JPH02147253A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH02147253A
JPH02147253A JP30116988A JP30116988A JPH02147253A JP H02147253 A JPH02147253 A JP H02147253A JP 30116988 A JP30116988 A JP 30116988A JP 30116988 A JP30116988 A JP 30116988A JP H02147253 A JPH02147253 A JP H02147253A
Authority
JP
Japan
Prior art keywords
heating resistor
printing
layer
thermal head
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30116988A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshiike
信幸 吉池
Akihiko Yoshida
昭彦 吉田
Yoshihiro Watanabe
善博 渡辺
Yasuhiro Takeuchi
康弘 竹内
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30116988A priority Critical patent/JPH02147253A/en
Publication of JPH02147253A publication Critical patent/JPH02147253A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Abstract

PURPOSE:To improve a printing time constant, heat efficiency and printing quality by forming a heating resistor layer from a decomposition reaction product of a org. compound containing a metal or metalloid while forming an abrasion-resistant layer from a baked film of glass having a low softening point. CONSTITUTION:For example, an electrode layer 2 is formed on a glazed alumina substrate 11 by the printing and baking or photolithographic etching of the paste of an org. compound containing gold and a line-shaped heating resistor layer 13 is formed thereon by a printing and baking method. Next, an abrasion-resistant layer 14 is formed by the printing and baking of the paste of glass having a softening point of 550 deg.C, for example, the paste of PbO-B2O3 type low softening point glass (softening point; 450 deg.C or lower) to prepare a thermal head. By this constitution, the thickness of the heating resistor layer 13 can be made thin and heat capacity can be reduced and the uniform dispersion of respective components becomes easy to obtain and, therefore, a time constant of heating printing, printing heat efficiency and printing quality can be improved. Since the mutual diffusion of the components of the heating resistor layer and those of the abrasion-resistant layer at the time of the formation of the abrasion-resistant layer 14 can be suppressed, the irregularity of the resistance value of the heating resistor layer 13 and that of printing density can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はファクシミリ、フルカラープリンタ、ワードプ
ロセッサなどの印字装置に用いるサーマルヘッドに関す
るものであり、特に印字品質の優れたサーマルヘッドに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a thermal head used in printing devices such as facsimiles, full-color printers, and word processors, and particularly relates to a thermal head with excellent print quality.

従来の技術 熱転写、感熱印字方式プリンタなどの印字装置に用いら
れるサーマルヘッドは従来衣の二つの種類のものがある
。第一のものは、第3図(a)、(b)に示すように、
グレーズアルミナ基板31の上に蒸着もしくはスパッタ
リングのような真空薄膜形成プロセスにより得たTa−
51などよりなる発熱抵抗体層33、   旧、Crな
どよりなる電極層32a、32b、 SICなどよりな
る耐摩耗層34をホトリソエツチング法をもちいてパタ
ーン形成したもので、いわゆる薄膜型サーマルヘッドと
呼ばれるものである。第二のものは、第4図(a)、(
b)に示すように、グレーズアルミナ基板41の上に、
電極層42a、42b1  発熱抵抗体層43、耐摩耗
層44をそれぞれペーストの印刷焼成により形成するも
ので、いわゆる原模型サーマルヘッドと呼ばれるもので
ある。
BACKGROUND OF THE INVENTION There are two conventional types of thermal heads used in printing devices such as thermal transfer and thermal printing printers. The first one is as shown in Figures 3(a) and (b).
Ta- obtained by a vacuum thin film forming process such as vapor deposition or sputtering on the glazed alumina substrate 31
A heating resistor layer 33 made of 51 or the like, electrode layers 32a and 32b made of Cr or the like, and a wear-resistant layer 34 made of SIC or the like are patterned using photolithography, and is a so-called thin-film thermal head. It is called. The second one is shown in Figure 4(a), (
As shown in b), on the glazed alumina substrate 41,
The electrode layers 42a, 42b1, the heating resistor layer 43, and the wear-resistant layer 44 are formed by printing and firing pastes, respectively, and are called a so-called original model thermal head.

発明が解決しようとする課題 上に述べた二つの種類のサーマルヘッドはそれぞれ長所
と短所を有する。すなわち、薄膜型サーマルヘッドは発
熱抵抗体層の形状(面積、厚さなど)が各ドツト間で均
一であり、その熱容量が均一であることから印字の時の
紙への熱の伝達が均一に行われる。また各ドツト間の抵
抗値もあるレベルまでは均一なものが得られ、総合的に
見て印字品質の優れたサーマルヘッドである。また発熱
抵抗体層の厚さが薄< 1000〜5000.4である
ことから熱容量が小さく、パルス印加ON 、OFF時
の発熱抵抗体層温度の立ち上がり、立ち下がり時定数は
優れたものになり印字発熱効率も高い。しかしながら従
来の薄膜型サーマルヘッドではドツト間の抵抗値のばら
つきは±5%以下にすることは難しく、さらに優れた印
字品質を望むことは困難である。
Problems to be Solved by the Invention The two types of thermal heads mentioned above each have advantages and disadvantages. In other words, in a thin-film thermal head, the shape (area, thickness, etc.) of the heating resistor layer is uniform between each dot, and the heat capacity is uniform, so heat is transferred uniformly to the paper during printing. It will be done. Furthermore, the resistance value between each dot is uniform up to a certain level, and overall the thermal head has excellent printing quality. In addition, since the thickness of the heating resistor layer is thin < 1000 to 5000.4, the heat capacity is small, and the rise and fall time constants of the heating resistor layer temperature when pulse application is ON and OFF are excellent, resulting in excellent printing. It also has high heat generation efficiency. However, with conventional thin-film thermal heads, it is difficult to reduce the variation in resistance value between dots to less than ±5%, and it is difficult to expect even better printing quality.

また薄膜プロセスのため、設備コスト、バッチ生産など
生産性、低コスト化の点から解決するべき問題点が多い
Furthermore, since it is a thin film process, there are many problems that need to be solved in terms of productivity and cost reduction, such as equipment costs and batch production.

一方、厚膜型サーマルヘッドは印刷焼成法を用いること
から設備コストが低いこと、連続生産が容易なことなど
利点が多いが、発熱抵抗体層が酸化ルテニウム粉末など
の金属酸化物粉末とガラスフリットとの混合物から成る
ペーストを印刷焼成して形成したものであることから発
熱抵抗体層中の金属酸化物の均一分散が得られ難く、各
ドツト間の抵抗値ばらつきを少なくすることが困難であ
る。厚膜型サーマルヘッドでは過負荷トリミング法によ
ってこの抵抗値ばらつきを±1%以下にすることが可能
である。しかしながら一つのドツトの中のミクロな電流
パスに注目するとトリミングの不均一性などが要改善点
として残されている。これらの短所は、厚膜型サーマル
ヘッドの発熱抵抗体層の大きな熱容量に起因するところ
大であり、発熱印字の時の時定数が大きい、印字熱効率
が悪い、印字品質が悪いなどの結果に至っている。
On the other hand, thick film thermal heads have many advantages such as low equipment costs and easy continuous production because they use a printing and firing method, but the heating resistor layer is made of metal oxide powder such as ruthenium oxide powder and glass frit. Since it is formed by printing and firing a paste consisting of a mixture of . In a thick-film thermal head, it is possible to reduce this variation in resistance value to ±1% or less by using an overload trimming method. However, when focusing on the microscopic current path within a single dot, non-uniformity of trimming remains as an issue that needs improvement. These disadvantages are largely due to the large heat capacity of the heating resistor layer of the thick-film thermal head, resulting in a large time constant during heating printing, poor printing thermal efficiency, and poor printing quality. There is.

以上の問題点を克服するものとして、発明者らは先に金
属もしくは類金属を含む有機化合物の分解反応生成物よ
りなる厚さ1.0μm以下の発熱抵抗体層を用いたサー
マルヘッドを提供した(特願昭63−1843511i
号)。該サーマルヘッドは印字熱効率において大きく改
良されたが、印字品質は若干薄膜型サーマルヘッドより
劣るものであった。
In order to overcome the above problems, the inventors have previously provided a thermal head using a heating resistor layer with a thickness of 1.0 μm or less made of a decomposition reaction product of an organic compound containing a metal or metal-like metal. (Patent application 1843511i, 1986)
issue). Although the thermal head was greatly improved in printing thermal efficiency, the printing quality was slightly inferior to that of the thin film type thermal head.

本発明は印字時定数、熱効率および印字品質の改善を目
的とするもので印刷焼成法によるサーマルヘッドの改善
に関するものである。
The present invention aims to improve the printing time constant, thermal efficiency, and printing quality, and relates to the improvement of a thermal head using a print-baking method.

課題を解決するための手段 上記問題点を解決するために本発明のサーマルへ、ドは
、基板上に前記基板の特定領域を覆う発熱抵抗体層と、
前記発熱抵抗体層に通電するための電極層と、前記発熱
抵抗体層の全部および電極層の一部を覆う耐摩耗層とを
設け、前記発熱抵抗体層が金属もしくは類金属を含む有
機化合物の分解反応生成物よりなり、かつ前記耐摩耗層
が550℃以下の軟化点をイアする低軟化点ガラスの焼
成膜よりなるものである。
Means for Solving the Problems In order to solve the above problems, the thermal system of the present invention includes a heating resistor layer on a substrate that covers a specific area of the substrate;
An electrode layer for supplying current to the heating resistor layer and a wear-resistant layer covering all of the heating resistor layer and a part of the electrode layer are provided, and the heating resistor layer is made of an organic compound containing a metal or a similar metal. The wear-resistant layer is a fired film of low softening point glass having a softening point of 550° C. or less.

作用 本発明のサーマルヘッドは、発熱抵抗体層を金属もしく
は類金属を含む有機化合物の分解反応生成物により構成
することにより、発熱抵抗体層の膜厚が薄くなり、発熱
抵抗体層の熱容量を小さくすることが可能となると共に
、発熱抵抗体層の各成分の均一分散が得易くなるため、
発熱印字の時定数、印字熱効率、印字品質などを改善す
ることができる。また、耐摩耗層を550℃以下の軟化
点を有する低軟化点ガラスの焼成膜により構成すること
により、耐摩耗層形成時における発熱抵抗体層成分と耐
摩耗層成分との相互拡散を抑制できるため、発熱抵抗体
層の抵抗値のばらつき及び印字濃度のばらつきを小さく
することができる。
Function: In the thermal head of the present invention, the heating resistor layer is made of a decomposition reaction product of an organic compound containing a metal or a metal-like metal, so that the thickness of the heating resistor layer is reduced, and the heat capacity of the heating resistor layer is reduced. This makes it possible to reduce the size of the heating resistor layer, and also makes it easier to obtain uniform dispersion of each component of the heating resistor layer.
It is possible to improve the time constant of heat-generating printing, printing thermal efficiency, printing quality, etc. Furthermore, by forming the wear-resistant layer with a fired film of low-softening glass having a softening point of 550°C or less, mutual diffusion between the heating resistor layer components and the wear-resistant layer components can be suppressed during the formation of the wear-resistant layer. Therefore, variations in the resistance value of the heating resistor layer and variations in print density can be reduced.

実施例 以下に図面に従って本発明の実施例を示す。Example Examples of the present invention will be shown below according to the drawings.

実施例1 第1図に示す様に、厚さ0.8+ueのグレーズアルミ
ナ基板IIの上に金を含む有機化合物のペーストの印刷
焼成及びホトリソエツチングによって電極層12を形成
する。このうえに印刷焼成法によってライン状の発熱抵
抗体層(膜厚数千A)13を形成した。印刷に用いた発
熱抵抗体ペーストは、ルテニ。
Example 1 As shown in FIG. 1, an electrode layer 12 is formed on a glazed alumina substrate II having a thickness of 0.8+UE by printing and firing a paste of an organic compound containing gold and photolithography. On top of this, a line-shaped heating resistor layer (thickness of several thousand amps) 13 was formed by a printing and baking method. The heating resistor paste used for printing was Ruthenium.

ラムの脂肪酸エステル(炭素数7、液体)、鉛の脂肪酸
エステル、硼素の脂肪酸エステル、シリコンの脂肪酸エ
ステル、エチルセルロース及びテルピネオールよりなる
混合組成ペーストである。次に PbO−B2O3系低
軟化点ガラス(軟化点450℃以下)ペーストの印刷焼
成により耐摩耗層(M厚約5μm)14を形成して、サ
ーマルヘッドを作成゛した。
It is a mixed composition paste consisting of lamb fatty acid ester (7 carbon atoms, liquid), lead fatty acid ester, boron fatty acid ester, silicon fatty acid ester, ethyl cellulose, and terpineol. Next, a wear-resistant layer (M thickness: approximately 5 μm) 14 was formed by printing and baking a paste of PbO-B2O3-based low softening point glass (softening point: 450 DEG C. or less) to create a thermal head.

実施例2 実施例1において、発熱抵抗体層を形成後、アルミナ及
び酸化ジルコニウムの粉末(平均粒径はいずれも0.5
um)を分散したPbO−B2Os系低軟化点ガラスペ
ーストの印刷焼成により耐摩耗層(膜厚約4μm)を形
成し、他は同様にしてサーマルヘッドを作成した。
Example 2 In Example 1, after forming the heat generating resistor layer, alumina and zirconium oxide powder (average particle size of each is 0.5
A wear-resistant layer (film thickness of about 4 μm) was formed by printing and firing a PbO-B2Os-based low softening point glass paste in which um) was dispersed, and a thermal head was fabricated in the same manner as above.

実施例3 実施例1において、ルテニウムの脂肪酸エステルの代わ
りにルテニウムの多環式有機化合物を用いた発熱抵抗体
ペーストを印刷焼成し、他は同様にしてサーマルヘッド
を作成した。
Example 3 A thermal head was produced in the same manner as in Example 1, except that a heating resistor paste using a ruthenium polycyclic organic compound instead of the ruthenium fatty acid ester was printed and fired.

実施例4 実施例1において、ルテニウムの脂肪酸エステルの半分
を実施例3で用いたルテニウムの多環式有機化合物と置
換した発熱抵抗体ペーストを印刷焼成し、他は同様にし
てサーマルヘッドを作成し実施例5 ルテニウムの液体状脂肪酸エステル(炭素数7)、ルテ
ニウムの固体状脂肪酸エステル(炭素数20)、鉛のア
ルコラード、シリコンのアルコラード、硼素のアルコラ
ード、エチルセルロース及びテルピネオールよりなる発
熱抵抗体ペーストを印刷焼成して発熱抵抗体層とし、他
は実施例1と同様にしてサーマルヘッドを作成した。
Example 4 In Example 1, a heating resistor paste in which half of the ruthenium fatty acid ester was replaced with the ruthenium polycyclic organic compound used in Example 3 was printed and fired, and a thermal head was created in the same manner as in Example 3. Example 5 Printing a heating resistor paste consisting of liquid fatty acid ester of ruthenium (7 carbon atoms), solid fatty acid ester of ruthenium (20 carbon atoms), Alcolade of lead, Alcolade of silicon, Alcolade of boron, ethyl cellulose, and terpineol. A thermal head was produced in the same manner as in Example 1 except that it was fired to form a heating resistor layer.

比較例1 発熱抵抗体ペーストとして酸化ルテニウム粉末と硼珪酸
ガラスフリットとエチルセルロースとターピネオールと
の混合組成ペーストを用い、他の構成および材料は実施
例1と同様にしてサーマルヘッドを作成した。
Comparative Example 1 A thermal head was prepared in the same manner as in Example 1, except that a paste with a mixed composition of ruthenium oxide powder, borosilicate glass frit, ethyl cellulose, and terpineol was used as the heating resistor paste, and other configurations and materials were the same.

比較例2 耐摩耗層として硼珪酸鉛系ガラスペーストを印刷焼成し
たものを使用し、他は実施例1と同様に゛してサーマル
ヘッドを作成した。
Comparative Example 2 A thermal head was produced in the same manner as in Example 1 except that a printed and fired borosilicate lead glass paste was used as the wear-resistant layer.

比較例3 実施例1に用いたのと同じグレーズアルミナ基板上に、
旧よりなる電極層、Ta−51合金よりなる発熱抵抗体
層及びSICよりなる耐摩耗層とを各々蒸着法により形
成してサーマルヘッドを作成する。
Comparative Example 3 On the same glazed alumina substrate used in Example 1,
A thermal head is fabricated by forming an electrode layer made of a conventional electrode layer, a heating resistor layer made of a Ta-51 alloy, and a wear-resistant layer made of SIC by a vapor deposition method.

第1表に本発明の実施例及び比較例のサーマルヘッドの
特性を示す。表中の抵抗値ばらつきは各ドツト抵抗値の
標準偏差を平均抵抗値で割った値を示す。印字濃度ばら
つきは、サーマルヘッド形成後の各ドツトのそれぞれの
発熱部の抵抗値を通電過負荷トリミング法(発熱抵抗体
層の自己発生ジュール熱により抵抗値を調整する方法)
を用いてトリミングすることにより、発熱部の抵抗値を
±鳳%以内にそろえた後、0.4W/dot 、 1/
4duty 、 IG+as/cycleの駆動条件で
感熱紙に印字し、各ドツトの発色点の濃度をマイクロ濃
度計で測定した結果を示す。また、時定数は赤外線顕微
鏡により求めた発熱部の温度プロファイルから算出した
Table 1 shows the characteristics of the thermal heads of Examples of the present invention and Comparative Examples. The resistance value variation in the table shows the value obtained by dividing the standard deviation of each dot resistance value by the average resistance value. Variations in printing density can be determined by the current overload trimming method (method of adjusting the resistance value using self-generated Joule heat of the heating resistor layer), which is the resistance value of each heating part of each dot after the thermal head is formed.
After adjusting the resistance value of the heat generating part within ± 0% by trimming using
The results of printing on thermal paper under the driving conditions of 4 duty and IG+as/cycle and measuring the density of the coloring point of each dot with a micro densitometer are shown. Further, the time constant was calculated from the temperature profile of the heat generating part determined using an infrared microscope.

(以下余白) 第1表 第1表に示すごとく、実施例1〜5に示したサーマルヘ
ッドは、従来の様なガラスフリットをバインダとして用
いたサーマルヘッド(比較例1)より非常に薄い発熱抵
抗体層を得ることができるため(膜厚1μm以下)、発
熱抵抗体層の熱容量を小さくすることができ、かつ発熱
抵抗体層の分解反応生成物の均一分散が得られ易いため
、抵抗値ばらつき、印字濃度ばらつきが小さく、時定数
も速くなる。
(Margin below) Table 1 As shown in Table 1, the thermal heads shown in Examples 1 to 5 have a much thinner heating resistor than the conventional thermal head (Comparative Example 1) that uses glass frit as a binder. Because it is possible to obtain a heat-generating resistor layer (with a thickness of 1 μm or less), the heat capacity of the heat-generating resistor layer can be reduced, and uniform dispersion of the decomposition reaction products of the heat-generating resistor layer can be easily obtained, which reduces resistance value variations. , the print density variation is small, and the time constant is also fast.

なお、実施例1〜4において発熱抵抗体ペーストに用い
た鉛の脂肪酸エステル、硼素の脂肪酸エステル、シリコ
ンの脂肪酸エステルは、これらのうちの1種類または2
種類のみを用いても同様な結果が得られた。また、実施
例5において発熱抵抗体ペーストに用いた鉛のアルコラ
ード、硼素のアルコラード、シリコンのアルコラードに
ついても同様に、これらのうちの1種類または2種類の
みを用いても同様な結果が得られた。
In addition, the fatty acid ester of lead, the fatty acid ester of boron, and the fatty acid ester of silicon used in the heating resistor paste in Examples 1 to 4 were one or two of these.
Similar results were obtained using only species. Furthermore, similar results were obtained with Alcolade of lead, Alcolade of boron, and Alcolade of silicon used in the heating resistor paste in Example 5, even if only one or two of these were used. .

第2図に実施例1におけるサーマルヘッドの耐摩耗層の
焼成温度と印字濃度ばらつきの関係を示す。この図より
、耐摩耗層として、焼成温度が550°C以下の低軟化
点ガラスの焼成膜を用いることにより、比較例2に示し
た従来の硼珪酸鉛系ガラスの焼成膜(焼成温度600〜
800°C)を用いたサーマルヘッドより印字濃度ばら
つきを小さくすることができることが明らかとなった。
FIG. 2 shows the relationship between the firing temperature of the wear-resistant layer of the thermal head and the variation in print density in Example 1. From this figure, it can be seen that by using a fired film of low softening point glass with a firing temperature of 550°C or less as the wear-resistant layer, the conventional fired film of lead borosilicate glass shown in Comparative Example 2 (with a firing temperature of 600°C or less) can be used as the wear-resistant layer.
It has become clear that variations in print density can be made smaller than with a thermal head using a thermal head (800°C).

これは、耐摩耗層として焼成温度が550″C以下の低
軟化点ガラスの焼成膜を用いることにより、耐摩耗層の
焼成温度を低くすることができるため、発熱抵抗体層成
分と耐摩耗層成分の相互拡散を抑制したことによるもの
と思われる。特にP b O−B2Os系低軟化点ガラ
スは軟化点が特に低いため良い結果を与える。
This is because the firing temperature of the wear-resistant layer can be lowered by using a fired film of low-softening glass with a firing temperature of 550''C or less as the wear-resistant layer. This seems to be due to the suppression of mutual diffusion of the components.In particular, PbO-B2Os-based low softening point glass has a particularly low softening point, so it gives good results.

さらに、耐摩耗層としてアルミナ及び酸化ジルコニウム
のセラミック粉末を分散してなる低軟化点ガラスの焼成
膜を用いたサーマルヘッド(実施例2)は実施例1のサ
ーマルヘッドがもつ特徴を損ねることなく耐摩耗性を向
上させることができた。前記セラミック粉末としては、
耐摩耗性に優れたものが良く、特にアルミナ、酸化ジル
コニウム、炭化珪素、窒化珪素、炭化チタンを単独もし
くは2M類以上を混合して使用すると有効であった。
Furthermore, a thermal head (Example 2) using a fired film of low softening point glass made by dispersing ceramic powders of alumina and zirconium oxide as an abrasion-resistant layer has durability without impairing the characteristics of the thermal head of Example 1. We were able to improve the abrasion resistance. As the ceramic powder,
Those with excellent wear resistance are preferred, and it was particularly effective to use alumina, zirconium oxide, silicon carbide, silicon nitride, and titanium carbide alone or in a mixture of 2M or more.

また、金属もしくは類金属を含む有機化合物として、白
金族金属、金、銀、ニッケル、クロム、シリコン、ゲル
マニウム、タンタル、アルミニウム、ジルコニウム、チ
タン、硼素、ビスマス、バナジウム、鉛よりなる群から
選ばれた少な(とも1種類以上の金属もしくは類金属を
含むを様化合物であれば前記実施例と同様の効果が得ら
れた。
In addition, organic compounds containing metals or similar metals are selected from the group consisting of platinum group metals, gold, silver, nickel, chromium, silicon, germanium, tantalum, aluminum, zirconium, titanium, boron, bismuth, vanadium, and lead. Effects similar to those of the above-mentioned examples could be obtained if a small amount of the compound (including one or more metals or similar metals) was used.

なお、上記の金属もしくは類金属を含む有機化合物は、
単独もしくは2種類以上の混合物のいずれでも使用し得
る。
In addition, organic compounds containing the above metals or similar metals are
They can be used alone or in a mixture of two or more.

さらに、金属もしくは類金属を含むを様化合物としては
炭素数が20までの脂肪酸塩、脂肪酸のエステル、アル
コラード、メルカプチド、環状カルボン酸塩などの多環
式有機金属化合物、その他のレジネート、ロジネートの
(11体もしくは2種類以上の混合物であれば良いこと
が分かった。
Furthermore, examples of compounds containing metals or similar metals include fatty acid salts with up to 20 carbon atoms, fatty acid esters, polycyclic organometallic compounds such as alcoholades, mercaptides, and cyclic carboxylates, and other resinates and rhosinates ( It was found that 11 types or a mixture of two or more types is sufficient.

発明の効果 以上記載のように、本発明によればガラスフリットをバ
インダに用いないためにその厚さの非常に薄い発熱抵抗
体層を得ることができる。このため発熱抵抗体層の熱容
量が小さくなり薄膜プロセスによるものと同等になるた
め、印字の時のON、OFF時定数、印字品質いずれの
点でも優れた特性を有するサーマルヘッドが低コストで
連続的に生産できる。
Effects of the Invention As described above, according to the present invention, since glass frit is not used as a binder, a heating resistor layer having a very thin thickness can be obtained. As a result, the heat capacity of the heating resistor layer becomes smaller, making it equivalent to that produced by a thin film process, so a thermal head with excellent characteristics in terms of ON/OFF time constants and printing quality can be used continuously at low cost. can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるサーマルヘッドの代表
的な構成を示す断面図、第2図は本発明の実施例のサー
マルヘッドにおける耐摩耗層の焼成温度と印字濃度ばら
つきとの関係を示す特性曲線図、第3図(a)、(b)
及び第4図(a)、(b)は従来のサーマルヘッドの代
表的な構成を示す平面図及び断面図である。 11.31.41・・・ブレースアルミナ基板、12.
32a、32b、42a、42b* e e電極)!!
、  13,33,43・・拳発熱抵抗体層、14,3
4,44・・・耐摩耗層。 代理人の氏名 弁理士 栗野重孝 はか18餠R粍層の
虎広温贋 (”C)
FIG. 1 is a cross-sectional view showing a typical configuration of a thermal head according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the firing temperature of the wear-resistant layer and print density variation in the thermal head according to an embodiment of the present invention. Characteristic curve diagram, Figure 3 (a), (b)
4(a) and 4(b) are a plan view and a sectional view showing a typical configuration of a conventional thermal head. 11.31.41... Brace alumina substrate, 12.
32a, 32b, 42a, 42b* e e electrode)! !
, 13,33,43...Fist heating resistor layer, 14,3
4,44... wear-resistant layer. Name of agent: Patent attorney Shigetaka Kurino

Claims (5)

【特許請求の範囲】[Claims] (1)基板上に前記基板の特定領域を覆う発熱抵抗体層
と、前記発熱抵抗体層に通電するための電極層と、前記
発熱抵抗体層の全部および電極層の一部を覆う耐摩耗層
とを設け、前記発熱抵抗体層が金属もしくは類金属を含
む有機化合物の分解反応生成物よりなり、かつ前記耐摩
耗層が550℃以下の軟化点を有する低軟化点ガラスの
焼成膜よりなるサーマルヘッド。
(1) A heating resistor layer on a substrate that covers a specific area of the substrate, an electrode layer for supplying electricity to the heating resistor layer, and a wear-resistant layer that covers all of the heating resistor layer and a part of the electrode layer. wherein the heating resistor layer is made of a decomposition reaction product of an organic compound containing a metal or similar metal, and the wear-resistant layer is made of a fired film of low softening point glass having a softening point of 550°C or less. thermal head.
(2)耐摩耗層がPbO−B_2O_3系低軟化点ガラ
スの焼成膜よりなる請求項1に記載のサーマルヘッド。
(2) The thermal head according to claim 1, wherein the wear-resistant layer is made of a fired film of PbO-B_2O_3-based low softening point glass.
(3)耐摩耗層がアルミナ、酸化ジルコニウム、炭化珪
素、窒化珪素、炭化チタンよりなる群から選ばれた少な
くとも1種類以上のセラミック粉末を分散した低軟化点
ガラスの焼成膜よりなる請求項1もしくは2に記載のサ
ーマルヘッド。
(3) The wear-resistant layer is made of a fired film of low softening point glass in which at least one ceramic powder selected from the group consisting of alumina, zirconium oxide, silicon carbide, silicon nitride, and titanium carbide is dispersed. 2. The thermal head described in 2.
(4)金属もしくは類金属を含む有機化合物が白金族金
属、金、銀、ニッケル、クロム、シリコン、ゲルマニウ
ム、タンタル、アルミニウム、ジルコニウム、チタン、
硼素、ビスマス、バナジウム、鉛よりなる群から選ばれ
た少なくとも1種類以上の金属もしくは類金属を含む有
機化合物である請求項1から3のいずれか一項に記載の
サーマルヘッド。
(4) Organic compounds containing metals or similar metals include platinum group metals, gold, silver, nickel, chromium, silicon, germanium, tantalum, aluminum, zirconium, titanium,
The thermal head according to any one of claims 1 to 3, which is an organic compound containing at least one metal or similar metal selected from the group consisting of boron, bismuth, vanadium, and lead.
(5)金属もしくは類金属を含む有機化合物が炭素数が
20までの脂肪酸塩、脂肪酸のエステル、アルコラード
、メルカプチド、多環式有機金属化合物、その他のレジ
ネート、ロジネートの単体もしくはいずれかの混合物で
ある請求項1から4のいずれか一項に記載のサーマルヘ
ッド。
(5) The organic compound containing a metal or similar metal is a single substance or a mixture of fatty acid salts, fatty acid esters, alcoholades, mercaptides, polycyclic organometallic compounds, other resinates, and rhosinates having up to 20 carbon atoms. The thermal head according to any one of claims 1 to 4.
JP30116988A 1988-11-29 1988-11-29 Thermal head Pending JPH02147253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30116988A JPH02147253A (en) 1988-11-29 1988-11-29 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30116988A JPH02147253A (en) 1988-11-29 1988-11-29 Thermal head

Publications (1)

Publication Number Publication Date
JPH02147253A true JPH02147253A (en) 1990-06-06

Family

ID=17893625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30116988A Pending JPH02147253A (en) 1988-11-29 1988-11-29 Thermal head

Country Status (1)

Country Link
JP (1) JPH02147253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081975A (en) * 1994-06-27 1996-01-09 Nec Corp Thermal head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081975A (en) * 1994-06-27 1996-01-09 Nec Corp Thermal head

Similar Documents

Publication Publication Date Title
JPH02147253A (en) Thermal head
JPH0239953A (en) Thermal head
JP2626036B2 (en) Manufacturing method of thermal head
JPH0232864A (en) Thermal head
JPH02156602A (en) Thermal head
JPH02147254A (en) Production of thermal head
JP2507118B2 (en) Thermal head manufacturing method
JPH0233902A (en) Thermal head and its manufacture
JP2548314B2 (en) Manufacturing method of thermal head
JPH0782921B2 (en) Method of manufacturing thermal head
JP2591233B2 (en) Manufacturing method of thermal head
US5250958A (en) Thermal head and manufacturing method thereof
JPH029640A (en) Thermal head and manufacture thereof
JP2797567B2 (en) Method of forming electrode pattern
JPH07102708B2 (en) Thermal head
JP2646751B2 (en) Thermal head
KR920005760B1 (en) Thermal head and production thereof
JPH01152074A (en) Manufacture of thermal head
JPH0263749A (en) Thermal head
JP2615633B2 (en) Manufacturing method of thermal head
JPH02288301A (en) Resistor and manufacture thereof and thermal head
JP2750125B2 (en) Substrate structure of thermal head
JP2563444B2 (en) Thermal head and manufacturing method thereof
JPH0758642B2 (en) Thermal head
JPH07137319A (en) Thick film thermal head