WO2000069217A1 - Hot plate and conductive paste - Google Patents

Hot plate and conductive paste Download PDF

Info

Publication number
WO2000069217A1
WO2000069217A1 PCT/JP2000/002875 JP0002875W WO0069217A1 WO 2000069217 A1 WO2000069217 A1 WO 2000069217A1 JP 0002875 W JP0002875 W JP 0002875W WO 0069217 A1 WO0069217 A1 WO 0069217A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
particles
metal particles
scaly
hot plate
Prior art date
Application number
PCT/JP2000/002875
Other languages
French (fr)
Japanese (ja)
Inventor
Yanling Zhou
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2000069217A1 publication Critical patent/WO2000069217A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material

Definitions

  • the present invention relates to a hot plate and a conductive paste using a ceramic substrate.
  • a conductor layer is formed in a predetermined pattern on one side surface of the ceramic substrate, and a terminal connection pad is formed on a part of the conductor pattern layer.
  • Such a conductor pattern layer is formed by printing and applying a conductive noble metal paste on a substrate and heating and baking it, as described in Japanese Patent Application Laid-Open No. Hei 4-32049.
  • the conductor paste usually contains one kind of noble metal particles (for example, silver particles having an average particle size of about 5 m and a substantially spherical shape). Terminal pins are soldered to the pads, and power is connected to the terminal pins via wires.
  • a silicon wafer as an object to be heated is placed on the upper surface side of the hot plate, and electricity is supplied in this state, so that the silicon wafer becomes 100. It is heated to C ⁇ 800 ° C.
  • a first object of the present invention is to provide a hot plate having a conductor layer that is difficult to peel off.
  • a second object of the present invention is to provide a hot plate having a conductor layer having a large specific resistance and being difficult to peel off.
  • a third object of the present invention is to provide a conductor paste suitable for manufacturing the above-mentioned excellent hot plate.
  • a hot plate comprising a ceramic substrate and a conductor layer.
  • the conductor layer is made of substantially scaly noble metal particles.
  • the conductive layer of the present invention is more likely to be in surface contact with each other than the conventional conductive layer consisting only of substantially spherical noble metal particles, and is more likely to be in a state where noble metal particles are densely packed after baking.
  • spherical noble metal particles are in point contact, so that voids tend to occur in the conductor layer.
  • the void ratio in the conductor layer is reliably reduced, and the bonding area between the particles is increased.
  • the surface roughness Ra can be set to 1 or less, and the variation in the resistance value of the conductor pattern layer can be reduced.
  • the average particle size of the substantially scaly noble metal particles is preferably 6 ⁇ or less. By setting in this way, it is possible to more reliably achieve a reduction in the void ratio and an improvement in the tensile strength. In particular, when the distance exceeds 6 m, the thickness of the conductor layer (resistor) varies greatly (the surface roughness Ra increases), and the resistance tends to vary.
  • the substantially flaky noble metal particles are preferably at least one selected from gold particles, silver particles, platinum particles and palladium particles. These metal particles are relatively resistant to oxidation even when exposed to a high temperature, and have a sufficiently large resistance value, so that a conductor layer suitable as a resistor for generating heat can be easily obtained.
  • the aspect ratio of the major axis to the minor axis of the substantially scaly noble metal particles is 1.5 or more.
  • the aspect ratio is 1.5 or more, the particles are likely to be in surface contact with each other.
  • the aspect ratio is less than 1.5, the particles are in point contact with each other, and the particles are in point contact.
  • the conductor layer of the present invention is more likely to be densely packed with noble metal particles after baking than a conventional conductor layer comprising only substantially spherical noble metal particles. Therefore, the void ratio in the conductor layer decreases. On the other hand, since almost noble metal particles are used, the particles do not completely come into surface contact with each other, and a constant resistance value can be obtained. Therefore, it is possible to obtain a resistor that is hard to peel and has a high resistance value. In addition, since it is easy to be dense, there is no variation in resistance value, and the temperature uniformity of the heated surface is high.
  • the shape of the granular particles may be spherical, microcrystalline, or crushed. Of these, the spherical shape is the best. This is because the particle size is easy to control and the reproducibility of the resistance value is excellent.
  • the average particle size of the substantially granular noble metal particles is preferably 3 ⁇ m or less, and the average particle size of the substantially scaly noble metal particles is preferably 6 ⁇ m or less. With such a setting, it is possible to more reliably achieve a reduction in the void ratio, an improvement in the tensile strength, and an improvement in the resistance value.
  • the conductive layer contains substantially scale-like noble metal particles 5 to 25 times as large as substantially granular noble metal particles.
  • the void ratio in the conductor layer is further reduced. Therefore, it is possible to more reliably obtain a conductor layer that is difficult to peel. If the content ratio of the substantially scaly noble metal particles to the substantially granular noble metal particles is less than 5 times, the number of the substantially granular noble metal particles becomes relatively large, so that it is difficult to sufficiently reduce the void ratio. Become. On the other hand, when the content ratio exceeds 25 times, the number of substantially scale-like noble metal particles becomes relatively large, and as a result, the resistance value may be too small.
  • a conductive paste comprising substantially scaly noble metal particles, an oxide, and an organic vehicle.
  • the substantially granular noble metal particles, the substantially scaly noble metal particles, and the acid A conductive paste comprising a compound and an organic vehicle is provided.
  • the substantially scaly noble metal particles are preferably at least one selected from gold particles, silver particles, platinum particles and palladium particles.
  • the substantially scaly noble metal particles are preferably made of two or more kinds of particles having different average particle diameters.
  • the conductive paste contains approximately scale-like noble metal particles 5 to 25 times as large as substantially granular noble metal particles.
  • FIG. 1 is a schematic cross-sectional view of a hot plate unit according to an embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a main part of the hot plate unit of FIG.
  • Figure 3 is a conceptual diagram showing the appearance of precious metal particles in the conductor pattern layer (when the precious metal particles are only one type of scale-like one).
  • Fig. 4 is a conceptual diagram showing the appearance of the noble metal particles in the conductor pattern layer (in the case of two types of noble metal particles, scaly and spherical).
  • Figure 5 (a) shows spherical noble metal particles (ie, A particles), Figure 5 (b) shows flaky noble metal particles (ie, B particles), and Figure 5 (c) shows flaky noble metal particles (ie, C particles).
  • Figure 5 (d) shows spherical noble metal particles (ie, A particles)
  • Figure 5 (b) shows flaky noble metal particles (ie, B particles)
  • Figure 5 (c) shows flaky noble metal particles (ie, C particles).
  • Fig. 5 (d) shows spherical noble metal particles (ie, A particles)
  • Figure 5 (b) shows flaky noble metal particles (ie, B particles)
  • Figure 5 (c) shows flaky noble metal particles (ie, C particles).
  • Fig. 5 (d) shows spherical noble metal particles (ie, A particles)
  • Figure 5 (b) shows flaky noble metal particles (ie, B particles)
  • Figure 5 (c) shows flaky noble metal particles (ie, C particles).
  • the hot plate unit 1 shown in FIG. 1 includes a casing 2 and a hot plate 3 as main components.
  • the casing 2 is a metal member having a bottom and has an opening 4 having a circular cross section on an upper side thereof.
  • the casing 2 is not limited to the bottomed one, but the bottomless one. It may be something.
  • the hot plate 3 is attached to the opening 4 via an annular seal ring 14.
  • a nitride ceramic substrate having excellent heat resistance and high thermal conductivity is preferably selected.
  • an aluminum nitride substrate, a silicon nitride substrate, a boron nitride substrate, or a nitride nitride substrate is used. It is preferable to select a titanium substrate. Among these, it is particularly desirable to select an aluminum nitride substrate, and then it is desirable to select a silicon nitride substrate. The reason is that these belong to the category of high thermal conductivity.
  • an oxide ceramic / carbide ceramic can be used as a substrate material. In particular, carbide ceramics are advantageous because of their high thermal conductivity. Silicon carbide, boron carbide or titanium carbide can be used as the carbide ceramic.
  • the ceramic substrate 9 of the present embodiment has a disk-like thickness of about 1 mm! It is a plate-like object of about 25 mm in diameter, and is designed to have a slightly smaller diameter than the outer dimensions of the casing 2.
  • the wiring resistance 10 and the pad 10a of the present embodiment derived from the noble metal paste P1 are
  • the scaly noble metal particles G 2 often have an average particle size of 6 ⁇ m or less.
  • the average particle size is preferably about 3 ⁇ to 5 ⁇ m.
  • the scaly noble metal particles G2 are at least plate-like or rod-like particles that do not exhibit a spherical shape such as the noble metal particles G1, and the ratio of the major axis to the minor axis, in other words, the major axis It is desirable that the aspect ratio between the steel and the thickness be 1.5 or more.
  • the spherical noble metal particles G1 preferably have an aspect ratio of about 1.0 to 1.5 (but not including 1.5).
  • Granular particles include, for example, spherical, microcrystalline, or dendritic. The aspect ratio is not limited to a value within the above range.
  • the wiring resistance 10 and the pad 10a of the present embodiment include a plurality of types of noble metal particles Gl and G2 having different shapes as main components, and further include subcomponents such as glass frit. It may be. More specifically, the wiring resistance 10 is configured to include not only the scaly noble metal particles G2 but also the granular noble metal particles G1 (that is, two kinds of noble metal particles G1, G2). . Fig. 4 conceptually shows the appearance of these noble metal particles Gl and G2. The amount of glass frit is extremely small compared to the amounts of the noble metal particles G 1 and G 2. Therefore, for convenience of illustration and description, the glass frit is omitted in FIG.
  • the granular noble metal particles G1 preferably have an average particle diameter of 3 ⁇ m or less, and particularly preferably about 0.5 ⁇ m to 2 m.
  • the scaly noble metal particles G 2 preferably have an average particle diameter of 6 ⁇ m or less, and particularly preferably about 3 ⁇ m to 5 ⁇ m.
  • the scaly noble metal particles G2 may be one of two or more kinds having different average particle diameters.
  • the granular noble metal particles G1 become relatively large, so that the void ratio can be sufficiently reduced depending on the condition setting. This is because it may disappear.
  • the content ratio is too large, on the contrary, the scale-like noble metal particles G2 become relatively large, so that paste printability may be reduced. Therefore, the printing thickness tends to vary, and it is difficult to accurately and uniformly form the wiring resistance 10 and the pad 10a with a uniform thickness. Also, depending on the condition setting, it may not be possible to sufficiently reduce the void ratio.
  • the granular noble metal particles Gl are desirably at least one selected from gold particles, silver particles, platinum particles, and palladium particles for the same reason as the flaky noble metal particles G2.
  • these noble metals may be used alone or in combination of two, three or four as described below. That is, Ag—Au, Ag-Pt, Ag—Pd, A ⁇ -Pt, Au-Pd, Pt—Pd, Ag—Au-Pt, Ag-Au- The combination of Pd, Au-Pt-Pd, Ag-Au-Pt-Pd may be used.
  • the metal species of the granular noble metal particles G1 and the scale-shaped noble metal particles G2 may be a combination of the same type or a combination of different types.
  • the base end of the terminal pin 12 made of a conductive material is soldered to each pad 10a.
  • electrical continuity between each terminal pin 12 and the wiring resistance 10 is achieved.
  • a socket 6 a at the end of the lead wire 6 is fitted to the end of each terminal pin 12. Accordingly, when a current is supplied to the wiring resistance 10 via the lead wire 6 and the terminal pin 12, the temperature of the wiring resistance 1 ° rises, and the entire hot plate 3 is heated.
  • Drilling is performed by punching or drilling on the produced formed body to form a pin insertion hole (not shown).
  • the substrate 9 made of a ceramic sintered body is manufactured by drying, pre-baking, and main-baking the completely formed body after the drilling step and completely sintering.
  • the baking process is often performed by a hot blessing apparatus, and the temperature is preferably set at about 1500 to 2000 ° C.
  • the fired ceramic substrate 9 is cut out to a predetermined diameter (230 in the present embodiment and in a circular shape, and the surface is preferably ground using a puff polishing device.
  • a precious metal paste P1 prepared in advance is uniformly applied to the lower surface of the ceramic substrate 9 preferably by screen printing.
  • the noble metal paste P1 used here is a resin binder as a glass frit or an organic vehicle, in addition to the one kind of noble metal particles G2 (or the two kinds of noble metal particles G1 and G2). Contains solvents.
  • the amount of the glass frit is preferably 1 Z5 or less of the amount of the noble metal particles G 2 (or G 1 and G 2), and more preferably about 1/10 to lZ100. .
  • the reason is that the more conductive components in the noble metal paste P1, the more advantageous it is in achieving a reduction in specific resistance.
  • the noble metal particles G2 are contained in a total of about 60% to 80% by weight, and the glass frit is 1% to 10% by weight. % Is included.
  • the precious metal paste P1 contains about 3% to 15% by weight of a resin binder as an organic vehicle and 10% by weight of a solvent. /. ⁇ 30 weight. / 0 is included.
  • the resin binder include celluloses such as ethyl cellulose.
  • the solvent is a component added for the purpose of improving printability and dispersibility, and specific examples thereof include acetates, cellosolves such as butyl cellulose, and carbitols such as butyl carbitol. Is mentioned.
  • the noble metal paste P1 applied on the ceramic substrate 9 is heated at a temperature of about 750 ° C for a predetermined time, the solvent in the noble metal paste P1 volatilizes, and the wiring resistance 10 and the pad 10a are reduced. Burned.
  • the molten glass frit tends to move in a direction approaching the ceramic substrate 9, whereas the noble metal particles G 2 (or G 1 and G 2) Tend to move away from the lock substrate 9.
  • the terminal pins 12 are joined to the pad 10a via the solder S1 to complete the hot plate 3, which is then attached to the opening 4 of the casing 2, as shown in Fig. 1.
  • the desired hotplate Tunit 1 is completed.
  • the degreased molded body was subjected to hot press firing at 160 ° C. for 3 hours to obtain an aluminum nitride substrate as the ceramic substrate 9.
  • the pressure of the hot press was set to 150 kg / cm 2 .
  • a paste coating process was performed. In this step, nine kinds of samples were prepared in accordance with the above procedure, using a noble metal paste P1 having the following composition and setting the thickness at the time of application to about 25 ⁇ .
  • Examples 1, 2, 4, and 5 two types of spherical silver particles G1 and flaky silver particles G2 were used, and the flaky silver particles G2 Two different ones (ie B particles and C particles) are used in combination.
  • Example 6 only the flaky silver particles G2 are used, and two flaky silver particles G2 having different particle diameters (that is, B particles and C particles) are used in combination. In other words, no spherical silver particles G1 are used for this.
  • the surface roughness (R a) of the wiring resistance 10 surface was measured in accordance with a conventional method using a surface shape measuring device (trade name: P-11, manufactured by KLA Tencor Inc.). See Table 1. The fact that the surface roughness is small and the surface is smooth means that the wiring resistance 10 has a uniform thickness, the resistance value is uniform, and the variation is small. A strength test was performed, and the tensile strength (kgf / 2 mmD) of the wiring resistance 10 was measured. Needless to say, if this value is large, the adhesion of the conductor pattern layer 10 is increased, and peeling is unlikely to occur.
  • Example 1 As apparent from Table 1, the void ratio after firing in Comparative Example 1 was as high as 12% or more. On the other hand, in Example 3, it was confirmed that the void ratio after firing was as low as 9.8%. In Examples 1, 2, 4, 5, and 6, it was confirmed that the void ratio after firing was significantly lower than that of Comparative Example 1 and Test Examples 1 and 2. Above all, good results were obtained in Example 6, and then good results were obtained in Examples 1 and 4.
  • Comparative Example 1 the value of the tensile strength was as extremely low as about 3.5 kgf / 2 mm. On the other hand, in each of Examples 1 to 6, it was confirmed that a value almost twice or more of the comparative example was obtained. Above all, good results were obtained in Example 2, and then good results were obtained in Examples 1 and 6. From the above results, it is considered that the scaly particles have an effect of improving the tensile strength.
  • Example 7 silicon nitride powder (average particle size 1. l / m) to 4 5 parts by weight, Y 2 0 3 (flat Hitoshitsubu ⁇ 0. 4 ⁇ 20 parts by weight, Alpha 1 2 0 3 (average particle size 0. 5 ⁇ ) 1 5 parts by weight, S i 0 2 (average particle diameter 0. 5; xm) 20 parts by weight, accession Lil system with an organic vehicle resin by Sunda (manufactured by Mitsui Chemicals, Inc., trade name: SA — 54 5, acid value 1.0) 8 parts by weight were mixed The kneaded product obtained by uniformly kneading the mixture thus obtained was placed in a press mold and pressed to obtain a plate-shaped formed body. Was prepared.
  • a paste application step was performed.
  • the noble metal paste P1 a sample having the following composition was used, and the thickness at the time of application was set to about 25, thereby preparing Sample 10.
  • Z nO is 5.6 parts by weight, heat 0 0.6 parts by weight, Ru_ ⁇ 2 2.1 part by weight, • Resin binder: 3.4% by weight,
  • the “silver particles G 2” flaky silver particles having an average particle size of 3.94 m (ie, the B particles) were used.
  • the “palladium particles Gl” spherical palladium particles having an average particle diameter of 5.12 and ⁇ (Pd-215, manufactured by Shoei Chemical Industry) were used.
  • the weight ratio of the two particles in the conductor pattern layer 10, that is, the ratio of the silver particles G 2: palladium particles G 1 was 55:15.
  • Example 7 With respect to the obtained sample of Example 7, the same comparative test as that of Examples 1 to 6 was performed. As a result, after firing, the void ratio was 7.8%, the surface roughness Ra was 0.7 ⁇ , and the tensile strength was 10.8 kg ⁇ 2 mm.
  • the flaky silver particles G 2 were divided into two types having different average particle sizes. If the spherical noble metal particles G 1 are not included at all, the void ratio can be made extremely low, and the adhesion can be remarkably improved.
  • nitride ceramic substrate such as a silicon nitride substrate
  • oxide ceramic substrate such as an alumina substrate or a carbide ceramic substrate such as a silicon carbide substrate
  • carbide ceramic substrate such as a silicon carbide substrate
  • the ceramic substrate 9 is not limited to a substrate manufactured through a press forming method, but may be a substrate manufactured through a sheet forming method using a doctor blade device, for example.
  • the sheet forming method for example, the wiring resistance 10 can be provided between the stacked sheets, so that the hot plate 3 for high temperature can be realized relatively easily.
  • the conductor pattern layer is not limited to only the wiring resistance 10 and the pad 10a exemplified in the embodiment, but may be any other conductor pattern layer, that is, a conductor pattern layer that is not a heating resistor. Good.

Abstract

A hot plate including a conductor pattern layer that can hardly separate. The hot plate (3) includes a conductor pattern layer (10, 10a) on a ceramic substrate (9). The conductor pattern layer (10, 10a) consists of scalelike particles of precious metal.

Description

明細 = ホッ トプレー ト及び導体ペース ト 技術分野  Description = Hot plate and conductor paste Technical field
本発明は、 セラミック基板を使用したホッ トプレート及び導体ペース 卜に関す るものである。 背景技術  The present invention relates to a hot plate and a conductive paste using a ceramic substrate. Background art
半導体製造プロセスにおいて、 例えば感光性樹脂塗布工程を経たシリコンゥェ ハを加熱乾燥させる場合、セラミック基板を利用したホッ トブレ一卜が近年よく用 いられるようになってきている。  In the semiconductor manufacturing process, for example, when heating and drying a silicon wafer that has undergone a photosensitive resin coating step, a hot plate using a ceramic substrate has been frequently used in recent years.
セラミック基板の片側面には導体層が所定パターン状に形成され、 その導体パ ターン層の一部には端子接続用パッ ドが形成される。このよ うな導体パターン層は 、特開平 4一 3 0 0 2 4 9号公報にあるように導電性の貴金属ペーストを基板上に 印刷塗布した後、 加熱して焼き付けることで形成される。 導体ペースト中には、 通 常、 1種類の貴金属粒子 (例えば平均粒径 5 m程度かつ略球状の銀粒子) が含ま れている。 パッ ドには端子ピンがはんだ付けされ、 その端子ピンには配線を介して 電源が接続される。  A conductor layer is formed in a predetermined pattern on one side surface of the ceramic substrate, and a terminal connection pad is formed on a part of the conductor pattern layer. Such a conductor pattern layer is formed by printing and applying a conductive noble metal paste on a substrate and heating and baking it, as described in Japanese Patent Application Laid-Open No. Hei 4-32049. The conductor paste usually contains one kind of noble metal particles (for example, silver particles having an average particle size of about 5 m and a substantially spherical shape). Terminal pins are soldered to the pads, and power is connected to the terminal pins via wires.
そして、 ホットプレートの上面側に被加熱物であるシリコンウェハを載置し、 この状態で通電を行なうことにより、シリコンウェハが 1 0 0。C〜 8 0 0 °Cに加熱 されるようになつている。  Then, a silicon wafer as an object to be heated is placed on the upper surface side of the hot plate, and electricity is supplied in this state, so that the silicon wafer becomes 100. It is heated to C ~ 800 ° C.
ところが、 上記従来の貴金属ペース トを基板に印刷して焼き付けを行なった場 合、 導体パターン層中にボイ ドができやすく、 剥離が生じやすかつた。 そのため、 剥離しにくレ、導体パターン層に対する要請も強かつた。  However, when the above-mentioned conventional noble metal paste is printed on a substrate and baked, voids are easily formed in the conductive pattern layer, and peeling is likely to occur. For this reason, there has been a strong demand for a conductor pattern layer, which is difficult to peel.
また、 導体パターン層の発熱量を増やすため、比抵抗値を大きくする必要があつ た。 発明の開示 In addition, it was necessary to increase the specific resistance in order to increase the amount of heat generated in the conductor pattern layer. Disclosure of the invention
本発明の第 1の目的は、剥離しにくい導体層を有するホッ トプレートを提供する ことにある。  A first object of the present invention is to provide a hot plate having a conductor layer that is difficult to peel off.
本発明の第 2の目的は、比抵抗が大きくて剥離しにくい導体層を有するホッ トプ レートを提供することにある。  A second object of the present invention is to provide a hot plate having a conductor layer having a large specific resistance and being difficult to peel off.
本発明の第 3の目的は、上記の優れたホッ トプレートの製造に好適な導体ペース トを提供することにある。  A third object of the present invention is to provide a conductor paste suitable for manufacturing the above-mentioned excellent hot plate.
本発明の第 1の態様では、 セラミック基板に導体層を備えてなるホッ トプレ ートが提供される。 導体層は、 略鱗片状の貴金属粒子からなる。 本発明の導体層は 、 略球状の貴金属粒子のみからなる従来の導体層に比べ、粒子同士が面接触になり やすく焼き付け後に貴金属粒子が密に詰まった状態になりやすい。それに対して球 状の貴金属粒子の場合には点接触になるため、 導体層にボイ ドが生じやすくなる。 このように本発明においては、導体層におけるボイ ド率が確実に減少し、各粒子間 の接合面積が大きくなる。 この結果、 導体層に十分な引っ張り強度が確保され、 剥 離しにくい導体層を得ることができる。 また、面粗度 R aも 1 以下にすること ができ、 導体パターン層の抵抗値のばらつきを低減することができる。  According to a first aspect of the present invention, there is provided a hot plate comprising a ceramic substrate and a conductor layer. The conductor layer is made of substantially scaly noble metal particles. The conductive layer of the present invention is more likely to be in surface contact with each other than the conventional conductive layer consisting only of substantially spherical noble metal particles, and is more likely to be in a state where noble metal particles are densely packed after baking. On the other hand, spherical noble metal particles are in point contact, so that voids tend to occur in the conductor layer. As described above, in the present invention, the void ratio in the conductor layer is reliably reduced, and the bonding area between the particles is increased. As a result, a sufficient tensile strength is secured for the conductor layer, and a conductor layer that is difficult to peel off can be obtained. Further, the surface roughness Ra can be set to 1 or less, and the variation in the resistance value of the conductor pattern layer can be reduced.
略鱗片状の貴金属粒子の平均粒径は 6 μ πι以下であることが好ましい。 このよ う に設定することにより、ボイ ド率の低減及び引っ張り強度の向上をより確実に達成 することができる。 特に 6 mを越えると導体層 (抵抗体) の厚さのばらつきが大 きくなり (面粗度 R aが大きくなり) 、 抵抗値にばらつきが発生しやすくなる。 略鱗片状の貴金属粒子は、 金粒子、 銀粒子、 白金粒子及びパラジウム粒子のう ちから選ばれる少なく とも 1種であることが好ましい。これらの金属粒子は高温に 晒されても比較的酸化しにくく、 しかも充分大きな抵抗値を示すため、発熱のため の抵抗体として好適な導体層を容易に得ることができる。  The average particle size of the substantially scaly noble metal particles is preferably 6 μπι or less. By setting in this way, it is possible to more reliably achieve a reduction in the void ratio and an improvement in the tensile strength. In particular, when the distance exceeds 6 m, the thickness of the conductor layer (resistor) varies greatly (the surface roughness Ra increases), and the resistance tends to vary. The substantially flaky noble metal particles are preferably at least one selected from gold particles, silver particles, platinum particles and palladium particles. These metal particles are relatively resistant to oxidation even when exposed to a high temperature, and have a sufficiently large resistance value, so that a conductor layer suitable as a resistor for generating heat can be easily obtained.
略鱗片状の貴金属粒子における長径と短径とのァスぺク ト比は 1 . 5以上であ ることが好ましい。 ァスぺク ト比は 1 . 5以上であると、 粒子同士が面接触になり やすく、 逆に、 ァスぺク ト比が 1 . 5未満であると、 粒子同士が点接触となり、 ボ ィ ド率の低減及び引っ張り強度の向上を十分に達成できなくなるおそれがある。 本発明の第 2の態様では、 セラミック基板に導体層を備えてなるホッ トプレ 一トが提供される。 導体層は、 略粒状の貴金属粒子及び略鱗片状の貴金属粒子から なる。 本発明の導体層は、 略球状の貴金属粒子のみからなる従来の導体層に比べ、 焼き付け後に貴金属粒子が密に詰まった状態になりやすい。 ゆえに、 導体層におけ るボイ ド率が減少する。 一方、 略粒状の貴金属粒子を使用しているため、 粒子同士 が完全に面接触にならず、 一定の抵抗値が得られる。 このため、 剥離しにく く、 抵 抗値の高い抵抗体を得ることができる。 また、緻密になりやすいため抵抗値のばら つきもなく、 加熱面の温度均一性も高い。 It is preferable that the aspect ratio of the major axis to the minor axis of the substantially scaly noble metal particles is 1.5 or more. When the aspect ratio is 1.5 or more, the particles are likely to be in surface contact with each other. Conversely, when the aspect ratio is less than 1.5, the particles are in point contact with each other, and the particles are in point contact. There is a possibility that the reduction of the lead rate and the improvement of the tensile strength cannot be sufficiently achieved. According to a second aspect of the present invention, there is provided a hot plate comprising a ceramic substrate and a conductor layer. The conductor layer is composed of substantially granular noble metal particles and substantially scaly noble metal particles. The conductor layer of the present invention is more likely to be densely packed with noble metal particles after baking than a conventional conductor layer comprising only substantially spherical noble metal particles. Therefore, the void ratio in the conductor layer decreases. On the other hand, since almost noble metal particles are used, the particles do not completely come into surface contact with each other, and a constant resistance value can be obtained. Therefore, it is possible to obtain a resistor that is hard to peel and has a high resistance value. In addition, since it is easy to be dense, there is no variation in resistance value, and the temperature uniformity of the heated surface is high.
粒状粒子の形状としては、 球状、 微結晶状又は破碎粒子状がある。 これらの中で は、 特に球状が最適である。 粒子径を制御しやすく、 抵抗値の再現性に優れるから である。  The shape of the granular particles may be spherical, microcrystalline, or crushed. Of these, the spherical shape is the best. This is because the particle size is easy to control and the reproducibility of the resistance value is excellent.
略粒状の貴金属粒子の平均粒径は 3 μ m以下であり、 略鱗片状の貴金属粒子は 平均粒径が 6 μ m以下であることが好ましレ、。 このように設定することにより、 ボ ィ ド率の低減及び引っ張り強度の向上、抵抗値の向上をより確実に達成することが できる。  The average particle size of the substantially granular noble metal particles is preferably 3 μm or less, and the average particle size of the substantially scaly noble metal particles is preferably 6 μm or less. With such a setting, it is possible to more reliably achieve a reduction in the void ratio, an improvement in the tensile strength, and an improvement in the resistance value.
略鱗片状の貴金属粒子は、 平均粒径の異なる 2種以上のものからなることが好 ましい。 この場合、 導体層におけるボイ ド率がいっそう減少する。 従って、 剥離し にくい導体層を確実に得ることができる。  The substantially scaly noble metal particles are preferably made of two or more kinds of particles having different average particle diameters. In this case, the void ratio in the conductor layer is further reduced. Therefore, it is possible to reliably obtain a conductor layer that is difficult to peel.
略粒状の貴金属粒子の 5倍〜 2 5倍の略鱗片状の貴金属粒子が導体層に含まれ ることが好ましい。 この場合、 導体層におけるボイ ド率がよりいっそう減少する。 従って、 剥離しにくい導体層をより確実に得ることができる。 略鱗片状の貴金属粒 子の略粒状の貴金属粒子に对する含有比が 5倍未満であると、略粒状の貴金属粒子 が相対的に多くなる結果、 ボイ ド率を充分に低減しにく くなる。 また、 含有比が 2 5倍を超えると、逆に略鱗片状の貴金属粒子が相対的に多くなる結果、抵抗値が小 さくなりすぎるおそれがある。  It is preferable that the conductive layer contains substantially scale-like noble metal particles 5 to 25 times as large as substantially granular noble metal particles. In this case, the void ratio in the conductor layer is further reduced. Therefore, it is possible to more reliably obtain a conductor layer that is difficult to peel. If the content ratio of the substantially scaly noble metal particles to the substantially granular noble metal particles is less than 5 times, the number of the substantially granular noble metal particles becomes relatively large, so that it is difficult to sufficiently reduce the void ratio. Become. On the other hand, when the content ratio exceeds 25 times, the number of substantially scale-like noble metal particles becomes relatively large, and as a result, the resistance value may be too small.
本発明の第 3の態様では、 略鱗片状の貴金属粒子、 酸化物及び有機ビヒクルから なる導電ペーストが提供される。  According to a third aspect of the present invention, there is provided a conductive paste comprising substantially scaly noble metal particles, an oxide, and an organic vehicle.
本発明の第 4の態様では、 略粒状の貴金属粒子、 略鱗片状の貴金属粒子、 酸 化物及び有機ビヒクルからなる導電ペース 卜が提供される。 In the fourth embodiment of the present invention, the substantially granular noble metal particles, the substantially scaly noble metal particles, and the acid A conductive paste comprising a compound and an organic vehicle is provided.
略鱗片状の貴金属粒子は、 金粒子、 銀粒子、 白金粒子及びバラジウム粒子のう ちから選ばれる少なく とも 1種であることが好ましい。  The substantially scaly noble metal particles are preferably at least one selected from gold particles, silver particles, platinum particles and palladium particles.
略鱗片状の貴金属粒子は、 平均粒径の異なる 2種以上のものからなることが好 ましい。  The substantially scaly noble metal particles are preferably made of two or more kinds of particles having different average particle diameters.
略粒状の貴金属粒子の 5倍〜 2 5倍の略鱗片状の貴金属粒子が導電ペーストに 含まれていることが好ましい。  It is preferable that the conductive paste contains approximately scale-like noble metal particles 5 to 25 times as large as substantially granular noble metal particles.
略粒状の貴金属粒子の平均粒径は 3 μ m以下であり、 略鱗片状の貴金属粒子は 平均粒径が 6 μ m以下であることが好ましい。 図面の簡単な説明  The average particle size of the substantially granular noble metal particles is preferably 3 μm or less, and the average particle size of the substantially scaly noble metal particles is preferably 6 μm or less. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態のホッ トプレートュニッ 卜の概略断面図。  FIG. 1 is a schematic cross-sectional view of a hot plate unit according to an embodiment of the present invention.
図 2は、 図 1のホッ トプレートュニッ トの要部拡大断面図。  FIG. 2 is an enlarged sectional view of a main part of the hot plate unit of FIG.
図 3は、 導体パターン層中における貴金属粒子の様子 (貴金属粒子が鱗片状の もの 1種のみの場合) を示す概念図。  Figure 3 is a conceptual diagram showing the appearance of precious metal particles in the conductor pattern layer (when the precious metal particles are only one type of scale-like one).
図 4は、 導体パターン層中における貴金属粒子の様子 (貴金属粒子が鱗片状の もの及び球状のもの 2種の場合) を示す概念図。  Fig. 4 is a conceptual diagram showing the appearance of the noble metal particles in the conductor pattern layer (in the case of two types of noble metal particles, scaly and spherical).
図 5 ( a ) は球状の貴金属粒子 (即ち A粒子) 、 図 5 ( b ) は鱗片状の貴金属 粒子 (即ち B粒子) 、 図 5 ( c ) は鱗片状の貴金属粒子 (即ち C粒子) 、 図 5 ( d Figure 5 (a) shows spherical noble metal particles (ie, A particles), Figure 5 (b) shows flaky noble metal particles (ie, B particles), and Figure 5 (c) shows flaky noble metal particles (ie, C particles). Fig. 5 (d
) は鱗片状の貴金属粒子 (即ち D粒子) の S E Mによる拡大写真。 発明を実施するための最良の形態 () Is an enlarged photograph of flaky precious metal particles (ie, D particles) by SEM. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を具体化した一実施形態のホッ トプレートユニッ ト 1を図 1〜図 5に基づき詳細に説明する。  Hereinafter, a hot plate unit 1 according to an embodiment of the present invention will be described in detail with reference to FIGS.
図 1に示されるホッ トプレートュニッ ト 1は、 ケーシング 2及びホッ トプレー ト 3を主要な構成要素として備えている。  The hot plate unit 1 shown in FIG. 1 includes a casing 2 and a hot plate 3 as main components.
ケーシング 2は有底状の金属製部材であって、 断面円形状の開口部 4をその上 部側に備えている。 なお、 ケ一シング 2は有底状のものに限定されず、 底無し状の ものであってもよい。当該開口部 4には環状のシールリング 1 4を介してホットブ レート 3が取り付けられる。ケーシング 2の底部 2 aの外周部には電流供給用のリ 一ド線 6を挿通するためのリ一ド線引出用孔 7が形成され、各リ一ド線 6はそこか らケーシング 2の外部に引き出されている。 The casing 2 is a metal member having a bottom and has an opening 4 having a circular cross section on an upper side thereof. In addition, the casing 2 is not limited to the bottomed one, but the bottomless one. It may be something. The hot plate 3 is attached to the opening 4 via an annular seal ring 14. On the outer periphery of the bottom 2 a of the casing 2, a lead wire drawing hole 7 for inserting a lead wire 6 for supplying current is formed, and each lead wire 6 is connected to the casing 2 from there. It has been pulled out.
セラミック基板 9からなる本実施形態のホッ トプレート 3は、 感光性樹脂が塗 布されたシリコンウェハ W 1を 5 0 °C〜3 0 0 °Cにて乾燥させるための低温用ホ ッ トプレート 3である。 なお、 このホッ トプレートュニッ ト 1は、 3 0 0 °C〜8 0 0 °cの使用温度領域を有する。  The hot plate 3 of the present embodiment composed of the ceramic substrate 9 is a low-temperature hot plate for drying the silicon wafer W1 coated with the photosensitive resin at 50 ° C. to 300 ° C. 3 The hot plate unit 1 has an operating temperature range of 300 ° C. to 800 ° C.
セラミック基板 9としては、耐熱性に優れかつ熱伝導率が高いという性質を有す る窒化物セラミック基板を選択することがよく、具体的には窒化アルミニゥム基板 、 窒化珪素基板、 窒化ホウ素基板又は窒化チタン基板を選択することがよい。 これ らの中でも、特に窒化アルミニウム基板を選択することが望ましく、次いで窒化珪 素基板を選択することが望ましい。 その理由は、 これらのものは熱伝導率が高い部 類に属するからである。 また、 窒化物セラミック以外に、 酸化物セラミックゃ炭化 物セラミックを基板材料として使用することができる。 特に炭化物セラミックは、 熱伝導率が高く有利である。 炭化物セラミックとしては、 炭化珪素、 炭化硼素又は 炭化チタンを使用することができる。  As the ceramic substrate 9, a nitride ceramic substrate having excellent heat resistance and high thermal conductivity is preferably selected. Specifically, an aluminum nitride substrate, a silicon nitride substrate, a boron nitride substrate, or a nitride nitride substrate is used. It is preferable to select a titanium substrate. Among these, it is particularly desirable to select an aluminum nitride substrate, and then it is desirable to select a silicon nitride substrate. The reason is that these belong to the category of high thermal conductivity. In addition to the nitride ceramic, an oxide ceramic / carbide ceramic can be used as a substrate material. In particular, carbide ceramics are advantageous because of their high thermal conductivity. Silicon carbide, boron carbide or titanium carbide can be used as the carbide ceramic.
本実施形態のセラミック基板 9は、 円盤状をした厚さ約 1 m n!〜 2 5 m m程度 の板状物であって、ケーシング 2の外形寸法より若干小径となるように設計されて いる。  The ceramic substrate 9 of the present embodiment has a disk-like thickness of about 1 mm! It is a plate-like object of about 25 mm in diameter, and is designed to have a slightly smaller diameter than the outer dimensions of the casing 2.
図 1, 図 2に示されるように、 窒化アルミニウム等からなるセラミック基板 9 の下面側には、導体パターン層としての配線抵抗 1 0が同心円状ないし渦巻き状に 形成されている。 配線抵抗 1 0の端部にはパッ ド 1 0 aが形成されている。 なお、 配線抵抗 1 0及びパッ ド 1 0 aは、セラミック基板 9の表面に導電性の貴金属ぺー スト (導体ペーストと同義、 抵抗体を形成する抵抗体ペース トとなる。 以下実施の 形態では貴金属ペース トと表記する) P 1 を印刷した後、 それを加熱して焼き付 けたものである。 なお、 本実施形態のホッ トプレート 3では、 導体パターン層形成 層の反対側、即ち上面側をシリコンウェハ W 1の加熱面としている。 このような構 成の利点は、 ホッ トプレート 3に温度ムラが生じにく くなり、 シリコンウェハ W 1 を均一に加熱できるようになることである。 As shown in FIGS. 1 and 2, a wiring resistance 10 as a conductor pattern layer is formed concentrically or spirally on the lower surface side of a ceramic substrate 9 made of aluminum nitride or the like. A pad 10 a is formed at an end of the wiring resistance 10. Note that the wiring resistance 10 and the pad 10a are formed of a conductive noble metal paste (synonymous with a conductive paste and a resistor paste for forming a resistor) on the surface of the ceramic substrate 9. In the following embodiments, the noble metal paste will be described. After printing P1, it is heated and baked. In the hot plate 3 of the present embodiment, the opposite side of the conductor pattern layer forming layer, that is, the upper surface side is the heating surface of the silicon wafer W1. Such a structure The advantage of this configuration is that temperature unevenness is less likely to occur in the hot plate 3, and the silicon wafer W1 can be heated uniformly.
貴金属ペース ト P 1に由来する本実施形態の配線抵抗 1 0及びパッ ド 1 0 aは The wiring resistance 10 and the pad 10a of the present embodiment derived from the noble metal paste P1 are
、 1種の貴金属粒子 G 2のみ (具体的には鱗片状の貴金属粒子 G 2のみ) を主成分 として含み、 さらにガラスフリ ッ ト等の副成分を含んでいる。 図 3には、 鱗片状の 貴金属粒子 G 2の様子が概念的に示されている。 ガラスフリ ッ トの量は、 貴金属粒 子 G 2の量に比べて極めて少ない。 よって、 図示及び説明の便宜上、 同図にてガラ スフリ ッ トはあえて省略されている。 However, it contains only one kind of noble metal particles G2 (specifically, only flaky noble metal particles G2) as a main component, and further contains subcomponents such as glass frit. FIG. 3 conceptually shows the appearance of the scaly noble metal particles G2. The amount of glass frit is very small compared to the amount of noble metal particles G2. Therefore, for convenience of illustration and description, the glass frit is omitted in the figure.
この場合、 鱗片状の貴金属粒子 G 2は平均粒径が 6 μ m以下であることがよく In this case, the scaly noble metal particles G 2 often have an average particle size of 6 μm or less.
、特には 3 μ τα〜 5 μ m程度であることがよい。 平均粒径を上記好適範囲に設定す ることにより、ボイ ド率の低減及び引っ張り強度の向上をより確実に達成すること ができるからである。 In particular, it is preferably about 3 μτα to 5 μm. By setting the average particle size in the above preferable range, it is possible to more reliably achieve a reduction in the void ratio and an improvement in the tensile strength.
鱗片状の貴金属粒子 G 2は、 金粒子 (A u粒子) 、 銀粒子 (A g粒子) 、 白金 粒子 (P t粒子) 及びパラジウム粒子 (P d粒子) のうちから選ばれる少なく とも 1種であることが好ましレ、。これらの貴金属は高温に晒されても比較的酸化しにく く、 通電により発熱させるにあたって充分大きな抵抗値を示すからである。 勿論、 これらの貴金属は、 単独で用いられてもよいほか、 2種、 3種または 4種を下記の ごとく組み合わせて用いてもよい。 即ち、 A g— A u , A g— P t , A g - P d , A u— P t , A u - P d , P t — P d, A g - A u - P t , A g— Au— P d, A u— P t — P d, A g—A u— P t — P d、 の組み合わせにして用いてもよい。 本実施形態において、 鱗片状の貴金属粒子 G 2とは、 少なく とも貴金属粒子 G 1のような球状を呈していない板状または棒状の粒子であって、長径と短径との比 、 言い換えれば長径と厚さとのアスペク ト比が 1. 5以上のものが望ましい。 ちな みに、 本実施形態において球状の貴金属粒子 G 1とは、 ァスぺク ト比が 1. 0〜1 . 5 (ただし 1. 5は含まない) 程度のものが望ましい。 粒状粒子としては、 例え ば球状、 微結晶状又は樹枝状がある。 なお、 ァスぺク ト比については、 上記範囲内 の値に限定されるものではない。本発明の効果を損なわない範囲であれば、鱗片状 粒子や粒状粒子を選択することも許容されうる。 鱗片状の貴金属粒子 G 2のァスぺク ト比力; 1 . 5以上であると、 ァスぺク ト比が 1 . 0に近い球状のものと形状的に差がつきやすくなる。 この結果、 粒子形状によ る効果が期待できるようになり、ボイ ド率の低減及び引っ張り強度の向上を十分に 達成できるからである。 The scaly noble metal particles G2 are at least one selected from gold particles (Au particles), silver particles (Ag particles), platinum particles (Pt particles), and palladium particles (Pd particles). It's preferable to be there. This is because these precious metals are relatively hard to oxidize even when exposed to high temperatures and have a sufficiently large resistance value to generate heat when energized. Of course, these noble metals may be used alone or in combination of two, three or four as described below. That is, Ag—Au, Ag—Pt, Ag-Pd, Au—Pt, Au-Pd, Pt—Pd, Ag-Au-Pt, Ag— Au—Pd, Au—Pt—Pd, Ag—Au—Pt—Pd, may be used in combination. In the present embodiment, the scaly noble metal particles G2 are at least plate-like or rod-like particles that do not exhibit a spherical shape such as the noble metal particles G1, and the ratio of the major axis to the minor axis, in other words, the major axis It is desirable that the aspect ratio between the steel and the thickness be 1.5 or more. Incidentally, in the present embodiment, the spherical noble metal particles G1 preferably have an aspect ratio of about 1.0 to 1.5 (but not including 1.5). Granular particles include, for example, spherical, microcrystalline, or dendritic. The aspect ratio is not limited to a value within the above range. As long as the effects of the present invention are not impaired, it is acceptable to select scaly particles or granular particles. When the aspect ratio of the scaly noble metal particles G2 is 1.5 or more, the shape tends to be different from the spherical one having an aspect ratio close to 1.0. As a result, the effect of the particle shape can be expected, and the reduction of the void ratio and the improvement of the tensile strength can be sufficiently achieved.
また、 本実施形態の配線抵抗 1 0及びバッ ド 1 0 aは、 形状の異なる複数種の 貴金属粒子 G l, G 2を主成分として含み、 さらにガラスフリ ッ ト等の副成分を含 んでいるものであってもよい。 より具体的にいうと、 配線抵抗 1 0は、 鱗片状の貴 金属粒子 G 2のみならず粒状の貴金属粒子 G 1 (つまり 2種の貴金属粒子 G 1 , G 2 ) を含んで構成されている。 図 4には、 これら貴金属粒子 G l, G 2の様子が概 念的に示されている。 ガラスフリッ 卜の量は、 貴金属粒子 G 1 , G 2の量に比べて 極めて少ない。 よって、 図示及び説明の便宜上、 同図にてガラスフリ ッ トはあえて 省略されている。  Further, the wiring resistance 10 and the pad 10a of the present embodiment include a plurality of types of noble metal particles Gl and G2 having different shapes as main components, and further include subcomponents such as glass frit. It may be. More specifically, the wiring resistance 10 is configured to include not only the scaly noble metal particles G2 but also the granular noble metal particles G1 (that is, two kinds of noble metal particles G1, G2). . Fig. 4 conceptually shows the appearance of these noble metal particles Gl and G2. The amount of glass frit is extremely small compared to the amounts of the noble metal particles G 1 and G 2. Therefore, for convenience of illustration and description, the glass frit is omitted in FIG.
この場合、 粒状の貴金属粒子 G 1は平均粒径が 3 μ m以下であることがよく、 特には 0 . 5 μ m〜 2 m程度であることがよい。鱗片状の貴金属粒子 G 2は平均 粒径が 6 μ m以下であることがよく、特には 3 μ m〜 5 μ m程度であることがよい 。 また、 鱗片状の貴金属粒子 G 2は、 平均粒径の異なる 2種以上のものからなるも の 1あってもよレヽ。  In this case, the granular noble metal particles G1 preferably have an average particle diameter of 3 μm or less, and particularly preferably about 0.5 μm to 2 m. The scaly noble metal particles G 2 preferably have an average particle diameter of 6 μm or less, and particularly preferably about 3 μm to 5 μm. Further, the scaly noble metal particles G2 may be one of two or more kinds having different average particle diameters.
配線抵抗 1 0及びパッ ド 1 0 a中において、 鱗片状の貴金属粒子 G 2は粒状の 貴金属粒子 G 1よりも多く含まれている。 より具体的にいうと、粒状の貴金属粒子 G 1の 5倍〜 2 5倍の鱗片状の貴金属粒子 G 2が含まれることがよく、特には 6倍 〜 2 0倍含まれていることがよレ、。  In the wiring resistance 10 and the pad 10a, the scale-like noble metal particles G2 are contained more than the granular noble metal particles G1. More specifically, the flake-like noble metal particles G2 that are 5 to 25 times the granular noble metal particles G1 are often contained, and particularly, the flake-like noble metal particles G1 are preferably contained 6 to 20 times. Les ,.
鱗片状の貴金属粒子 G 2の略粒状の貴金属粒子 G 1に対する含有比が小さすぎ ると、粒状の貴金属粒子 G 1が相対的に多くなる結果、条件設定によってはボイ ド 率を充分に低減できなくなる場合があり うるからである。 また、 含有比が大きすぎ ると、逆に鱗片状の貴金属粒子 G 2が相対的に多くなる結果、ペースト印刷性が低 下するおそれがある。 よって、 印刷厚さにばらつきが生じやすくなり、 配線抵抗 1 0及びパッ ド 1 0 aを精度よく均一厚さに形成することが困難になる。 また、 条件 設定によってはボイ ド率を充分に低減できなくなる場合もあり うる。 ここで、 粒状の貴金属粒子 G l も、 鱗片状の貴金属粒子 G 2と同じ理由により 、 金粒子、 銀粒子、 白金粒子及びパラジウム粒子のうちから選ばれる少なく とも 1 種であることが望ましい。 勿論、 これらの貴金属は、 単独で用いられてもよいほか 、 2種、 3種または 4種を下記のごとく組み合わせて用いてもよい。 即ち、 A g— A u , A g - P t , Ag— P d, A υ - P t , A u - P d , P t— P d, A g— A u - P t , Ag -Au-P d, A u - P t - P d , A g— Au— P t— P d、 の組 み合わせにして用いてもよい。 If the content ratio of the scaly noble metal particles G2 to the substantially granular noble metal particles G1 is too small, the granular noble metal particles G1 become relatively large, so that the void ratio can be sufficiently reduced depending on the condition setting. This is because it may disappear. On the other hand, if the content ratio is too large, on the contrary, the scale-like noble metal particles G2 become relatively large, so that paste printability may be reduced. Therefore, the printing thickness tends to vary, and it is difficult to accurately and uniformly form the wiring resistance 10 and the pad 10a with a uniform thickness. Also, depending on the condition setting, it may not be possible to sufficiently reduce the void ratio. Here, the granular noble metal particles Gl are desirably at least one selected from gold particles, silver particles, platinum particles, and palladium particles for the same reason as the flaky noble metal particles G2. Of course, these noble metals may be used alone or in combination of two, three or four as described below. That is, Ag—Au, Ag-Pt, Ag—Pd, Aυ-Pt, Au-Pd, Pt—Pd, Ag—Au-Pt, Ag-Au- The combination of Pd, Au-Pt-Pd, Ag-Au-Pt-Pd may be used.
なお、 粒状の貴金属粒子 G 1及び鱗片状の貴金属粒子 G 2の金属種を、 同種の もの同士の組み合わせにしてもよいほ力 \異種のもの同士の組み合わせにしてもよ い。  The metal species of the granular noble metal particles G1 and the scale-shaped noble metal particles G2 may be a combination of the same type or a combination of different types.
図 1, 図 2に示されるように、 各パッ ド 1 0 aには、 導電性材料からなる端子 ピン 1 2の基端部がはんだ付けされている。 その結果、 各端子ピン 1 2と配線抵抗 1 0との電気的な導通が図られている。 各端子ピン 1 2の先端部には、 リード線 6 の先端部にあるソケッ ト 6 aが嵌着されている。 従って、 リ―ド線 6及び端子ピン 1 2を介して配線抵抗 1 0に電流を供給すると、配線抵抗 1 ◦の温度が上昇し、 ホ ッ トプレート 3全体が加熱される。  As shown in FIGS. 1 and 2, the base end of the terminal pin 12 made of a conductive material is soldered to each pad 10a. As a result, electrical continuity between each terminal pin 12 and the wiring resistance 10 is achieved. A socket 6 a at the end of the lead wire 6 is fitted to the end of each terminal pin 12. Accordingly, when a current is supplied to the wiring resistance 10 via the lead wire 6 and the terminal pin 12, the temperature of the wiring resistance 1 ° rises, and the entire hot plate 3 is heated.
次に、 このホッ トプレート 3を製造する手順の一例を簡単に説明する。  Next, an example of a procedure for manufacturing the hot plate 3 will be briefly described.
窒化アルミニウム等に代表されるセラミ ックの粉体に、 必要に応じてィッ トリ ァなどの焼結助剤やバインダ一を添加してなる混合物を作製し、これを好ましくは 3本ロールにより均一に混練する。 この混練物を材料として、厚さ数 mm程度の板 状生成形体をプレス成形により作製する。  A mixture is prepared by adding a sintering aid such as an iterator or a binder as necessary to ceramic powder typified by aluminum nitride or the like, and this is preferably formed by a three-roll mill. Knead evenly. Using this kneaded material as a material, a plate-shaped formed body having a thickness of about several mm is produced by press molding.
作製された生成形体に対してパンチングまたはドリ リングによる穴あけを行い 、 図示しないピン挿通孔を形成する。 次いで、 穴あけ工程を経た生成形体を乾燥、 仮焼成及び本焼成して完全に焼結させることにより、セラミック焼結体製の基板 9 を作製する。焼成工程はホッ トブレス装置によって行われることがよく、 その温度 は 1 500°C〜 2000°C程度に設定されることがよし、。 この後、焼成されたセラ ミック基板 9を所定径 (本実施形態では 2 30隱 にかつ円形状に切り出し、 こ れを好ましくはパフ研磨装置を用いて表面研削加工する。 上記工程を経た後、 あらかじめ調製しておいた貴金属ペース ト P 1を、 セラミ ック基板 9の下面側に好ましくはスクリーン印刷により均一に塗布する。 Drilling is performed by punching or drilling on the produced formed body to form a pin insertion hole (not shown). Next, the substrate 9 made of a ceramic sintered body is manufactured by drying, pre-baking, and main-baking the completely formed body after the drilling step and completely sintering. The baking process is often performed by a hot blessing apparatus, and the temperature is preferably set at about 1500 to 2000 ° C. Thereafter, the fired ceramic substrate 9 is cut out to a predetermined diameter (230 in the present embodiment and in a circular shape, and the surface is preferably ground using a puff polishing device. After the above steps, a precious metal paste P1 prepared in advance is uniformly applied to the lower surface of the ceramic substrate 9 preferably by screen printing.
ここで使用される貴金属ペース ト P 1は、 上記 1種の貴金属粒子 G 2 (または 上記 2種の貴金属粒子 G 1及び G 2 ) のほかに、 ガラスフリ ッ ト、 有機ビヒクルと しての樹脂バインダ、 溶剤を含んでいる。  The noble metal paste P1 used here is a resin binder as a glass frit or an organic vehicle, in addition to the one kind of noble metal particles G2 (or the two kinds of noble metal particles G1 and G2). Contains solvents.
ガラスフリ ッ トの量は、 貴金属粒子 G 2 (または G 1及び G 2) の量の 1 Z5 以下であることが好ましく、特には 1 / 1 0〜l Z l 00程度であることがいっそ う好ましい。 その理由は、 貴金属ペース ト P 1における導電成分が多くなるほど、 比抵抗の低減を達成するうえで好都合となるからである。  The amount of the glass frit is preferably 1 Z5 or less of the amount of the noble metal particles G 2 (or G 1 and G 2), and more preferably about 1/10 to lZ100. . The reason is that the more conductive components in the noble metal paste P1, the more advantageous it is in achieving a reduction in specific resistance.
具体的にいうと、 貴金属ペース ト P 1中において貴金属粒子 G 2 (または G 1 及び G 2) は合計で 60重量%〜80重量%ほど含まれ、 ガラスフリ ッ トは 1重量 %〜1 0重量%ほど含まれている。  Specifically, in the noble metal paste P1, the noble metal particles G2 (or G1 and G2) are contained in a total of about 60% to 80% by weight, and the glass frit is 1% to 10% by weight. % Is included.
ガラスフリットとしては、 ほう珪酸亜鉛 (S i : 〇3 : Z nOj をべ一 スとし、 それに対し少量の金属酸化物を添加したものが用いられている。 金属酸化 物の具体例としては、 酸化アルミニウム (A l 2Oj 、 酸化イッ トリウム (Y20 .,) 、 酸化鉛 (P b O) 、 酸化カドミウム (C dO) 、 酸化クロム (C r Oj 、 酸化銅 (Cu〇) 、 酸化ビスマス (B i 2Oj から選択される 1種または 2種以上 のものである。 As the glass frit, borosilicate zinc (S i: 〇 3:. Z nOj a base one scan, and specific examples of it obtained by addition of a small amount of metal oxide to have been used metal oxide, oxide aluminum (A l 2 Oj, oxide cum thorium (Y 2 0.,), lead oxide (P b O), cadmium oxide (C dO), chromium oxide (C r Oj, copper oxide (Cu_〇), bismuth oxide ( one or those of two or more selected from B i 2 Oj.
その他、 貴金属ペース ト P 1中には、 有機ビヒクルと しての樹脂バインダが 3 重量%〜1 5重量%ほど含まれ、溶剤が 1 0重量。/。〜 30重量。 /0ほど含まれている 。 樹脂バインダの例としては、 例えばェチルセルロース等のセルロース類がある。 溶剤は印刷性や分散性の向上を目的として添加される成分であって、その具体例と してはァセテ一ト類、 ブチルセ口ソルブ等のセロソルブ類、又はブチルカルビトー ル等のカルビトール類が挙げられる。 In addition, the precious metal paste P1 contains about 3% to 15% by weight of a resin binder as an organic vehicle and 10% by weight of a solvent. /. ~ 30 weight. / 0 is included. Examples of the resin binder include celluloses such as ethyl cellulose. The solvent is a component added for the purpose of improving printability and dispersibility, and specific examples thereof include acetates, cellosolves such as butyl cellulose, and carbitols such as butyl carbitol. Is mentioned.
セラミック基板 9上に塗布された貴金属ペース ト P 1を約 7 50°Cの温度で所 定時間加熱すると、 貴金属ペースト P 1中の溶剤が揮発し、配線抵抗 1 0及びパッ ド 1 0 aが焼き付けられる。溶融したガラスフリ ッ トはセラミック基板 9に近づく 方向に移動する傾向があり、 逆に貴金属粒子 G 2 (または G 1及び G 2) はセラミ ック基板 9から離れる方向に移動する傾向がある。 When the noble metal paste P1 applied on the ceramic substrate 9 is heated at a temperature of about 750 ° C for a predetermined time, the solvent in the noble metal paste P1 volatilizes, and the wiring resistance 10 and the pad 10a are reduced. Burned. The molten glass frit tends to move in a direction approaching the ceramic substrate 9, whereas the noble metal particles G 2 (or G 1 and G 2) Tend to move away from the lock substrate 9.
その後、 パッ ド 1 0 aにはんだ S 1を介して端子ピン 1 2を接合して、 ホッ トブ レート 3を完成させ、 さらにこれをケ一シング 2の開口部 4に取り付ければ、 図 1 に示す所望のホッ トプレ一 トュニッ ト 1が完成する。  After that, the terminal pins 12 are joined to the pad 10a via the solder S1 to complete the hot plate 3, which is then attached to the opening 4 of the casing 2, as shown in Fig. 1. The desired hotplate Tunit 1 is completed.
以下、 いくつかの実施例及び比較例を紹介する。  Hereinafter, some examples and comparative examples will be introduced.
(実施例及び比較例)  (Examples and Comparative Examples)
[サンプルの作製 (貴金属粒子の金属種が同じ場合) ]  [Preparation of sample (when noble metal particles have the same metal type)]
実施例 1 〜 6、 比較例 1 〜 3では、 窒化アルミニゥム粉末 (平均粒径 1 . 1 μ m ) 1 0 0重量部に、 Y 20 :, (平均粒径◦. 4 Ai m) 4重量部、 有機ビヒクルとして のアク リル系樹脂バインダ (三井化学社製、 商品名 : S A— 5 4 5, 酸価 1 . 0 ) 8重量部を添加して混合した。このようにして得た混合物を均一に混練してなる混 練物をプレス成形用型に入れてプレスすることにより、 板状生成形体を作製した。 次いで、 穴あけ加工及び乾燥を行った後、 成形体を窒素雰囲気中で 3 5 0 °C、 4 時間の脱脂を行い、 バインダを熱分解させた。 さらに、 脱脂された成形体を 1 6 0 0 °C、 3時間の条件でホッ トプレス焼成し、 セラミック基板 9として窒化アルミ二 ゥム基板を得た。 なお、 ホッ トプレスの圧力は 1 5 0 k g / c m 2に設定した。 この後、 基板切り出し及び表面研削加工を行った後、 ペース ト塗布工程を行った 。 同工程では、 下記のごとき組成の貴金属ペース ト P 1を用い、 かつ塗布時の厚さ を 2 5 μ ιη程度に設定し、 上記の手順に準拠して 9種のサンプルを作製した。 In Examples 1 to 6 and Comparative Examples 1 to 3, nitride Aruminiumu powder (average particle size 1 1 mu m.) In 1 0 0 parts by weight, Y 2 0:, (. Average particle size ◦ 4 Ai m) 4 Weight And 8 parts by weight of an acrylic resin binder (manufactured by Mitsui Chemicals, Inc., trade name: SA-545, acid value 1.0) as an organic vehicle were added and mixed. A kneaded product obtained by uniformly kneading the mixture thus obtained was put into a press mold and pressed to produce a plate-shaped formed body. Next, after performing drilling and drying, the molded body was degreased in a nitrogen atmosphere at 350 ° C. for 4 hours to thermally decompose the binder. Further, the degreased molded body was subjected to hot press firing at 160 ° C. for 3 hours to obtain an aluminum nitride substrate as the ceramic substrate 9. The pressure of the hot press was set to 150 kg / cm 2 . Thereafter, after performing substrate cutting and surface grinding, a paste coating process was performed. In this step, nine kinds of samples were prepared in accordance with the above procedure, using a noble metal paste P1 having the following composition and setting the thickness at the time of application to about 25 μιη.
•貴金属粒子: 銀粒子が合計で 7 0重量%、  • Noble metal particles: 70% by weight of silver particles in total,
•ガラスフリ ッ ト : 5重量。 /。 (但しベースであるほう珪酸亜鉛を  • Glass frit: 5 weight. /. (However, the base zinc borosilicate
8 0重量%含むもの) 、  80% by weight),
'樹脂バインダと してのェチルセルロース : 5重量%、  'Ethylcellulose as resin binder: 5% by weight,
'溶剤としてのプチルカルビトール : 1 5重量。 /0'Butyl carbitol as solvent: 15 wt. / 0 .
銀粒子 G 1 , G 2としては、表 1に示す 4種のものを適宜組み合わせて用いるよ うにした。 そして、 サンプル 1 〜 6を実施例 1 〜 6として位置づけ、 サンプル 7 , 8, 9を比較例 1、 試験例 1 , 2として位置付けた。 以下、 球状の銀粒子として、 昭栄化学工業株式会社製 「A g— 1 2 6」 を使用した、 鱗片状の銀粒子として、 昭 栄化学工業株式会社製 「A g — 5 2 0、 A g — 5 3 0、 A g — 5 4 0」 (それぞれ B , C, D粒子) を使用した。 「A粒子」 は平均粒径が 1 . Ο Ο πιかつ球状の銀 粒子 G 1である (図 5 (a) 参照) 。 As the silver particles G 1 and G 2, four kinds shown in Table 1 were used in appropriate combination. Then, Samples 1 to 6 were positioned as Examples 1 to 6, and Samples 7, 8, and 9 were positioned as Comparative Example 1 and Test Examples 1 and 2. In the following, spherical silver particles using “Ag-126” manufactured by Shoei Chemical Industry Co., Ltd. were used as scaly silver particles. “Ag—520, Ag—530, Ag—540” (B, C, and D particles, respectively) manufactured by Sakae Chemical Industry Co., Ltd. were used. The “A particle” is a silver particle G1 having a mean particle size of 1.Οππ and a spherical shape (see FIG. 5 (a)).
A粒子以外の 3種は全て鱗片状の銀粒子 G 2である (図 5 (b) 〜(d) 参照) 。 「 B粒子」 「C粒子」 「D粒子」 の平均粒径は、 順に 3 . 9 4 ^ m, 4 . 7 8 μ m、 7 . 7 3 ju mである。 これらの粒子のアスペク ト比 (長径/厚さ) は、 順に約 7 . 8 、 9. 5、 1 5であった。  All three types other than the A particles are flaky silver particles G2 (see Figs. 5 (b) to (d)). The average particle diameters of “B particles”, “C particles”, and “D particles” are 3.94 ^ m, 4.78 μm, and 7.73 jum, respectively. The aspect ratio (major axis / thickness) of these particles was about 7.8, 9.5, and 15, respectively.
具体的にいうと、 実施例 1 , 2, 4, 5では、 球状の銀粒子 G 1及び鱗片状の銀 粒子 G 2の 2種を用いるとともに、鱗片状の銀粒子 G 2については粒径の異なるも の 2つ (即ち B粒子及び C粒子) を組み合わせて用いている。  Specifically, in Examples 1, 2, 4, and 5, two types of spherical silver particles G1 and flaky silver particles G2 were used, and the flaky silver particles G2 Two different ones (ie B particles and C particles) are used in combination.
実施例 3では、球状の銀粒子 G 1及び鱗片状の銀粒子 G 2の 2種を用いるととも に、 鱗片状の銀粒子 G 2については 1つのみ (即ち C粒子のみ) 用いている。  In Example 3, two types of spherical silver particles G1 and flaky silver particles G2 were used, and only one flaky silver particle G2 (that is, only C particles) was used.
実施例 6では、鱗片状の銀粒子 G 2のみを用いるとともに、 当該鱗片状の銀粒子 G 2については粒径の異なるもの 2つ (即ち B粒子及び C粒子) を組み合わせて用い ている。 つまり、 これについては球状の銀粒子 G 1を全く用いていない。 In Example 6, only the flaky silver particles G2 are used, and two flaky silver particles G2 having different particle diameters (that is, B particles and C particles) are used in combination. In other words, no spherical silver particles G1 are used for this.
比較例 1では、 従来と同様に、 球状の銀粒子 G 1を 1種のみ含む貴金属ペースト P 1を用いて配線抵抗 1 0の形成を行なっている。 試験例 1 , 2では、 2種の銀粒 子 G 1, G 2を含む貴金属ペースト P 1を用いて配線抵抗 1 0の形成を行なってい るものの、鱗片状の銀粒子 G 2として平均粒径の大きな D粒子を用いている。 表 1 には、 配線抵抗 1 0中における 4つの粒子の体積率 (w t %) が示されている。  In Comparative Example 1, the wiring resistance 10 was formed using a noble metal paste P1 containing only one kind of spherical silver particles G1 as in the related art. In Test Examples 1 and 2, although the wiring resistance 10 was formed using a noble metal paste P1 containing two types of silver particles G1 and G2, the average particle size was changed to flaky silver particles G2. Using large D particles. Table 1 shows the volume fraction (wt%) of the four particles in the wiring resistance 10.
[比較試験及びその結果]  [Comparison test and its results]
得られた 9種のサンプルの各々について、焼き付け工程後における配線抵抗 1 0 を任意の位置にて基板厚さ方向に沿って切断し、その切断面を光学顕微鏡を用いて 1 0 0 0倍で写真撮影をした。 このようにして撮影された拡大写真に基づき、 ボイ ド部分の面積/ペースト断面積の値を計測し、 この値を焼成後ボイ ド率 (%) とし た。 その結果を表 1に示す。 なお、 焼成後ボイ ド率 (%) が高いということは、 銀 粒子 G l , G 2が密に詰まっていて、 各銀粒子 G 1, G 2間の接合面積が大きくな つていることを意味する: また、 配線抵抗 1 0表面の面粗度 (R a ) を、 表面形状測定器 (K LA · T e n c o r社製 商品名 : P— 1 1 ) を用いて常法に従い測定した: その結果も同じく 表 1に示す。 なお、 面粗度が小さくて表面が平滑であるということは、 配線抵抗 1 0が均一厚さであって、 抵抗値が均一でばらつきが小さいことを意味する: さらに、 従来公知の手法による引っ張り強度試験を行い、 配線抵抗 1 0の引っ張 り強度 (k g f / 2 mmD) を測定した。 言うまでもなくこの値が大きければ、 導 体パターン層 1 0の密着性が高くなり剥離が生じにく くなる。 For each of the obtained nine types of samples, the wiring resistance 10 after the baking process was cut at an arbitrary position along the substrate thickness direction, and the cut surface was cut using a light microscope at 100 × magnification. I took a photo. Based on the enlarged photograph taken in this manner, the value of the area of the void portion / the cross-sectional area of the paste was measured, and this value was used as the void ratio (%) after firing. The results are shown in Table 1. The high void fraction (%) after firing means that the silver particles Gl and G2 are densely packed and the bonding area between the silver particles G1 and G2 is large. Do: The surface roughness (R a) of the wiring resistance 10 surface was measured in accordance with a conventional method using a surface shape measuring device (trade name: P-11, manufactured by KLA Tencor Inc.). See Table 1. The fact that the surface roughness is small and the surface is smooth means that the wiring resistance 10 has a uniform thickness, the resistance value is uniform, and the variation is small. A strength test was performed, and the tensile strength (kgf / 2 mmD) of the wiring resistance 10 was measured. Needless to say, if this value is large, the adhesion of the conductor pattern layer 10 is increased, and peeling is unlikely to occur.
Figure imgf000014_0001
表 1から明らかなように、比較例 1の焼成後ボイ ド率は、 1 2 %以上という高い 値を示した。 これに対し実施例 3では、 焼成後ボイ ド率が、 僅かであるが 9. 8 % と低くなることが確認された。 また、 実施例 1, 2, 4, 5, 6については、 比較 例 1、 試験例 1 , 2に比べて大幅に焼成後ボイ ド率が低くなることが確認された。 中でもとりわけ実施例 6で好結果が得られ、 それに次いで実施例 1 , 4で好結果が 得られた。
Figure imgf000014_0001
As apparent from Table 1, the void ratio after firing in Comparative Example 1 was as high as 12% or more. On the other hand, in Example 3, it was confirmed that the void ratio after firing was as low as 9.8%. In Examples 1, 2, 4, 5, and 6, it was confirmed that the void ratio after firing was significantly lower than that of Comparative Example 1 and Test Examples 1 and 2. Above all, good results were obtained in Example 6, and then good results were obtained in Examples 1 and 4.
そして、 比較例 1、 試験例 1, 2では面粗度 R aの値が 1. Ο μιηを以上であつ たのに対し、 各実施例 1〜6ではいずれも 1. 0 m より低くなることが確認され た。 中でもとりわけ実施例 6で好結果が得られ、 それに次いで実施例 1, 2, 3で 好結果が得られた。 In Comparative Example 1, Test Examples 1 and 2, the surface roughness Ra was 1.Ομιη or more, whereas in each of Examples 1 to 6, it was lower than 1.0 m. Is confirmed Was. Above all, good results were obtained in Example 6, and then good results were obtained in Examples 1, 2, and 3.
また、 各実施例 1〜 6の配線抵抗 1 0の観察を別途行なったところ、 ふくれが認 められることもなく、 密着性が低下している様子も特になかった。  In addition, when the wiring resistance 10 of each of Examples 1 to 6 was separately observed, no swelling was observed and there was no particular decrease in the adhesion.
そして、 比較例 1では引っ張り強度の値が 3. 5 k g f / 2 mm口前後という極 めて低い値であった。 これに対し、 各実施例 1〜6では、 比較例のほぼ 2倍以上の 値が得られることが確認された。 中でもとりわけ実施例 2で好結果が得られ、 それ に次いで実施例 1, 6で好結果が得られた。 以上の結果からして、 鱗片状粒子には 引っ張り強度を向上させる効果があると考えられる。  In Comparative Example 1, the value of the tensile strength was as extremely low as about 3.5 kgf / 2 mm. On the other hand, in each of Examples 1 to 6, it was confirmed that a value almost twice or more of the comparative example was obtained. Above all, good results were obtained in Example 2, and then good results were obtained in Examples 1 and 6. From the above results, it is considered that the scaly particles have an effect of improving the tensile strength.
[サンプルの作製 (貴金属粒子の金属種が異なる場合) ]  [Preparation of sample (when the metal type of noble metal particles is different)]
実施例 7では、 窒化珪素粉末 (平均粒径 1. l / m) 4 5重量部に、 Y203 (平 均粒径 0. 4 μπ 20重量部、 Α 1203 (平均粒径 0. 5 μπι) 1 5重量部、 S i 02 (平均粒径 0. 5 ;xm) 20重量部、 有機ビヒクルと してのアク リル系樹脂バイ ンダ (三井化学社製、 商品名 : SA— 54 5, 酸値 1. 0) 8重量部を混合した。 このようにして得た混合物を均一に混練してなる混練物をプレス成形用型に入れ てプレスすることにより、 板状生成形体を作製した。 In Example 7, silicon nitride powder (average particle size 1. l / m) to 4 5 parts by weight, Y 2 0 3 (flat Hitoshitsubu径0. 4 μπ 20 parts by weight, Alpha 1 2 0 3 (average particle size 0. 5 μπι) 1 5 parts by weight, S i 0 2 (average particle diameter 0. 5; xm) 20 parts by weight, accession Lil system with an organic vehicle resin by Sunda (manufactured by Mitsui Chemicals, Inc., trade name: SA — 54 5, acid value 1.0) 8 parts by weight were mixed The kneaded product obtained by uniformly kneading the mixture thus obtained was placed in a press mold and pressed to obtain a plate-shaped formed body. Was prepared.
次いで、 穴あけ加工及び乾燥を行った後、 成形体を窒素雰囲気中で 3 50°C、 4 時間の脱脂を行い、 バインダーを熱分解させた。 さらに、 脱脂された成形体を 1 6 00°C、 3時間の条件でホッ トプレス焼成し、セラミック基板 9として窒化珪素基 板を得た。 なお、 ホッ トプレスの圧力は 1 50 k gノ cm こ設定した。  Next, after performing drilling and drying, the molded body was degreased at 350 ° C. for 4 hours in a nitrogen atmosphere to thermally decompose the binder. Further, the degreased molded body was subjected to hot press firing at 1600 ° C. for 3 hours to obtain a silicon nitride substrate as the ceramic substrate 9. The pressure of the hot press was set at 150 kg / cm.
この後、 基板切り出し及び表面研削加工を行った後、ペースト塗布工程を行った 。 ここでは貴金属ペース ト P 1として、 下記のごとき組成のものを用い、 かつ塗布 時の厚さを 25 程度に設定してサンプル 1 0を作製した。  Thereafter, after the substrate was cut out and the surface was ground, a paste application step was performed. Here, as the noble metal paste P1, a sample having the following composition was used, and the thickness at the time of application was set to about 25, thereby preparing Sample 10.
•貴金属粒子: 銀粒子 G 2が 56. 6重量部、  • Noble metal particles: 56.6 parts by weight of silver particles G2,
パラジウム粒子 G 1が 1 0. 3重量部、  10.3 parts by weight of palladium particles G1,
•酸化物ガラス成分: S i O^S l . 0重量部、 B:0:,が 2. 5重量部、 • oxide glass component:. S i O ^ S l 0 parts by weight, B: 0:, is 2.5 parts by weight,
Z nOが 5. 6重量部、 ヒ 0が0. 6重量部、 Ru〇2を 2. 1重量部、 •樹脂バインダ: 3. 4重量%、 Z nO is 5.6 parts by weight, heat 0 0.6 parts by weight, Ru_〇 2 2.1 part by weight, • Resin binder: 3.4% by weight,
-溶剤と してのブチルカルビトール : 1 7. 9重量%。  -Butyl carbitol as solvent: 17.9% by weight.
ここで 「銀粒子 G 2」 としては、 平均粒径 3. 94 mの鱗片状の銀粒子 (即ち 上記 B粒子) を用いた。 「パラジウム粒子 G l」 としては、 平均粒径 5. 1 2 , ιη の球状のパラジウム粒子 (昭栄化学工業製 P d— 2 1 5) を用いた。  Here, as the “silver particles G 2”, flaky silver particles having an average particle size of 3.94 m (ie, the B particles) were used. As the “palladium particles Gl”, spherical palladium particles having an average particle diameter of 5.12 and ιη (Pd-215, manufactured by Shoei Chemical Industry) were used.
そして、塗布された貴金属ペースト P 1を約 7 50°Cの温度で所定時間加熱する ことにより、配線抵抗 1 0及びパッ ド 1 0 aを焼き付け、 実施例 7のホッ トプレー ト 3を完成させた。 なお、 導体パターン層 1 0中における 2つの粒子の重量比、 即 ち銀粒子 G 2 :パラジウム粒子 G 1は、 5 5 : 1 5であった。  Then, by heating the applied noble metal paste P1 at a temperature of about 750 ° C. for a predetermined time, the wiring resistance 10 and the pad 10a were baked, and the hot plate 3 of Example 7 was completed. . The weight ratio of the two particles in the conductor pattern layer 10, that is, the ratio of the silver particles G 2: palladium particles G 1 was 55:15.
[比較試験及びその結果]  [Comparison test and its results]
得られた実施例 7のサンプルについて、実施例 1〜6について行なったのと同様 の比較試験を行なった。 その結果、 焼成後ボイ ド率が 7. 8 %、 面粗度 R aが 0. 7 μηι, 引っ張り強度が 1 0. 8 k g ίノ 2 mm口であった。  With respect to the obtained sample of Example 7, the same comparative test as that of Examples 1 to 6 was performed. As a result, after firing, the void ratio was 7.8%, the surface roughness Ra was 0.7 μηι, and the tensile strength was 10.8 kgί2 mm.
従って、本実施形態の前記実施例によれば以下のような効果を得ることができる  Therefore, according to the example of the present embodiment, the following effects can be obtained.
( 1 ) 上記実施例 1〜 5 , 7の配線抵抗 1 0及びパッド 1 0 aは、 球状の貴金属 粒子 G 1及び鱗片状の貴金属粒子 G 2からなつている。 また、 上記実施例 6の配線 抵抗 1 0及びパッ ド 1 0 aは、 鱗片状の貴金属粒子 G 2のみからなっている。 従って、 球状の貴金属粒子 G 1のみを含んで構成されたもの (例えば比較例 1) に比べ、 焼き付け後に貴金属粒子 G 2 (または G 1及び G 2) が密に詰まった状態 になりやすいと考えられる。 ゆえに、 配線抵抗 1 0におけるボイ ド率が減少し、 セ ラミック基板 9との密着性が高くなる。 一方、 貴金属粒子 G 2 (または G 1及び G 2) 間が点接触になる。 このため、 配線抵抗 1 0における抵抗値の著しい低下が防 止され、 抵抗体としての機能を損なうことがなくなる。 (1) The wiring resistance 10 and the pad 10a of the above Examples 1 to 5 and 7 consist of spherical noble metal particles G1 and flaky noble metal particles G2. In addition, the wiring resistance 10 and the pad 10a of Example 6 described above consist only of the flaky noble metal particles G2. Therefore, it is considered that the noble metal particles G 2 (or G 1 and G 2) are more likely to be densely packed after baking, compared to a configuration including only the spherical noble metal particles G 1 (for example, Comparative Example 1). Can be Therefore, the void ratio at the wiring resistance 10 decreases, and the adhesion to the ceramic substrate 9 increases. On the other hand, there is point contact between the noble metal particles G 2 (or G 1 and G 2). Therefore, a remarkable decrease in the resistance value of the wiring resistance 10 is prevented, and the function as the resistor is not impaired.
(2) また、 上記実施例 1, 2, 4, 5のように、 鱗片状の銀粒子 G 2を平均粒 径の異なる 2種にすれば、引っ張り強度が 1 O k g f /2mm口以上の配線抵抗 1 0を得ることができる。  (2) If the scale-like silver particles G 2 are made to have two different average particle diameters as in Examples 1, 2, 4, and 5, wirings having a tensile strength of 1 O kgf / 2 mm or more can be obtained. The resistance 10 can be obtained.
(3) 上記実施例 6のように、 鱗片状の銀粒子 G 2を平均粒径の異なる 2種にし かつ球状の貴金属粒子 G 1を全く含ませないようにすれば、ボイ ド率を極めて低い 値にすることができ、 密着性を格段に向上させることができる (3) As in Example 6 above, the flaky silver particles G 2 were divided into two types having different average particle sizes. If the spherical noble metal particles G 1 are not included at all, the void ratio can be made extremely low, and the adhesion can be remarkably improved.
( 4 ) 本実施形態の各実施例 1〜 7では、 窒化アルミニウム基板または窒化珪素 基板をセラミック基板 9として用いているため、耐熱性及び熱伝導性に優れたホッ トプレート 3を実現することができる。  (4) In each of Examples 1 to 7 of this embodiment, since the aluminum nitride substrate or the silicon nitride substrate is used as the ceramic substrate 9, the hot plate 3 having excellent heat resistance and thermal conductivity can be realized. it can.
なお、 本発明の実施形態は以下のように変更してもよい。  Note that the embodiment of the present invention may be modified as follows.
• 実施形態において使用した窒化アルミニウム基板ゃ窒化珪素基板のような窒 化物セラミック基板の代わりに、例えばアルミナ基板のような酸化物セラミック基 板、 炭化珪素基板のような炭化物セラミック基板を使用することもできる。  • Instead of the aluminum nitride substrate used in the embodiment and a nitride ceramic substrate such as a silicon nitride substrate, for example, an oxide ceramic substrate such as an alumina substrate or a carbide ceramic substrate such as a silicon carbide substrate may be used. it can.
• セラミック基板 9はプレス成形法を経て製造されたもののみに限定されるこ とはなく、例えばドクターブレード装置を利用したシート成形法を経て製造された ものでもよい。 シート成形法を採用した場合、例えば積層されたシート間に配線抵 抗 1 0を配設することができるので、高温用のホッ トプレート 3を比較的容易に実 現することができる。  • The ceramic substrate 9 is not limited to a substrate manufactured through a press forming method, but may be a substrate manufactured through a sheet forming method using a doctor blade device, for example. When the sheet forming method is employed, for example, the wiring resistance 10 can be provided between the stacked sheets, so that the hot plate 3 for high temperature can be realized relatively easily.
• 導体パターン層は実施形態において例示した配線抵抗 1 0やパッ ド 1 0 aの みに限定されることはなく、 それ以外のもの、 つまり発熱用の抵抗体ではない導体 パターン層であってもよい。  • The conductor pattern layer is not limited to only the wiring resistance 10 and the pad 10a exemplified in the embodiment, but may be any other conductor pattern layer, that is, a conductor pattern layer that is not a heating resistor. Good.
• セラミック基板 9に対して貴金属ペース ト P 1を塗布する方法としては、 ス クリーン印刷法のみならず、 例えば捺印法を採用することができる。  • As a method of applying the noble metal paste P1 to the ceramic substrate 9, not only a screen printing method but also a stamping method, for example, can be adopted.

Claims

請求の範囲 The scope of the claims
1 . セラミック基板に導体層を備えてなるホッ トプレー卜において、 前記導体 層は、 略鱗片状の貴金属粒子からなることを特徴とするホッ トプレー ト。 1. A hot plate comprising a ceramic substrate and a conductor layer, wherein the conductor layer is made of substantially scaly noble metal particles.
2 . 前記略鱗片状の貴金属粒子の平均粒径は 6 m以下であることを特徴とす る請求項 1に記載のホッ トプレー ト。 2. The hot plate according to claim 1, wherein the average particle diameter of the substantially scaly noble metal particles is 6 m or less.
3 . 前記略鱗片状の貴金属粒子は、 金粒子、 銀粒子、 白金粒子及びパラジウム 粒子のうちから選ばれる少なく とも 1種であることを特徴とする請求項 1または 2に記載のホッ トプレート。 3. The hot plate according to claim 1, wherein the substantially scaly noble metal particles are at least one selected from gold particles, silver particles, platinum particles, and palladium particles.
4 . 前記略鱗片状の貴金属粒子における長径と短径とのアスペク ト比は 1 . 5 以上であることを特徴とする請求項 1乃至 3のいずれか 1項に記載のホッ トプレ 一ト。 4. The hot plate according to any one of claims 1 to 3, wherein the aspect ratio of the major axis to the minor axis of the substantially scaly noble metal particles is 1.5 or more.
5 . セラミック基板に導体層を備えてなるホッ トプレートにおいて、 前記導体 層は、略粒状の貴金属粒子及び略鱗片状の貴金属粒子からなることを特徴とするホ ットプレート。 5. A hot plate comprising a ceramic substrate and a conductor layer, wherein the conductor layer is formed of substantially granular noble metal particles and substantially scaly noble metal particles.
6 . 前記略粒状の貴金属粒子の平均粒径は 3 μ m以下であり、前記略鱗片状の 貴金属粒子は平均粒径が 6 μ m以下であることを特徴とする請求項 5に記載のホ ッ トプレ一ト。 6. The method according to claim 5, wherein the substantially granular noble metal particles have an average particle size of 3 μm or less, and the substantially scaly noble metal particles have an average particle size of 6 μm or less. Print plate.
7 . 前記略鱗片状の貴金属粒子は、 平均粒径の異なる 2種以上のものからな ることを特徴とする請求項 5または 6に記載のホッ 卜プレート。 7. The hot plate according to claim 5, wherein the substantially scaly noble metal particles are composed of two or more kinds of particles having different average particle diameters.
8 . 前記略粒状の貴金属粒子の 5倍〜 2 5倍の前記略鱗片状の貴金属粒子が 前記導体層中に含まれることを特徴とする請求項 5乃至 7のいずれか 1項に記載 のホッ トプレ一ト。 8. Five to twenty-five times of the substantially granular noble metal particles of the substantially granular noble metal particles The hotplate according to any one of claims 5 to 7, wherein the hotplate is included in the conductor layer.
9 . 略鱗片状の貴金属粒子、 酸化物及び有機ビヒクルからなる導電ペース ト 9. Conductive paste consisting of roughly scaly noble metal particles, oxides and organic vehicles
1 0 . 略粒状の貴金属粒子、 略鱗片状の貴金属粒子、 酸化物及び有機ビヒク ルからなる導電ペース ト。 10. Conductive paste consisting of substantially granular noble metal particles, almost scaly noble metal particles, oxides and organic vehicles.
1 1 . 前記略鱗片状の貴金属粒子は、 金粒子、 銀粒子、 白金粒子及びパラジ ゥム粒子のうちから選ばれる少なく とも 1種であることを特徴とする請求項 9ま たは 1 0に記載の導電ペースト。 11. The method according to claim 9, wherein the substantially scaly noble metal particles are at least one selected from gold particles, silver particles, platinum particles, and palladium particles. The conductive paste as described in the above.
1 2 . 前記略鱗片状の貴金属粒子は、 平均粒径の異なる 2種以上のものから なることを特徴とする請求項 9乃至 1 1のいずれか 1項に記載の導電ペースト。 12. The conductive paste according to any one of claims 9 to 11, wherein the substantially scaly noble metal particles are made of two or more kinds having different average particle diameters.
1 3 . 前記略粒状の貴金属粒子の 5倍〜 2 5倍の前記略鱗片状の貴金属粒子 が導電ペース 卜に含まれることを特徴とする請求項 1 ◦乃至 1 2のいずれか 1項 に記載の導電ペースト。 13. The conductive paste contains 5 to 25 times the substantially scaly noble metal particles 5 to 25 times the substantially granular noble metal particles, according to any one of claims 1 to 12. Conductive paste.
1 4 . 前記略粒状の貴金属粒子の平均粒径は 3 μ m以下であり、 前記略鱗片 状の貴金属粒子は平均粒径が 6 μ πι以下であることを特徴とする請求項 1 0乃至 1 3のいずれか 1項に記載の導電ペースト。 14. An average particle diameter of the substantially granular noble metal particles is 3 μm or less, and an average particle diameter of the substantially scaly noble metal particles is 6 μπι or less. 4. The conductive paste according to any one of 3.
PCT/JP2000/002875 1999-05-07 2000-05-01 Hot plate and conductive paste WO2000069217A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/126974 1999-05-07
JP12697499 1999-05-07
JP2000/127369 2000-04-27
JP2000127369A JP2001028291A (en) 1999-05-07 2000-04-27 Hot plate and conductor paste

Publications (1)

Publication Number Publication Date
WO2000069217A1 true WO2000069217A1 (en) 2000-11-16

Family

ID=26463038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002875 WO2000069217A1 (en) 1999-05-07 2000-05-01 Hot plate and conductive paste

Country Status (2)

Country Link
JP (1) JP2001028291A (en)
WO (1) WO2000069217A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212035B2 (en) * 2003-06-05 2009-01-21 株式会社ノリタケカンパニーリミテド Conductive paste mainly composed of silver powder and method for producing the same
JP4596790B2 (en) * 2004-02-23 2010-12-15 京セラ株式会社 Ceramic heater and wafer support member using the same
ATE544162T1 (en) * 2006-12-22 2012-02-15 Henkel Ag & Co Kgaa AQUEOUS CONDUCTIVE COMPOSITIONS
TW201245364A (en) * 2011-01-28 2012-11-16 Hitachi Chemical Co Ltd Adhesive composition and semiconductor device using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315903A (en) * 1988-06-14 1989-12-20 Tdk Corp Electricaly conductive paste and chip parts
JPH0594716A (en) * 1990-03-19 1993-04-16 Asahi Chem Ind Co Ltd High temperature baking composition and paste
JPH09331141A (en) * 1996-06-13 1997-12-22 Matsushita Electric Ind Co Ltd Conductive paste
JPH1140330A (en) * 1997-07-19 1999-02-12 Ibiden Co Ltd Heater and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315903A (en) * 1988-06-14 1989-12-20 Tdk Corp Electricaly conductive paste and chip parts
JPH0594716A (en) * 1990-03-19 1993-04-16 Asahi Chem Ind Co Ltd High temperature baking composition and paste
JPH09331141A (en) * 1996-06-13 1997-12-22 Matsushita Electric Ind Co Ltd Conductive paste
JPH1140330A (en) * 1997-07-19 1999-02-12 Ibiden Co Ltd Heater and manufacture thereof

Also Published As

Publication number Publication date
JP2001028291A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
EP1229571B1 (en) Hot plate
US20040071945A1 (en) Ceramic joint body
WO2001086717A1 (en) Electrostatic chuck
EP1109423A1 (en) Ceramic heater and method for producing the same, and conductive paste for heating element
WO2002101816A1 (en) Wafer prober
JP2002160974A (en) Aluminium nitride sintered compact and its manufacturing method, ceramic substrate and its manufacturing method
WO2002091458A1 (en) Method of producing electrostatic chucks and method of producing ceramic heaters
WO2000069217A1 (en) Hot plate and conductive paste
JP5503132B2 (en) Resistor paste and resistor
JP2003249332A (en) Hot plate and conductive paste
WO2000069218A1 (en) Hot plate and conductor paste
JP2001028290A (en) Hot plate and conductor paste
JP3182639B2 (en) Ceramic heater and method of manufacturing the same
JP2001319967A (en) Method for manufacturing ceramic substrate
JP3326420B2 (en) Ceramic substrate
JP3320706B2 (en) Wafer prober, ceramic substrate used for wafer prober, and wafer prober device
JP3536251B2 (en) Wafer prober
JP3186750B2 (en) Ceramic plate for semiconductor manufacturing and inspection equipment
JP4374096B2 (en) Ceramic member and manufacturing method thereof
JP2002170870A (en) Ceramic substrate and electrostatic chuck for semiconductor fabrication/inspection equipment
JP2001319966A (en) Electrostatic chuck
JP2001118759A (en) Ceramic substrate for semiconductor manufacturing and inspecting device
JP2003249331A (en) Hot plate and conductive paste
JP6185353B2 (en) Circuit board and manufacturing method thereof
JP2003303664A (en) Hot plate and conductive paste

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase