr. In the present invention, it is not necessary that the heating resistor and its protective layer have the same composition as a whole. For example, the nitrogen content in the heating resistor may be increased gradually or discontinuously from the bottom to the top within the composition range of TaNx (x is the same as above), or TaNy (y is the same as above). The nitrogen content in the protective layer may be increased continuously or discontinuously from the bottom to the top within the same composition range. When manufacturing such a thin film type thermal head, the nitrogen partial pressure in the nitrogen-argon mixed gas may be increased as necessary. Example 1 Using a plasma sputtering device, nitrogen gas partial pressure
Approximately 1000 Å of TaNx was deposited on a 0.3 mm thick glass substrate by reactive sputtering in a nitrogen-argon mixed gas atmosphere (1.5 x 10 -3 Torr) of 2.0 x 10 -5 Torr.
A tantalum nitride thin film heating resistor having a crystal structure mainly having (x=about 0.5) is formed. Next, a tantalum nitride protective layer mainly made of TaNy (y=about 1) with a thickness of about 1000 Å was formed at a nitrogen partial pressure of 2.0×10 -4 Torr.
Furthermore, in a nitrogen gas atmosphere (1.5×10 -3 Torr)
A tantalum nitride protective layer consisting mainly of TaNy (y=about 2) of 8000 Å is formed. Sample obtained as above (referred to as T-1)
Apply pulse power of 60Hz, 5msec to , every 30 minutes.
The power was increased by 0.5 W/mm 2 and the rate of change in resistance of the heating resistor was investigated. The results are shown in FIG. Comparative Example 1 After forming a tantalum nitride thin film heating resistor having a composition of TaNx (x = approximately 0.5) and having a thickness of approximately 1000 Å on a glass substrate having a thickness of 0.3 mm in the same manner as in Example 1,
A protective layer made of SiO 2 with a thickness of about 9000 Å is formed thereon to obtain a sample (designated S-1). The rate of change in resistance of the heating resistor when pulsed power was applied in the same manner as in Example 1 is as shown in FIG. As is clear from FIG. 4, the thin film type thermal head of the present invention has significantly excellent thermal shock resistance because there is less concentration of thermal strain. Example 2 Ta 2 N with a thickness of 0.1 μm on a glass substrate with a thickness of 0.3 mm
A heating resistor consisting of a heating resistor, a protective layer for preventing deterioration of the heating resistor consisting of TaN with a thickness of 0.5 μm, and a protective layer for preventing deterioration of the heating resistor made of TaN with a thickness of 3 μm.
Wear-resistant layers made of TiN were sequentially formed to produce a thin film type thermal head element according to the present invention. After conducting an accelerated thermal deterioration test by applying a power of 15 W/mm 2 for 24 hours to the thus obtained device using pulses of 60 Hz and 5 msec, the rate of change in resistance of the heating resistor was examined. Table 1 shows the results for five devices. Comparative Example 2 0.3 μm thick Ta on a 0.3 mm thick glass substrate
Heat generating resistor made of SiO 2 , heating resistor deterioration prevention protective layer made of SiO 2 with a thickness of 0.5 μm, and a thickness of 3 μm
A wear-resistant layer made of TaN--Au (Au content: 3% by weight) was sequentially formed to obtain a thin film type thermal head element according to Japanese Patent Application Laid-open No. 82677/1983. Table 1 shows the results of an accelerated thermal deterioration test conducted in the same manner as in Example 2.
【表】
第1表に示す結果から明らかな如く、実施例2
による薄膜サーマルヘツド素子においては、上記
の苛酷な熱劣化加速試験後にも、抵抗変化率は5
%以下に過ぎないのに対し、比較例2による薄膜
型サーマルヘツド素子では、抵抗変化率は10%以
上にも達している。[Table] As is clear from the results shown in Table 1, Example 2
In the thin film thermal head element according to
%, whereas in the thin film thermal head element according to Comparative Example 2, the resistance change rate reached 10% or more.
第1図は、窒化タンタル薄膜形成時の窒素ガス
分圧と該薄膜の比抵抗及び抵抗温度係数との関係
を示すグラフ、第2図は、公知の薄膜型サーマル
ヘツドの概要を示す断面図、第3図は、本発明薄
膜型サーマルヘツドの概要を示す断面図、第4図
は、実施例1及び比較例1で夫々得られた薄膜型
サーマルヘツドの発熱抵抗体の抵抗変化率を示す
グラフである。
1,11……絶縁体基板、3,13……電極、
5,15……発熱抵抗体、7,17……保護層、
9,19……耐摩耗層。
FIG. 1 is a graph showing the relationship between nitrogen gas partial pressure during formation of a tantalum nitride thin film, resistivity and temperature coefficient of resistance of the thin film, and FIG. 2 is a cross-sectional view showing an outline of a known thin film type thermal head. FIG. 3 is a sectional view showing an outline of the thin film type thermal head of the present invention, and FIG. 4 is a graph showing the resistance change rate of the heating resistor of the thin film type thermal head obtained in Example 1 and Comparative Example 1. It is. 1, 11... Insulator substrate, 3, 13... Electrode,
5, 15... Heat generating resistor, 7, 17... Protective layer,
9,19...wear-resistant layer.
Claims (1)
化防止保護層を設けた薄膜型サーマルヘツドにお
いて、発熱抵抗体をTaNx(但し0.4≦×≦0.7)
で示される窒化タンタルにより形成し且つ発熱抵
抗体劣化防止保護層をTaNv(但し1.0≦y≦
2.0)で示される窒化タンタルにより形成したこ
とを特徴とする薄膜型サーマルヘツド。1 In a thin film thermal head in which a heating resistor and a protective layer for preventing deterioration of the heating resistor are provided on an insulating substrate, the heating resistor is TaNx (however, 0.4≦×≦0.7).
The protective layer for preventing deterioration of the heating resistor is formed of tantalum nitride shown by TaNv (however, 1.0≦y≦
2.0) A thin film type thermal head characterized by being formed from tantalum nitride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56164775A JPS5865679A (en) | 1981-10-14 | 1981-10-14 | Thermal head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56164775A JPS5865679A (en) | 1981-10-14 | 1981-10-14 | Thermal head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5865679A JPS5865679A (en) | 1983-04-19 |
JPS6156111B2 true JPS6156111B2 (en) | 1986-12-01 |
Family
ID=15799697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56164775A Granted JPS5865679A (en) | 1981-10-14 | 1981-10-14 | Thermal head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5865679A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6286676B1 (en) | 1996-07-08 | 2001-09-11 | Sony Corporation | Cassette storage casing |
-
1981
- 1981-10-14 JP JP56164775A patent/JPS5865679A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5865679A (en) | 1983-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4574292A (en) | Thermal head | |
GB2072100A (en) | Thermal printhead | |
US4708915A (en) | Thermal head for thermal recording | |
JPH0334469B2 (en) | ||
JPS6156111B2 (en) | ||
JPS61100476A (en) | Thermal head and manufacture thereof | |
EP1377990B1 (en) | Thin film resistor having tantalum pentoxide moisture barrier | |
US4786916A (en) | Thermal head | |
JP3320168B2 (en) | Thermal head | |
JP3107911B2 (en) | Thermal print head | |
JP2870692B2 (en) | Thin-film thermal head | |
JPS62109301A (en) | Heat sensitive recording head | |
JPS623968A (en) | Abrasion-resistant thin film thermal head | |
JPH0641212B2 (en) | Abrasion resistant protective film | |
JPS61181101A (en) | Thermal head and manufacture thereof | |
JPS6311992B2 (en) | ||
JPS6046029B2 (en) | thermal head | |
JPS60178068A (en) | Thermal head | |
JPH0523042B2 (en) | ||
JPS6118322B2 (en) | ||
JPH0152188B2 (en) | ||
JPS6255712B2 (en) | ||
JPS63122573A (en) | Thermal head | |
JPS6110473A (en) | Thermal head | |
JPH0712692B2 (en) | Thin-film thermal head |