JPS6152418B2 - - Google Patents

Info

Publication number
JPS6152418B2
JPS6152418B2 JP19773581A JP19773581A JPS6152418B2 JP S6152418 B2 JPS6152418 B2 JP S6152418B2 JP 19773581 A JP19773581 A JP 19773581A JP 19773581 A JP19773581 A JP 19773581A JP S6152418 B2 JPS6152418 B2 JP S6152418B2
Authority
JP
Japan
Prior art keywords
gas
organometallic compound
gas sensitive
insulating substrate
sensitive body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19773581A
Other languages
Japanese (ja)
Other versions
JPS5899741A (en
Inventor
Masaki Katsura
Masayuki Shiratori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP19773581A priority Critical patent/JPS5899741A/en
Publication of JPS5899741A publication Critical patent/JPS5899741A/en
Publication of JPS6152418B2 publication Critical patent/JPS6152418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の属する技術分野) 本発明はガス検知素子の改良に関する。 (従来技術およびその問題点) 従来からガス感応体として酸化物半導体を用い
た感ガス素子の例は数多く提案されている。多く
の場合酸化物半導体にはN型が用いられ、還元性
ガスとの接触によりその抵抗が減少することを利
用してガスを検出する。一方用いる半導体にP型
の酸化物を用いた場合、還元性ガスとの接触でそ
の抵抗値が増加する事はいうまでもない。この場
合、ガスに対する感度を大きくするため半導体の
みならず触媒も用い、さらにヒータを設けて素子
を高温に保つて使用されている。例えば第1図に
示す如くヒータとして金属線をガス感応体1内に
うめ込んだ形の素子が知られている。この素子の
場合、一対の電極2,3の片方がヒータを兼用す
るので素子内の温度の均一化が難かしくまた製造
上組立が困難であつた。また均一加熱でないため
長期にわたつての信頼性に欠ける恐れがあつた。
一方別な例として第2図に示す如く基板4として
アルミナ等の絶縁体を用い、片面にヒータ7を設
け、反対の面に一対の電極2,3およびガス感応
体1を設けた構造が考えられる。 この場合前述の如く、基板4にはアルミナ,マ
グネシア,ムライトなどの耐熱性材料を用いて構
成するのが一般的である。 従来の方式の場合例えば第2図に於けるガス感
応体層1は厚膜印刷法などで直接該基板上に設け
られるのが通例である。このような構成をとると
第2図に於けるガス感応体層の基板への付着強度
が不十分で、機械的振動などで剥離する恐れがあ
つた。また機械的振動がなくともヒータの断続に
よる衝撃のため接着強度が減少する傾向にあつ
た。 この様な点を改良するための一つの方法として
は厚膜の焼きつけ温度を上昇させるか、焼成時間
を長くしもしくはその両方を行いガス感応体層厚
膜が十分な強度をもつて基板と結合させる方法が
ある。しかしながらこの方法は厚膜を構成するガ
ス感応体粒子の焼結をも促進し、本来の目的であ
るガス検知感度を大巾に損うものである。 また他の方法として厚膜印刷ペースにガラスな
ど比較的低温で溶融する材料を混入し比較的低温
で焼きつける方法も考えられる。しかしながらこ
の場合も溶融したガラスが感ガス材料の粒子表面
を覆つたり、粒子間に侵入したりして素子抵抗は
上昇し感ガス特性は著しく損われる。 (発明の目的) 本発明はこの様な点に鑑み従来例の機械的強度
が小さい欠点を改良し、十分な機械強度をもち、
かつ高い感ガス特性検知素子を提供する事を目的
とする。 (発明の概要) 本発明は一対の電極が設けられた絶縁基板と、
前記絶縁基板上で電極間に設けられた金属酸化物
半導体からなるガス感応体と、前記ガス感応体お
よび前記絶縁基板間に設けられ有機金属化合物の
熱分解により得られる金属酸化物の薄膜とからな
るガス検知素子であり、以下の如くに製造するこ
とができる。すなわち、絶縁基板上に一対の電極
を設ける工程と、有機金属化合物の塗布乾燥膜を
介して金属酸化物半導体からなるガス感応体を設
ける工程と、前記ガス感応体を焼結すると同時に
前記有機金属酸化物の塗布乾燥膜を熱分解して金
属酸化物薄膜を形成する工程から製造できる。 つまり本発明は前述の如き第2図に示す従来の
ガス検知素子において、ガス感応体と絶縁基板と
の間に有機金属化合物の熱分解により得られる金
属酸化物層を設ける事を特徴とするものであり、
絶縁基板とガス感応体との間で充分な密着強度を
有しかつ、優れた感ガス特性が得られるというも
のである。 さらに詳述すればまず本願で用いる有機金属化
合物は一般に(Me)とn(OR)mで表される。
なおMeは金属元素を、Rは窒素,炭素,水素,
酸素からなる基をそれぞれ示され、本願において
は有機金属化合物として金属アルコール化合物,
金属アルコキシド,ナフテン酸等を用いる事がで
きる。 また通常有機金属化合物は粘度の高い液体であ
るが、固体の場合もありうる。これらはプロピル
アルコール等のアルコール類、テトラリン,ター
ピネオール等の有機溶媒によく溶け、自由に希釈
できる。必要に応じ希釈液を加えて適当な粘度に
なるよううに有機金属化合物を調節する。次に絶
縁基板にこの有機金属化合物を例えばスクリーン
印刷した後、ペースト状の金属酸化物半導体から
なるガス感応体層を設ける。これを焼成すると、
有機金属化合物の薄い膜は分解しきわめて微細な
酸化物の粒子となり、この粒子がガス感応体およ
び絶縁基板との間を機械的に結合した構造をと
る。この様な反応は前述の如く比較的低温で起こ
り、多くの有機金属の場合、事実上500〜600℃で
焼成すれば十分である。しかも粒子の接合は化学
反応によるもので、単なる機械的結合できないた
めきわめて強固である。また焼結温度が比較的低
いため、金属酸化物半導体の粒成長はおこらず、
感ガス特性はきわめて高い。 しかも上述の有機金属化合物の分解反応で多量
のCO2とH2Oが発生する為、自動的にガス感応体
中に気体が出入りできる気孔が確保される。 さらに本発明において、ガス感応体の主成分と
同一の金属元素を含む有機金属化合物を用いた場
合には、素子の焼成工程における有機金属化合物
が分解する際に有機金属化合物中の該金属元素と
ガス感応体の主成分粒子との“ぬれ”がよく、接
着強度が向上する上、焼成後においても有機金属
化合物の熱分解により得られた金属酸化合物薄膜
とガス感応体とが同一金属元素を含む酸化物を有
する為熱膨張係数が近似となり耐剥離性に優れた
ものとなる。 また絶縁基板をガス感応体の主成分と同一にす
る事により(ただし絶縁基板の抵抗値は電子価制
御により高抵抗である)ガス感応体と絶縁基板と
の熱膨張係数とが近似し、焼成時や後のヒート・
シヨツクによる剥離を防止する事ができる。 さらに有機金属化合物の熱分解により得られる
金属酸化合物薄膜の抵抗値がガス感応体の抵抗値
より高くした場合には、ガス感応体と並列に高抵
抗体を接続した事になり、見かけ上のガス感度を
大きくする事が出来る。 次に本発明に係るガス検知素子の具体的な製造
例を示す。 まず素子の大きさに応じて絶縁基板を切断しこ
の一方の面に一対の検出用電極を設ける。また他
の面に素子を加熱するヒータ層を設ける。次にこ
の絶縁基板の検出電極側で、少くともガス感応体
と絶縁基板との接する部分に必要に応じて有機溶
剤等で希釈した有機金属化合物を塗布する。しか
る後にこれを室温乾燥し、さらに乾燥器などで例
えば100℃で1時間程度乾燥する。このようにし
て出来た有機金属膜はもはや完全に乾燥しその揮
発成分は十分に揮散している。この有機金属化合
物膜の上にガス感応体材料を有機溶媒で分散させ
たペーストを印刷する。この印刷されたガス感応
体のペーストは室温で十分乾燥した後、乾燥器に
て例えば100℃1時間程度乾燥し電気炉等で焼成
して各リード線をとりつけ感ガス素子を得る。こ
の場合、焼成温度は300℃〜800℃程度で絶縁基板
に十分強固に接着したガス検知素子が得られる。 なおガス感応体としては後述実施例において詳
述する如きSnO2系の他にZnO+0.5mol%Al2O3
を用いる事が好ましい。またこの場合には有機金
属化合物としてのヘキサエート亜鉛10〜40wt%
を60〜90wt%のプロピルアルコールに希釈した
ものを用いる事が好ましい。 なお本発明における有機金属化合物の熱分解に
より得られる金属酸化物薄膜としては3000Å〜
20000Åのものを形成する事が好ましい。 この様にして製造された本発明に係るガス検知
素子の構造を第3図に断面的に示す。同図に於て
1がガス感応体、2,3が検出用電極、4が絶縁
基板、5,6が検出用リード線、7がヒータ、
8,9がヒーターリード線、10が有機金属化合
物が分解して生成した金属酸化物薄膜である。 (発明の実施例) 以下本発明の素子の具体的な製法を実施例で示
し、また各実施例による素子の機械的強度と特性
を第1表に参考例と併せて示す。 実施例 1 絶縁基板としてのアルミナ基板4の片面に加熱
用厚膜ヒータ7を設け、他の面に厚膜印刷により
Au電極2,3を設ける。このAu電極間に有機金
属化合物としてのアルミニウムヘキサエートをプ
ロピルアルコールにて希釈した液を塗布し室温で
1時間乾燥する。さらに100℃に設定した乾燥器
にて約1時間乾燥した後、とり出し十分に室温ま
で冷却する。次に前記有機金属化合物膜表面に通
常のスクリーン印刷器にて2wt%のSb2O3を添加
したSnO2粉にPdOをSnO2に対し0.5wt%加え有
機溶媒にて分散させたペーストを前記電極2,3
間にまたがる如く印刷した。 このペーストを室温で1時間乾燥し、さらに
100℃にて1時間乾燥したのち電気炉にて600℃〜
800℃で焼成した。なおこの素子に各リード線
5,6をとりつけ通電して十分素子が安定した後
測定槽に入れi―C4H10,H2,COが各2000PPm
になるべく各ガスを注入してその抵抗変化をしら
べた。 また接着強度は各種付着強度の異る粘着テープ
を用意し得られたガス感応体表面にはりつけ、そ
の一端をもつて180゜折り返し平行にひきはがし
た時、粘着テープにガス感応体が付着して剥離す
るか否かで判定した。 結果を第1表の実施例1―1〜1―3に示す。
またこの実施例1において有機金属化合物を用い
ない以外は同様にして得た素子を参考例1―1〜
1―3として示す。 実施例 2 実施例1と同一の基板手法を用いて製造し、ガ
ス感応体も同じものとし用いた有機金属化合物は
原子比でAlを3mol%含むようにアルミニウムヘ
キサエートを加えた錫ヘキサエートとした。測定
法は実施例1と同様で結果を第1表の実施例2―
1〜2―3に示す。 実施例 3 絶縁基板としてAl2O3を3mol%含むSnO2を用
い、これに実施例1と同様にヒータ、電極等を設
け、さらに検出電極間をそれぞれアルミニウムヘ
キサエート,錫ヘキサエート,ジルコニウムヘキ
サエート,ナフテン酸錫等の有機金属化合物をプ
ロピルアルコールで希釈したものを用い、他は前
記実施例1と同様にして本発明に係るガス検知素
子を得その測定結果を実施例3―1〜3―5とし
て第1表に示す。
(Technical field to which the invention pertains) The present invention relates to improvements in gas detection elements. (Prior Art and its Problems) Many examples of gas-sensitive elements using oxide semiconductors as gas-sensitive members have been proposed. In most cases, N-type oxide semiconductors are used, and the gas is detected by utilizing the fact that its resistance decreases upon contact with a reducing gas. On the other hand, when a P-type oxide is used as the semiconductor, it goes without saying that its resistance value increases when it comes into contact with a reducing gas. In this case, in order to increase the sensitivity to gas, not only a semiconductor but also a catalyst is used, and a heater is provided to keep the element at a high temperature. For example, as shown in FIG. 1, an element is known in which a metal wire is embedded in a gas sensitive body 1 as a heater. In the case of this element, one of the pair of electrodes 2 and 3 also serves as a heater, making it difficult to equalize the temperature within the element and making assembly difficult. In addition, since the heating was not uniform, there was a risk of a lack of reliability over a long period of time.
On the other hand, as another example, as shown in FIG. 2, a structure in which an insulating material such as alumina is used as the substrate 4, a heater 7 is provided on one side, and a pair of electrodes 2, 3 and a gas sensitive body 1 are provided on the opposite side is considered. It will be done. In this case, as described above, the substrate 4 is generally made of a heat-resistant material such as alumina, magnesia, or mullite. In the case of the conventional method, for example, the gas sensitive layer 1 shown in FIG. 2 is usually provided directly on the substrate by a thick film printing method or the like. With such a configuration, the adhesive strength of the gas sensitive layer shown in FIG. 2 to the substrate was insufficient, and there was a risk of peeling off due to mechanical vibration or the like. Furthermore, even without mechanical vibration, the adhesive strength tended to decrease due to the impact caused by the interruption of the heater. One way to improve this problem is to raise the baking temperature of the thick film, lengthen the baking time, or both to ensure that the thick film of the gas sensitive layer is bonded to the substrate with sufficient strength. There is a way to do it. However, this method also promotes sintering of the gas sensitive material particles constituting the thick film, which greatly impairs the gas detection sensitivity, which is the original objective. Another possible method is to mix a material that melts at a relatively low temperature, such as glass, into the thick film printing paste and bake it at a relatively low temperature. However, in this case as well, the molten glass covers the surface of the particles of the gas-sensitive material or penetrates between the particles, increasing the element resistance and significantly impairing the gas-sensitive characteristics. (Object of the invention) In view of the above points, the present invention improves the shortcoming of the conventional example of low mechanical strength, and has sufficient mechanical strength.
The object of the present invention is to provide a sensing element with high gas sensitivity characteristics. (Summary of the invention) The present invention includes an insulating substrate provided with a pair of electrodes,
A gas sensitive body made of a metal oxide semiconductor provided between electrodes on the insulating substrate, and a thin film of a metal oxide provided between the gas sensitive body and the insulated substrate and obtained by thermal decomposition of an organometallic compound. This gas sensing element can be manufactured as follows. That is, a step of providing a pair of electrodes on an insulating substrate, a step of providing a gas sensitive body made of a metal oxide semiconductor via a coated dry film of an organometallic compound, and a step of sintering the gas sensitive body and simultaneously applying the organic metal compound. It can be manufactured from a step of thermally decomposing a coated and dried oxide film to form a metal oxide thin film. That is, the present invention is the conventional gas sensing element shown in FIG. 2 as described above, which is characterized in that a metal oxide layer obtained by thermal decomposition of an organometallic compound is provided between the gas sensitive body and the insulating substrate. and
It is possible to have sufficient adhesion strength between the insulating substrate and the gas-sensitive member and to obtain excellent gas-sensitive characteristics. More specifically, the organometallic compound used in the present application is generally represented by (Me) and n(OR)m.
Note that Me is a metal element, R is nitrogen, carbon, hydrogen,
In this application, as organometallic compounds, metal alcohol compounds,
Metal alkoxides, naphthenic acids, etc. can be used. Further, organometallic compounds are usually liquids with high viscosity, but they can also be solids. These are well soluble in alcohols such as propyl alcohol and organic solvents such as tetralin and terpineol, and can be freely diluted. Adjust the organometallic compound to an appropriate viscosity by adding a diluent if necessary. Next, after screen-printing the organometallic compound on the insulating substrate, a gas sensitive layer made of a paste-like metal oxide semiconductor is provided. When this is fired,
The thin film of the organometallic compound decomposes into extremely fine oxide particles, which form a structure in which the gas sensitive body and the insulating substrate are mechanically bonded. As mentioned above, such reactions occur at relatively low temperatures, and in the case of many organic metals, calcination at 500 to 600°C is sufficient. Furthermore, the particles are bonded by a chemical reaction and cannot be simply mechanically bonded, making them extremely strong. In addition, since the sintering temperature is relatively low, grain growth of the metal oxide semiconductor does not occur.
Gas sensitivity is extremely high. Moreover, since a large amount of CO 2 and H 2 O are generated by the decomposition reaction of the organometallic compound mentioned above, pores through which gas can enter and exit are automatically secured in the gas sensitive body. Furthermore, in the present invention, when an organometallic compound containing the same metal element as the main component of the gas sensitive body is used, when the organometallic compound is decomposed in the firing process of the element, the metal element in the organometallic compound is Not only does it "wet" well with the main component particles of the gas sensitive material, improving adhesive strength, but even after firing, the metal acid compound thin film obtained by thermal decomposition of the organometallic compound and the gas sensitive material contain the same metal element. Since it contains oxides, the coefficient of thermal expansion is similar, resulting in excellent peeling resistance. In addition, by making the insulating substrate the same as the main component of the gas sensitive body (however, the resistance value of the insulating substrate is high due to electron valence control), the thermal expansion coefficients of the gas sensitive body and the insulating substrate are similar, and firing Heat after time
Peeling due to shock can be prevented. Furthermore, if the resistance value of the metal acid compound thin film obtained by thermal decomposition of an organometallic compound is made higher than the resistance value of the gas sensitive body, it means that a high resistance body is connected in parallel with the gas sensitive body, and the apparent Gas sensitivity can be increased. Next, a specific manufacturing example of the gas sensing element according to the present invention will be shown. First, an insulating substrate is cut according to the size of the element, and a pair of detection electrodes is provided on one surface of the insulating substrate. Further, a heater layer for heating the element is provided on the other surface. Next, on the detection electrode side of this insulating substrate, an organometallic compound diluted with an organic solvent or the like is applied as necessary to at least the portion where the gas sensitive body and the insulating substrate are in contact. Thereafter, this is dried at room temperature, and further dried in a dryer at, for example, 100° C. for about 1 hour. The organometallic film thus produced has now been completely dried and its volatile components have been sufficiently volatilized. A paste in which a gas sensitive material is dispersed in an organic solvent is printed on this organometallic compound film. After the printed gas-sensitive paste is sufficiently dried at room temperature, it is dried in a dryer at 100° C. for about 1 hour, for example, and fired in an electric furnace to attach each lead wire to obtain a gas-sensitive element. In this case, the firing temperature is about 300° C. to 800° C., and a gas sensing element that is sufficiently firmly adhered to the insulating substrate can be obtained. As the gas sensitive material, it is preferable to use ZnO + 0.5 mol % Al 2 O 3 system in addition to SnO 2 system as described in detail in Examples below. Also in this case, 10 to 40 wt% zinc hexaate as an organometallic compound
It is preferable to use one diluted with 60 to 90 wt% propyl alcohol. In addition, the metal oxide thin film obtained by thermal decomposition of an organometallic compound in the present invention has a thickness of 3000 Å or more.
It is preferable to form one with a thickness of 20,000 Å. The structure of the gas detection element according to the present invention manufactured in this manner is shown in cross section in FIG. In the figure, 1 is a gas sensitive body, 2 and 3 are detection electrodes, 4 is an insulating substrate, 5 and 6 are detection lead wires, 7 is a heater,
8 and 9 are heater lead wires, and 10 is a metal oxide thin film produced by decomposition of an organometallic compound. (Examples of the Invention) The specific manufacturing method of the device of the present invention will be shown in Examples below, and the mechanical strength and characteristics of the device according to each Example are shown in Table 1 together with Reference Examples. Example 1 A thick film heater 7 is provided on one side of an alumina substrate 4 as an insulating substrate, and a thick film heater 7 is provided on the other side by thick film printing.
Au electrodes 2 and 3 are provided. A solution prepared by diluting aluminum hexaate as an organometallic compound with propyl alcohol is applied between the Au electrodes and dried at room temperature for 1 hour. After further drying for about 1 hour in a dryer set at 100°C, it is taken out and sufficiently cooled to room temperature. Next, on the surface of the organometallic compound film, a paste prepared by adding 0.5 wt% of PdO to SnO 2 to SnO 2 powder to which 2 wt% of Sb 2 O 3 was added using an ordinary screen printer and dispersing it in an organic solvent was applied to the surface of the organometallic compound film. Electrodes 2, 3
I printed it so that it spanned the space. Let this paste dry for 1 hour at room temperature, then
After drying at 100℃ for 1 hour, dry at 600℃ in an electric furnace.
Fired at 800℃. Attach the lead wires 5 and 6 to this element, turn on the current, and after the element is sufficiently stabilized, put it into the measurement tank and the i-C 4 H 10 , H 2 , and CO will be 2000 PPm each.
We injected as much gas as possible and examined the resistance changes. In addition, the adhesive strength is determined by preparing adhesive tapes with different adhesion strengths and attaching them to the surface of the resulting gas-sensitive material.When one end of the tape is folded 180 degrees and peeled off in parallel, the gas-sensitive material adheres to the adhesive tape. Judgment was made based on whether or not it peeled off. The results are shown in Examples 1-1 to 1-3 in Table 1.
In addition, elements obtained in the same manner as in Example 1 except that no organometallic compound was used were used in Reference Examples 1-1 to 1-1.
Shown as 1-3. Example 2 Manufactured using the same substrate method as in Example 1, and using the same gas sensitive material, the organometallic compound used was tin hexaate to which aluminum hexaate was added so that the atomic ratio contained 3 mol% of Al. . The measurement method was the same as in Example 1, and the results are shown in Example 2 in Table 1.
Shown in 1 to 2-3. Example 3 SnO 2 containing 3 mol% Al 2 O 3 was used as an insulating substrate, and a heater, electrodes, etc. were provided in the same manner as in Example 1, and aluminum hexaate, tin hexaate, and zirconium hexaate were used between the detection electrodes, respectively. A gas sensing element according to the present invention was obtained in the same manner as in Example 1 except that organometallic compounds such as tin naphthenate were diluted with propyl alcohol, and the measurement results were summarized in Examples 3-1 to 3-3. 5 in Table 1.

【表】【table】

【表】 以下第1表の結果について説明する。 なおガス感応体組成はすべての参考例,実施例
ともに同一とし、またガス感度は空気中の素子抵
抗をR0とし、各ガス中での抵抗をRgasとしたと
きR0/Rgasをもつて示した。接着強度はガス感
応体に各種接着強度の異る粘着テープをはりつけ
これの一端を折り返し接着面と平行にひきはがし
たときの剥離の有無から接着強度βを求めた。 第1表の結果によれば参考例1―1〜1―3に
示す如くガス感応体のみではきわめて接着力が弱
い。またこのガス感応体に固結剤としてシリカゾ
ル,アルミナゾルを使用した参考例2―1〜2―
3と3―1〜3―3では若干の付着強度向上が認
められるが、いずれもひびわれが面内に生ずるも
のが多く、かつ付着強度を向上させるため焼成温
度を上げると各ガスに対する感度が急激に低下す
る。これに対し本発明の実施例ではひびわれが全
く生ぜず、焼成温度を高めると付着強度が向上し
またガス感度も十分なものを保つ。 また用いる有機金属化合物は焼成後電気抵抗が
素子抵抗より大なるものが望ましいが、単独で用
いても事実上の支障は生じなかつた。 また参考例4―1〜4―3と実施例3―1〜3
―5は基板の主成分をガス感応体の主成分と同一
にして、有機金属化合物を用いた場合と、用いな
い場合について比較してある。この結果ガス感応
体と同一主成分の基板を用いることにより本発明
の方法では600℃焼成でも十分な強度を示した
が、従来法ではあまり効果が得られなかつた。な
お実施例3のガス感度は700℃焼成の場合を示し
た。 さらにこの素子に対して落下テストを行つた結
果を第2表に示す。テスト法は素子を重さ200g
の鉄製円柱状物体にはりつけ、高さ1mから約3
cm厚のコンクリート上におかれた杉板に落下させ
た。
[Table] The results in Table 1 will be explained below. The composition of the gas sensitive body is the same for all reference examples and examples, and the gas sensitivity is expressed as R 0 /Rgas, where R 0 is the element resistance in air and Rgas is the resistance in each gas. Ta. Adhesive strength β was determined from the presence or absence of peeling when adhesive tapes of various adhesive strengths were attached to the gas sensitive member and one end of the tape was folded back and peeled off parallel to the adhesive surface. According to the results in Table 1, as shown in Reference Examples 1-1 to 1-3, the adhesive strength is extremely weak when using only the gas sensitive material. Also, reference examples 2-1 to 2- in which silica sol and alumina sol were used as a solidifying agent in this gas sensitive material.
3 and 3-1 to 3-3, a slight improvement in adhesion strength was observed, but in most cases cracks were generated within the plane, and when the firing temperature was raised to improve adhesion strength, the sensitivity to each gas suddenly increased. decreases to On the other hand, in the examples of the present invention, no cracking occurs at all, and when the firing temperature is increased, the adhesion strength is improved and the gas sensitivity remains sufficient. Further, it is desirable that the organometallic compound used has an electrical resistance higher than the element resistance after firing, but no practical problem occurred even when used alone. Also, Reference Examples 4-1 to 4-3 and Examples 3-1 to 3
-5, the main component of the substrate is the same as the main component of the gas sensitive material, and a comparison is made between cases where an organometallic compound is used and cases where an organometallic compound is not used. As a result, the method of the present invention showed sufficient strength even when fired at 600° C. by using a substrate with the same main components as the gas sensitive member, but the conventional method did not have much effect. Note that the gas sensitivity in Example 3 is for the case of firing at 700°C. Furthermore, this element was subjected to a drop test and the results are shown in Table 2. The test method is to weigh the element at 200g.
It is attached to an iron cylindrical object from a height of 1m to about 3cm.
It was dropped onto a cedar board placed on cm-thick concrete.

【表】【table】

【表】 この結果からも本発明の方法が低い温度の焼成
にもかかわらず全数剥離をおこさなかつた。 なお上記各実施例はガス感応体としてSnO2
主成分とするものについて述べたが同様な効果が
o2O3,Fe2O3,ZoO,TiO2,V2Ofなど他の材
料を主成分とした時にも得られた。 (発明の効果) 以上の結果から明らかな如く、本発明に係るガ
ス検知素子は剥離,落下等に対し優れた機械的強
度と共に優れた感ガス特性を有し、実用上極めて
有効なものと言える。
[Table] This result also shows that the method of the present invention did not cause peeling in all cases despite firing at a low temperature. Although the above embodiments have been described using SnO 2 as the main component, similar effects can be obtained with I o2 O 3 , F e2 O 3 , Z o O, T i O 2 , V 2 O f , etc. It was also obtained when other materials were used as the main ingredients. (Effects of the Invention) As is clear from the above results, the gas sensing element according to the present invention has excellent mechanical strength against peeling, dropping, etc. and excellent gas-sensitive characteristics, and can be said to be extremely effective in practice. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス検知素子の構造例を示す斜
視図。第2図は従来のガス検知素子の他の構造例
を示す断面図。第3図は本発明に係るガス検知素
子の構造例を示す断面図。 1……ガス感応体、2,3……電極、4……絶
縁基板、10……有機金属化合物の熱分解により
得られる金属酸化物の薄膜。
FIG. 1 is a perspective view showing an example of the structure of a conventional gas detection element. FIG. 2 is a sectional view showing another example of the structure of a conventional gas detection element. FIG. 3 is a sectional view showing an example of the structure of the gas detection element according to the present invention. 1... Gas sensitive body, 2, 3... Electrode, 4... Insulating substrate, 10... Thin film of metal oxide obtained by thermal decomposition of an organometallic compound.

Claims (1)

【特許請求の範囲】 1 一対の電極が設けられた絶縁基板と、前記絶
縁基板上で電極間に設けられた金属酸化物半導体
からなるガス感応体と、前記ガス感応体および前
記絶縁基板間に設けられ有機金属化合物の熱分解
により得られる金属酸化物の薄膜とからなる事を
特徴とするガス検知素子。 2 有機金属化合物がガス感応体の主成分と同一
の金属元素を含む事を特徴とする特許請求の範囲
第1項記載のガス検知素子。 3 有機金属化合物の熱分解により得られる金属
酸化物薄膜の抵抗値が、ガス感応体の抵抗値より
高いことを特徴とする特許請求の範囲第1項記載
のガス検知素子。 4 絶縁基体がガス感応体の主成分と同一であ
り、かつガス感応体より高抵抗な焼結体である事
を特徴とする特許請求の範囲第1項記載のガス検
知素子。
[Claims] 1. An insulating substrate provided with a pair of electrodes, a gas sensitive body made of a metal oxide semiconductor provided between the electrodes on the insulating substrate, and between the gas sensitive body and the insulating substrate. 1. A gas sensing element comprising a thin film of a metal oxide obtained by thermal decomposition of an organometallic compound. 2. The gas sensing element according to claim 1, wherein the organometallic compound contains the same metal element as the main component of the gas sensitive body. 3. The gas sensing element according to claim 1, wherein the resistance value of the metal oxide thin film obtained by thermal decomposition of an organometallic compound is higher than the resistance value of the gas sensitive body. 4. The gas sensing element according to claim 1, wherein the insulating substrate is a sintered body having the same main component as the gas sensitive body and having a higher resistance than the gas sensitive body.
JP19773581A 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof Granted JPS5899741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19773581A JPS5899741A (en) 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19773581A JPS5899741A (en) 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5899741A JPS5899741A (en) 1983-06-14
JPS6152418B2 true JPS6152418B2 (en) 1986-11-13

Family

ID=16379464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19773581A Granted JPS5899741A (en) 1981-12-10 1981-12-10 Gas sensing element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5899741A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279855A (en) * 1987-07-11 1994-01-18 ROTH-Tecknik GmbH & Co. Forschung fur Automobil und Umwelttechnik Manufacture of inert, catalytic or gas-sensitive ceramic layers for gas sensors
US5273779A (en) * 1991-12-09 1993-12-28 Industrial Technology Research Institute Method of fabricating a gas sensor and the product fabricated thereby
JP2002071611A (en) * 2000-08-30 2002-03-12 Fis Kk Gaseous hydrogen sensor

Also Published As

Publication number Publication date
JPS5899741A (en) 1983-06-14

Similar Documents

Publication Publication Date Title
DE3780560T2 (en) PROBE AND METHOD FOR THE PRODUCTION THEREOF.
JP3927250B2 (en) Thick film conductor paste composition for aluminum nitride substrate
US4016308A (en) Humidity sensor, material therefor and method
US4050048A (en) Humidity sensor, material therefor and method
JPS6152418B2 (en)
US5562972A (en) Conductive paste and semiconductor ceramic components using the same
JPS6036017B2 (en) Manufacturing method of reducing gas detection element
US4484172A (en) Humidity sensor, comprised of compound metal oxides with perovskite structure
JPH11135303A (en) Thick-film thermistor composition
JP2550630B2 (en) Copper paste for conductive film formation
JPH01286402A (en) Resistor and its manufacture
JPH07104309B2 (en) Gas sensor manufacturing method
JPS6152422B2 (en)
JP2829552B2 (en) Gas detection element
US4276537A (en) Moisture-responsive resistor element
JP3036443B2 (en) Manufacturing method of hydrocarbon detection sensor
JP3218906B2 (en) Thermistor element
JPH0434101B2 (en)
JPS61225711A (en) Conducting paste
JP2933136B2 (en) Method of manufacturing resistor and method of manufacturing thermal head
JP2892220B2 (en) Manufacturing method of ceramic wiring board
JPS5842965A (en) Oxygen sensor element
JP2529547B2 (en) Gas detector
JPS59102149A (en) Moisture sensitive material
JP2001118706A (en) Paste, film, and parts of negative temperature coefficient thermistor