JP4622522B2 - Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof - Google Patents

Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof Download PDF

Info

Publication number
JP4622522B2
JP4622522B2 JP2005002302A JP2005002302A JP4622522B2 JP 4622522 B2 JP4622522 B2 JP 4622522B2 JP 2005002302 A JP2005002302 A JP 2005002302A JP 2005002302 A JP2005002302 A JP 2005002302A JP 4622522 B2 JP4622522 B2 JP 4622522B2
Authority
JP
Japan
Prior art keywords
thin film
resistance
mass
resistor
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005002302A
Other languages
Japanese (ja)
Other versions
JP2006190871A (en
Inventor
巌 佐藤
敏行 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005002302A priority Critical patent/JP4622522B2/en
Publication of JP2006190871A publication Critical patent/JP2006190871A/en
Application granted granted Critical
Publication of JP4622522B2 publication Critical patent/JP4622522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

本発明は、金属抵抗体材料およびこれを用いた抵抗薄膜、スパッタリングターゲット、ならびに、該金属抵抗材料を用いた薄膜抵抗器およびその製造方法に関する。   The present invention relates to a metal resistor material, a resistance thin film using the same, a sputtering target, a thin film resistor using the metal resistance material, and a method for manufacturing the same.

チップ抵抗器、精密抵抗器、ネットワーク抵抗器、高圧抵抗器などの抵抗器、測温抵抗体、感温抵抗器などの温度センサ、ならびに、ハイブリットICとその複合モジュール製品などの電子部品には、抵抗薄膜を使用した薄膜抵抗器が用いられている。   Electronic components such as chip resistors, precision resistors, network resistors, high-voltage resistors, temperature sensors such as resistance temperature detectors, temperature sensitive resistors, and hybrid ICs and their composite module products Thin film resistors using resistive thin films are used.

この薄膜抵抗器においては、多くの場合、抵抗薄膜を形成する金属抵抗体材料として、Ta合金、TaN化合物およびNi−Cr系合金が用いられており、その中でもNi−Cr系合金が、最も一般的に用いられている。   In this thin film resistor, a Ta alloy, a TaN compound and a Ni—Cr alloy are often used as a metal resistor material for forming a resistance thin film. Among these, a Ni—Cr alloy is the most common. Has been used.

Ni-Cr系合金を用いた薄膜抵抗器は、抵抗温度係数の絶対値の大きさが小さく、良好な抵抗温度特性を有する。しかし、人の汗や海水など塩素を含む水溶液が付着していると、その使用中、すなわち電圧が負荷された状態において、腐食が生じる。このため、Ni-Cr系合金を用いた薄膜抵抗器は、塩素に対する耐食性の面で、従来のTa合金またはTaN化合物を用いた薄膜抵抗器に劣り、信頼性に欠けるという問題があった。   A thin film resistor using a Ni—Cr alloy has a small absolute value of the resistance temperature coefficient and has a good resistance temperature characteristic. However, if an aqueous solution containing chlorine such as human sweat or seawater adheres, corrosion occurs during use, that is, when a voltage is applied. For this reason, a thin film resistor using a Ni—Cr alloy has a problem that it is inferior to a conventional thin film resistor using a Ta alloy or a TaN compound in terms of corrosion resistance to chlorine and lacks reliability.

一方、従来のTa合金またはTaN化合物を用いた薄膜抵抗器は、塩素に対する耐食性は良好であるものの、ある特定の膜厚以外では抵抗温度係数(TCR)が安定せず、幅広い抵抗値の薄膜抵抗器を製造することが困難であった。   On the other hand, thin film resistors using conventional Ta alloys or TaN compounds have good corrosion resistance to chlorine, but their resistance temperature coefficient (TCR) is not stable except for a specific film thickness, and thin film resistors with a wide range of resistance values. It was difficult to manufacture the vessel.

なお、薄膜抵抗器には、高温における抵抗安定性(以下、高温安定性と記す)も要求されている。   Thin film resistors are also required to have resistance stability at high temperatures (hereinafter referred to as high temperature stability).

本発明はかかる問題点に鑑みてなされたものであって、従来のNi−Cr系合金を用いた薄膜抵抗器よりも塩素に対する耐食性が高く、Ta合金またはTaN化合物を用いた薄膜抵抗器と同等程度の塩素に対する耐食性を有するとともに、従来のNi−Cr系合金を用いた薄膜抵抗器と同等程度の大きさ(絶対値)の抵抗温度係数を有し、さらに従来のNi−Cr系合金を用いた薄膜抵抗器、Ta合金またはTaN化合物を用いた薄膜抵抗器と比べて同等以上の高温安定性を有する薄膜抵抗器およびその製造方法、ならびに該抵抗薄膜に用いる金属抵抗体材料、スパッタリングターゲット、抵抗薄膜を提供することを目的とする。   The present invention has been made in view of such problems, and has higher corrosion resistance to chlorine than a conventional thin film resistor using a Ni-Cr alloy, and is equivalent to a thin film resistor using a Ta alloy or a TaN compound. It has a resistance to temperature of about the same magnitude (absolute value) as a conventional thin film resistor using Ni-Cr alloy, and has a resistance temperature coefficient to chlorine. Thin film resistor, thin film resistor having a high temperature stability equal to or higher than that of a thin film resistor using a Ta alloy or TaN compound, and a manufacturing method thereof, and a metal resistor material, sputtering target, and resistance used in the resistive thin film The object is to provide a thin film.

本発明の第一態様に係る金属抵抗体材料は、Taを30〜60質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1である。   The metal resistor material according to the first aspect of the present invention contains 30 to 60% by mass of Ta, the balance is made of Cr and Ni, and the mass ratio of Cr to Ni is 0.5 to 1.1.

本発明の第二態様に係る金属抵抗体材料は、Taを30〜60質量%、Alを0〜8質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1である。   The metal resistor material according to the second aspect of the present invention includes 30 to 60% by mass of Ta and 0 to 8% by mass of Al, the balance is made of Cr and Ni, and the mass ratio of Cr to Ni is 0.5 to 1.1.

本発明に係るスパッタリングターゲットは、上記金属抵抗体材料と実質的に同じ組成であり、抵抗薄膜の形成に用いることができる。   The sputtering target according to the present invention has substantially the same composition as the metal resistor material, and can be used for forming a resistive thin film.

本発明の第一態様に係る抵抗薄膜は、Taを30〜60質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1であって、かつ、表面に酸化膜が形成されている。   The resistive thin film according to the first aspect of the present invention contains 30 to 60% by mass of Ta, the balance is made of Cr and Ni, the mass ratio of Cr to Ni is 0.5 to 1.1, and the surface An oxide film is formed.

本発明の第二態様に係る抵抗薄膜は、Taを30〜60質量%、Alを0〜8質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1であって、かつ、表面に酸化膜が形成されている。   The resistive thin film according to the second aspect of the present invention contains 30 to 60% by mass of Ta and 0 to 8% by mass of Al, the balance is made of Cr and Ni, and the mass ratio of Cr to Ni is 0.5 to 1. 1 and an oxide film is formed on the surface.

前記抵抗薄膜は、抵抗温度係数が±25ppm/℃以内であり、155℃の高温に1000時間保持した後の抵抗変化率が0.10%以下であり、酸性人工汗液を用いた電食試験において溶解開始電圧が3.0V以上であることが好ましい。   The resistance thin film has a temperature coefficient of resistance of ± 25 ppm / ° C. or less, and the resistance change rate after being held at a high temperature of 155 ° C. for 1000 hours is 0.10% or less. In an electrolytic corrosion test using acidic artificial sweat It is preferable that the melting start voltage is 3.0 V or more.

本発明に係る薄膜抵抗器は、前記抵抗薄膜を備える。   The thin film resistor according to the present invention includes the resistive thin film.

本発明に係る薄膜抵抗器の製造方法は、本発明に係る前記スパッタリングターゲットを用いて、スパッタリング法により、絶縁材料基板上に抵抗薄膜を形成し、その後、該抵抗薄膜を大気中または酸素を微量含む不活性ガス中において、300〜650℃で1〜5時間熱処理することを特徴とする。前記絶縁材料基板としては、例えば、アルミナ等を用いることができる。   The thin film resistor manufacturing method according to the present invention includes forming a resistive thin film on an insulating material substrate by a sputtering method using the sputtering target according to the present invention, and then forming the resistive thin film in the atmosphere or a small amount of oxygen. Heat treatment is performed at 300 to 650 ° C. for 1 to 5 hours in the contained inert gas. As the insulating material substrate, for example, alumina or the like can be used.

本発明に係る抵抗薄膜は、適切な熱処理をすることにより、薄膜表面に緻密な酸化膜が形成されているため、塩素に対する耐食性が改善されるとともに、高温安定性に優れている。さらに、抵抗温度係数も安定的に±25ppm/℃以内とすることができる。   The resistance thin film according to the present invention has a dense oxide film formed on the surface of the thin film by performing an appropriate heat treatment, so that the corrosion resistance against chlorine is improved and the high temperature stability is excellent. Further, the temperature coefficient of resistance can be stably within ± 25 ppm / ° C.

このような特性を有する抵抗薄膜を備えた薄膜抵抗器を用いることにより、精密な精度の要求される電子機器においても、腐食環境および高温環境の下における信頼性を確保することができる。   By using a thin film resistor including a resistive thin film having such characteristics, reliability in a corrosive environment and a high temperature environment can be ensured even in an electronic device that requires precise accuracy.

従来から、薄膜抵抗器の抵抗体材料として、Ni−Cr系合金ならびにTa合金およびTaN化合物が用いられているが、前述のように、Ni−Cr系合金は、抵抗温度係数の大きさ(絶対値)は小さいものの、塩素に対する耐食性が劣っていた。一方、Ta合金およびTaN化合物は、塩素に対する耐食性は良好であるものの、ある特定の膜厚以外では抵抗温度係数(TCR)が安定せず、幅広い抵抗値の薄膜抵抗器を製造することが困難であった。   Conventionally, Ni—Cr alloys, Ta alloys and TaN compounds have been used as resistor materials for thin film resistors. As described above, Ni—Cr alloys have a large resistance temperature coefficient (absolute Although the value was small, the corrosion resistance to chlorine was poor. On the other hand, although the Ta alloy and the TaN compound have good corrosion resistance to chlorine, the resistance temperature coefficient (TCR) is not stable except for a specific film thickness, and it is difficult to manufacture a thin film resistor having a wide resistance value. there were.

そこで、本発明者は、Ni−Cr系合金と同程度に小さい抵抗温度係数と、Ta合金およびTaN化合物と比べて同等以上の塩素に対する耐食性と、Ni−Cr系合金ならびにTa合金およびTaN化合物と比べて同等以上の高温安定性とを兼ね備えた金属抵抗体材料を得るための研究開発を進めた。   Therefore, the present inventor has found that the temperature coefficient of resistance is as small as that of the Ni—Cr alloy, the corrosion resistance to chlorine equal to or higher than that of the Ta alloy and the TaN compound, the Ni—Cr alloy, the Ta alloy, and the TaN compound. R & D was carried out to obtain a metal resistor material that has equivalent or higher temperature stability.

その結果、Ta、Ni、Crを所定の割合で含有させ、かつ、所定の熱処理をすることで前記複数の特性を兼ね備えた金属抵抗体材料が得られることを見出し、本発明に至った。   As a result, it has been found that a metal resistor material having a plurality of characteristics can be obtained by containing Ta, Ni, and Cr at a predetermined ratio and performing a predetermined heat treatment.

本発明の第一態様に係る金属抵抗体材料は、Taを30〜60質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1である。   The metal resistor material according to the first aspect of the present invention contains 30 to 60% by mass of Ta, the balance is made of Cr and Ni, and the mass ratio of Cr to Ni is 0.5 to 1.1.

Taは主として耐食性に効果があるが、30質量%未満では耐食性への効果が不十分であり、また60質量%を超えると抵抗温度係数が負に大きくなってしまい好ましくない。   Ta is mainly effective in corrosion resistance, but if it is less than 30% by mass, the effect on corrosion resistance is insufficient, and if it exceeds 60% by mass, the temperature coefficient of resistance becomes negatively large, which is not preferable.

CrおよびNiは、主として抵抗温度係数の値を低減する効果がある。ただし、CrのNiに対する質量比が0.5未満であると、抵抗温度係数の値を低減する効果が小さくなり抵抗温度係数が大きくなるとともに、高温安定性が不十分となる。一方、CrのNiに対する質量比が1.1を超えると、抵抗温度係数の値を低減する効果が小さくなり抵抗温度係数が大きくなるとともに、高温安定性が不十分となる。また、製造上の再現性が悪化する。   Cr and Ni are mainly effective in reducing the value of the resistance temperature coefficient. However, if the mass ratio of Cr to Ni is less than 0.5, the effect of reducing the value of the resistance temperature coefficient is reduced, the resistance temperature coefficient is increased, and high-temperature stability is insufficient. On the other hand, when the mass ratio of Cr to Ni exceeds 1.1, the effect of reducing the value of the resistance temperature coefficient is reduced, the resistance temperature coefficient is increased, and the high temperature stability is insufficient. In addition, the reproducibility in production deteriorates.

本発明の第二態様に係る金属抵抗体材料は、前記の第一態様に係る金属抵抗体材料にさらにAlを添加したものである。Alを添加することにより耐食性が向上する。ただし、Alの添加量が8質量%を超えると、抵抗温度係数が負に大きくなってしまうため好ましくない。   The metal resistor material according to the second aspect of the present invention is obtained by further adding Al to the metal resistor material according to the first aspect. Corrosion resistance is improved by adding Al. However, if the amount of Al exceeds 8% by mass, the temperature coefficient of resistance becomes negatively large, which is not preferable.

次に、本発明の第一または第二態様に係る金属抵抗体材料をスパッタリングターゲットに用いて、抵抗薄膜を作製する場合について説明する。   Next, the case where a resistive thin film is produced using the metal resistor material according to the first or second aspect of the present invention for a sputtering target will be described.

本発明の第一または第二態様に係る金属抵抗体材料を用いてスパッタリングを行い、絶縁材料基板上に成膜すると、Ta-Ni−Cr合金またはTa-Ni−Cr-Al合金からなる抵抗薄膜が得られる。該抵抗薄膜の組成は、ターゲットに用いた金属抵抗体材料の組成と実質的に同一である。ただし、真空中で成膜したままの抵抗薄膜は、塩素に対する耐食性が十分でなく、また抵抗温度係数が負に大きく、さらに高温における抵抗安定性が不十分である。   A resistive thin film made of Ta—Ni—Cr alloy or Ta—Ni—Cr—Al alloy when sputtering is performed using the metal resistor material according to the first or second aspect of the present invention and a film is formed on an insulating material substrate. Is obtained. The composition of the resistive thin film is substantially the same as that of the metal resistor material used for the target. However, the resistance thin film formed in vacuum does not have sufficient corrosion resistance to chlorine, has a negative resistance temperature coefficient, and has insufficient resistance stability at high temperatures.

そのため、本発明の第一または第二態様に係る金属抵抗体材料を用いて成膜した抵抗薄膜に対して、大気中において所定の熱処理を行うことが必要である。所定の熱処理を行うことにより、塩素に対する耐食性が従来のNi-Cr系合金よりも良好であり、抵抗温度係数の絶対値が25ppm/℃よりも小さく、さらに温度155℃に1000時間保持した場合の抵抗変化率が0.10%以下である抵抗薄膜を得ることが可能となる。   Therefore, it is necessary to perform a predetermined heat treatment in the atmosphere on the resistance thin film formed using the metal resistor material according to the first or second aspect of the present invention. By performing a predetermined heat treatment, the corrosion resistance to chlorine is better than that of a conventional Ni—Cr alloy, the absolute value of the resistance temperature coefficient is smaller than 25 ppm / ° C., and further when the temperature is kept at 155 ° C. for 1000 hours. A resistance thin film having a resistance change rate of 0.10% or less can be obtained.

具体的には、組成に応じて、400℃〜650℃で1〜5時間の熱処理を大気中で行なう。これにより、抵抗薄膜の表面に緻密で安定な酸化膜が形成され、塩素に対する高い耐食性を付与することができる。また、同時に抵抗温度係数が調整され、安定的に±25ppm/℃以内とすることが可能となるとともに、良好な高温安定性が得られる。なお、前記酸化膜は、クロム、タンタル及びアルミニウムが主成分である。   Specifically, heat treatment is performed in the atmosphere at 400 ° C. to 650 ° C. for 1 to 5 hours depending on the composition. Thereby, a dense and stable oxide film is formed on the surface of the resistance thin film, and high corrosion resistance against chlorine can be imparted. Further, the temperature coefficient of resistance is adjusted at the same time, and the temperature can be stably within ± 25 ppm / ° C., and good high temperature stability can be obtained. The oxide film is mainly composed of chromium, tantalum and aluminum.

熱処理温度が400℃未満では耐食性、耐熱性が十分には発現せず、抵抗温度係数も負に大きいままである。一方、熱処理温度が650℃を越えると、抵抗温度係数が正に大きくなってしまう。熱処理時間が1時間未満では耐食性、耐熱性が十分には発現せず、抵抗温度係数も負に大きいままである。一方、5時間を超えて熱処理をしても各特性に及ぼす効果は小さく、生産性が悪くなる。   When the heat treatment temperature is less than 400 ° C., the corrosion resistance and heat resistance are not sufficiently exhibited, and the resistance temperature coefficient remains negatively large. On the other hand, when the heat treatment temperature exceeds 650 ° C., the resistance temperature coefficient becomes positive. When the heat treatment time is less than 1 hour, the corrosion resistance and heat resistance are not sufficiently exhibited, and the resistance temperature coefficient remains negatively large. On the other hand, even if the heat treatment is performed for more than 5 hours, the effect on each property is small and the productivity is deteriorated.

なお、熱処理を行う雰囲気は、大気に代えて酸素を微量含んだ不活性ガスにしてもよい。また、この大気中での熱処理の前に、真空中で熱処理をして抵抗温度係数の調整を行ってもよい。   Note that the atmosphere in which the heat treatment is performed may be an inert gas containing a small amount of oxygen instead of the air. Further, before the heat treatment in the atmosphere, the resistance temperature coefficient may be adjusted by heat treatment in a vacuum.

このような特性を有する抵抗薄膜を備えた薄膜抵抗器を用いることにより、精密な精度の要求される電子機器においても、腐食環境および高温環境の下における信頼性を確保することができる。   By using a thin film resistor including a resistive thin film having such characteristics, reliability in a corrosive environment and a high temperature environment can be ensured even in an electronic device that requires precise accuracy.

(実施例1〜7、比較例1〜、従来例1,2、参考例1)
ニクロムターゲット、アルミニウムターゲット及びタンタルターゲットを用いた3元同時カソードスパッタ法によって、表1に示す参考例1、実施例1〜5、7、比較例1〜5の組成の薄膜抵抗を作製した。
(Examples 1 to 7, Comparative Examples 1 to 5 , Conventional Examples 1 and 2, Reference Example 1)
Thin film resistors having the compositions of Reference Example 1, Examples 1 to 5 and 7, and Comparative Examples 1 to 5 shown in Table 1 were prepared by a ternary simultaneous cathode sputtering method using a nichrome target, an aluminum target, and a tantalum target.

ニクロムターゲットは次のようにして作製した。まず、電気ニッケル(住友金属鉱山株式会社製)、電解クロム(東洋曹達株式会社製)を原料とし、真空溶解炉を用いて、ニッケルのクロムに対する質量比が所定の値となるように変えた各ニッケルクロム合金インゴットを、それぞれ2kgずつ得た。次に、得られた各ニッケルクロム合金インゴットについて、均質化処理をした後、ワイヤカットで厚さ5mm、直径150mmの丸板を切り出した。そして、上下面を研削してニクロムターゲットとした。   The nichrome target was produced as follows. First, each of nickel nickel (made by Sumitomo Metal Mining Co., Ltd.) and electrolytic chromium (made by Toyo Soda Co., Ltd.) was used as a raw material, and the mass ratio of nickel to chromium was changed to a predetermined value using a vacuum melting furnace. 2 kg of nickel chrome alloy ingots were obtained. Next, each nickel chrome alloy ingot obtained was homogenized, and then a round plate having a thickness of 5 mm and a diameter of 150 mm was cut out by wire cutting. And the upper and lower surfaces were ground to make a nichrome target.

アルミニウムターゲット、及びタンタルターゲットは純度99.99%の市販のものを用いた。アルミニウムターゲットは住友金属鉱山株式会社製であり、タンタルターゲットは株式会社豊島製作所製である。   Commercially available aluminum targets and tantalum targets having a purity of 99.99% were used. The aluminum target is manufactured by Sumitomo Metal Mining Co., Ltd., and the tantalum target is manufactured by Toshima Seisakusho Co., Ltd.

従来例1及び2では、住友金属鉱山株式会社製のニクロムターゲット(商品名Ni-50Cr及びSMS-NC7A)を用いた。   In Conventional Examples 1 and 2, Nichrome targets (trade names Ni-50Cr and SMS-NC7A) manufactured by Sumitomo Metal Mining Co., Ltd. were used.

実施例6では、電気ニッケル(住友金属鉱山株式会社製)、電解クロム(東洋曹達株式会社製)、アルミニウム粒(試薬)(株式会社平野清左衛門商店製)、タンタル板(東京電解株式会社製)を原料としてアルゴンプラズマ溶解により直径80mm、厚さ10mmの合金インゴットを得た後、ワイヤカットで厚さ5mm、直径60mmの丸板を切り出し、上下研削してスパッタリングターゲットとしたものを用いて成膜を行っており、1つのスパッタリングターゲットを用いており、3元同時カソードスパッタ法を用いていない。なお、本発明の組成のターゲットは、電子ビーム(EB)溶解などを用いて得ることもできる。   In Example 6, electric nickel (manufactured by Sumitomo Metal Mining Co., Ltd.), electrolytic chromium (manufactured by Toyo Soda Co., Ltd.), aluminum particles (reagent) (manufactured by Hirano Kiyemon Corporation), tantalum plate (manufactured by Tokyo Electrolytic Co., Ltd.) An alloy ingot having a diameter of 80 mm and a thickness of 10 mm was obtained by melting argon plasma using a raw material as a raw material, and then a round plate having a thickness of 5 mm and a diameter of 60 mm was cut by wire cutting, and was vertically ground to form a sputtering target. And one sputtering target is used, and the ternary simultaneous cathode sputtering method is not used. The target having the composition of the present invention can also be obtained by using electron beam (EB) melting or the like.

以上説明してきたターゲットを用いて、カソードスパッタ法による成膜を行った。真空室にアルミナ基板を装入し、1×10-4Paに排気した後、純度99.9995%のアルゴンガスを導入して、0.3Paの圧力に保ち、スパッタパワーをそれぞれのカソードで適当に制御することにより、膜厚が500Åとなるように前記アルミナ基板上に成膜を行った。 Using the target described above, film formation was performed by the cathode sputtering method. An alumina substrate is placed in a vacuum chamber and evacuated to 1 × 10 −4 Pa. Then, an argon gas having a purity of 99.9995% is introduced and maintained at a pressure of 0.3 Pa, and the sputtering power is set appropriately for each cathode. By controlling the film thickness, the film was formed on the alumina substrate so that the film thickness was 500 mm.

得られた抵抗薄膜の両側に、厚さ5000ÅのAu電極を、前述と同様に、カソードスパッタ法により成膜して、抵抗薄膜およびAu電極が形成された基板を得た。基板に抵抗薄膜およびAu電極を形成した後、参考例1、比較例1〜4及び実施例1〜3については、大気中において400℃〜450℃で、3時間熱処理をし、比較例および実施例4〜7については、大気中において450℃〜650℃で、3時間熱処理をし、従来例1及び2については、大気中において300℃で3時間熱処理することにより、それぞれの薄膜抵抗器を得た。得られた薄膜抵抗器の概略図を図1に示す。 An Au electrode having a thickness of 5000 mm was formed on both sides of the obtained resistance thin film by the cathode sputtering method in the same manner as described above to obtain a substrate on which the resistance thin film and the Au electrode were formed. After forming the resistive film and Au electrodes on the substrate of Reference Example 1, Comparative Examples 1-4 and Examples 1-3, at 400 ° C. to 450 ° C. in air, and a heat treatment for 3 hours, Comparative Example 5 and About Examples 4-7, it heat-processed at 450 degreeC-650 degreeC in air | atmosphere for 3 hours, and about conventional example 1 and 2, it heat-treats at 300 degreeC in air | atmosphere for 3 hours, and each thin film resistor Got. A schematic diagram of the thin film resistor obtained is shown in FIG.

なお、成膜法としては、他に、電子ビーム蒸着法、抵抗加熱式蒸着法などを用いることもできる。   In addition, as a film forming method, an electron beam evaporation method, a resistance heating evaporation method, or the like can be used.

以上のようにして作製した実施例1〜7、比較例1〜、従来例1、2および参考例1の薄膜抵抗器について、抵抗温度特性を評価するため、恒温槽で昇温しながら、25℃と125℃における抵抗測定を行い、抵抗温度係数を算出した。 In order to evaluate the resistance temperature characteristics of the thin film resistors of Examples 1 to 7, Comparative Examples 1 to 5 , Conventional Examples 1 and 2 and Reference Example 1 produced as described above, while raising the temperature in a constant temperature bath, Resistance measurement was performed at 25 ° C. and 125 ° C., and a temperature coefficient of resistance was calculated.

また、高温安定性を評価するため、それぞれの薄膜抵抗器を、155℃の恒温槽内に、1000時間保持し、抵抗の変化率を測定した。   Moreover, in order to evaluate high temperature stability, each thin film resistor was hold | maintained in the 155 degreeC thermostat for 1000 hours, and the change rate of resistance was measured.

さらに、塩素に対する耐食性の評価は酸性人工汗液(JIS L0848)を用いたウォータードロップ試験により行なった。具体的には、まず、抵抗膜の初期抵抗値をデジタルマルチメーターを用いて四端子法により測定し、次に、図2に示すように、抵抗膜の中央に人工汗液を30μLだけマイクロシリンジで滴下し、水滴の両端に負荷される電圧が1.5Vとなるように金電極間に負荷する電圧を調整した。金電極間に負荷する電圧は、1.5×(金電極間距離/水滴の直径)で求められる。電圧を負荷した状態で3分間保持した後、水滴を水で洗い流し、ドライヤーで乾燥させた後、四端子法により抵抗値を測定した。なお、膜に溶解が生じた場合には抵抗値は増加する。   Furthermore, the corrosion resistance to chlorine was evaluated by a water drop test using an acidic artificial sweat (JIS L0848). Specifically, first, the initial resistance value of the resistance film is measured by a four-terminal method using a digital multimeter, and then, as shown in FIG. 2, only 30 μL of artificial sweat is placed in the center of the resistance film with a microsyringe. The voltage applied between the gold electrodes was adjusted so that the voltage applied to both ends of the water droplet was 1.5 V. The voltage applied between the gold electrodes is determined by 1.5 × (distance between the gold electrodes / water droplet diameter). After holding for 3 minutes with voltage applied, the water droplets were washed away with water and dried with a dryer, and then the resistance value was measured by a four-terminal method. When the film is dissolved, the resistance value increases.

そして、試験後の抵抗値と初期抵抗値との差を初期抵抗値で除して抵抗変化率(%)を求めた。   Then, the resistance change rate (%) was determined by dividing the difference between the resistance value after the test and the initial resistance value by the initial resistance value.

次に、新しい抵抗膜の試料を用い、水滴の両端に負荷される電圧が1.75Vとなるよう電圧を負荷して、同様の試験を行ない、抵抗変化率を求めた。このように順次、水滴の両端に負荷する電圧を0.25Vずつ上昇させて試験を行なった。そして、抵抗変化率が0.2%を超えたときの水滴両端の電圧を求め、この電圧を溶解開始電圧とした。なお、溶解開始電圧付近では、水滴の両端に負荷する電圧の上昇幅を0.1Vと小さくして精度の向上を図った。図3に実施例6および従来例1の電圧と抵抗変化率との関係を示す。   Next, a new resistance film sample was used, a voltage was applied so that the voltage applied to both ends of the water droplet was 1.75 V, the same test was performed, and the resistance change rate was obtained. In this way, the test was performed by sequentially increasing the voltage applied to both ends of the water droplets by 0.25V. And the voltage of the both ends of a water droplet when a resistance change rate exceeded 0.2% was calculated | required, and this voltage was made into dissolution start voltage. In addition, in the vicinity of the dissolution start voltage, the increase in voltage applied to both ends of the water droplet was reduced to 0.1 V to improve accuracy. FIG. 3 shows the relationship between the voltage and the resistance change rate in Example 6 and Conventional Example 1.

抵抗温度係数、抵抗変化率、溶解開始電圧の測定結果を下記表1に示す。   Table 1 shows the measurement results of the temperature coefficient of resistance, the rate of change in resistance, and the dissolution start voltage.

Figure 0004622522
Figure 0004622522

実施例1〜7の薄膜抵抗器は、いずれも溶解開始電圧が3.0V以上であり、従来のニッケルクロム系薄膜抵抗器である従来例1の溶解開始電圧1.9Vに比べて格段に改善されている。また、実施例1〜7の薄膜抵抗器は、いずれも抵抗温度係数の絶対値が25ppm/℃以下であり、抵抗温度特性も良好である。さらに、実施例1〜7の薄膜抵抗器は、いずれも、155℃において1000時間保持した後の抵抗変化率が0.10%以下であり、高温安定性も良好である。   All of the thin film resistors of Examples 1 to 7 have a melting start voltage of 3.0 V or more, which is a marked improvement over the melting start voltage of 1.9 V of Conventional Example 1, which is a conventional nickel chrome thin film resistor. Has been. Moreover, as for the thin film resistor of Examples 1-7, all have the absolute value of a resistance temperature coefficient of 25 ppm / degrees C or less, and its resistance temperature characteristic is also favorable. Furthermore, the thin film resistors of Examples 1 to 7 all have a resistance change rate of 0.10% or less after being held at 155 ° C. for 1000 hours, and have high temperature stability.

なお、アルミニウムが8質量%以下だけ添加されている実施例4〜7は溶解開始電圧が4.2〜4.6Vであり、アルミニウムが添加されていない実施例1〜3の溶解開始電圧(3.6〜4.3V)よりも高く、塩素に対する耐食性がより良好になっている。   In Examples 4 to 7 in which aluminum is added by 8% by mass or less, the melting start voltage is 4.2 to 4.6 V, and the melting start voltage of Examples 1 to 3 in which aluminum is not added (3 .6 to 4.3 V), and the corrosion resistance to chlorine is better.

参考例1の抵抗薄膜は、タンタルとクロムからなる。溶解開始電圧は3.9Vと大きく、塩素に対する耐食性は良好であるが、抵抗温度係数が398ppm/℃と極めて大きくなっており、薄膜抵抗器に用いることは困難である。また、155℃において1000時間保持した後の抵抗変化率は0.15%であり、0.10%を超えており、高温安定性も十分とはいえない。   The resistive thin film of Reference Example 1 is made of tantalum and chromium. The melting start voltage is as large as 3.9 V and the corrosion resistance against chlorine is good, but the temperature coefficient of resistance is as extremely high as 398 ppm / ° C., so that it is difficult to use for a thin film resistor. Further, the rate of change in resistance after holding at 155 ° C. for 1000 hours is 0.15%, which exceeds 0.10%, and the high-temperature stability is not sufficient.

従来例1の抵抗薄膜は、ニッケルとクロムからなる。抵抗温度係数は7ppm/℃と小さく良好であるものの、溶解開始電圧は1.9Vと小さく、3.0Vを下回っており、塩素に対する耐食性が劣る。また、155℃において1000時間保持した後の抵抗変化率は0.42%であり、0.10%を大きく超えており、高温安定性も劣る。   The resistive thin film of Conventional Example 1 is made of nickel and chromium. Although the temperature coefficient of resistance is as small as 7 ppm / ° C. and good, the melting start voltage is as small as 1.9 V, which is below 3.0 V, and the corrosion resistance against chlorine is poor. Further, the resistance change rate after holding at 155 ° C. for 1000 hours is 0.42%, greatly exceeding 0.10%, and the high temperature stability is also inferior.

従来例2の抵抗薄膜は、ニッケルとクロムとアルミニウムとからなる。抵抗温度係数は15ppm/℃と小さく、絶対値が25ppm/℃以下であり、良好である。また、155℃において1000時間保持した後の抵抗変化率も0.05%と小さく、0.10%以下であり、良好である。しかし、溶解開始電圧は2.1Vと小さく、3.0Vを下回っており、塩素に対する耐食性が劣る。   The resistive thin film of Conventional Example 2 is made of nickel, chromium, and aluminum. The temperature coefficient of resistance is as small as 15 ppm / ° C., and the absolute value is 25 ppm / ° C. or less, which is favorable. Further, the rate of change in resistance after being held at 155 ° C. for 1000 hours is as small as 0.05%, which is good at 0.10% or less. However, the melting start voltage is as small as 2.1 V, which is lower than 3.0 V, and the corrosion resistance against chlorine is poor.

比較例1は、タンタルの含有量が26.3質量%であり、本発明の範囲の下限値である30質量%を下回っている。このため、溶解開始電圧が2.7Vと小さく、3.0Vを下回っており、塩素に対する耐食性が不十分である。   In Comparative Example 1, the tantalum content is 26.3% by mass, which is lower than the lower limit of 30% by mass of the range of the present invention. For this reason, the melting start voltage is as small as 2.7 V, which is lower than 3.0 V, and the corrosion resistance to chlorine is insufficient.

比較例2は、タンタルの含有量が62.4質量%であり、本発明の範囲の上限値である60質量%を上回っている。このため、抵抗温度係数が−28ppm/℃と負に大きく、絶対値が25ppm/℃を超えている。   In Comparative Example 2, the tantalum content is 62.4% by mass, which exceeds the upper limit of 60% by mass of the range of the present invention. For this reason, the temperature coefficient of resistance is as negative as −28 ppm / ° C., and the absolute value exceeds 25 ppm / ° C.

比較例3はCr/Ni質量比が0.47であり、本発明の範囲の下限値である0.5を下回っている。このため、抵抗温度係数が55ppm/℃と大きく、絶対値が25ppm/℃を超えている。また、溶解開始電圧が2.8Vと小さく、3.0Vを下回っており、塩素に対する耐食性が不十分である。さらに、155℃において1000時間保持した後の抵抗変化率が0.13%と0.10%を超えており、高温安定性も十分とはいえない。   In Comparative Example 3, the Cr / Ni mass ratio is 0.47, which is lower than 0.5 which is the lower limit value of the range of the present invention. For this reason, the resistance temperature coefficient is as large as 55 ppm / ° C., and the absolute value exceeds 25 ppm / ° C. Moreover, the melting start voltage is as small as 2.8V, and is less than 3.0V, and the corrosion resistance to chlorine is insufficient. Furthermore, the resistance change rate after holding at 155 ° C. for 1000 hours exceeds 0.13% and 0.10%, and the high-temperature stability is not sufficient.

比較例4はCr/Ni比が1.26であり、本発明の範囲の上限値である1.1を上回っている。このため、抵抗温度係数が−32ppm/℃と負に大きく、絶対値が25ppm/℃を超えている。また、155℃において1000時間保持した後の抵抗変化率が0.11%と0.10%を超えており、高温安定性も十分とはいえない。   In Comparative Example 4, the Cr / Ni ratio is 1.26, which exceeds 1.1 which is the upper limit value of the range of the present invention. For this reason, the temperature coefficient of resistance is as negative as −32 ppm / ° C., and the absolute value exceeds 25 ppm / ° C. In addition, the rate of change in resistance after holding at 155 ° C. for 1000 hours exceeds 0.11% and 0.10%, and the high-temperature stability is not sufficient.

比較例5はアルミニウムの含有量が8.5質量%であり、本発明の第二態様の範囲の上限値である8質量%を上回っている。このため、抵抗温度係数が−30ppm/℃と負に大きく、絶対値が25ppm/℃を超えている。   In Comparative Example 5, the aluminum content is 8.5% by mass, which exceeds the upper limit of 8% by mass of the range of the second aspect of the present invention. For this reason, the temperature coefficient of resistance is as negative as −30 ppm / ° C., and the absolute value exceeds 25 ppm / ° C.

作製した薄膜抵抗器の概略図である。It is the schematic of the produced thin film resistor. ウォータードロップ試験の概要を示す図である。It is a figure which shows the outline | summary of a water drop test. ウォータードロップ試験により測定した、実施例6および従来例1の水滴の両端に負荷する電圧と抵抗変化率との関係を示すグラフ図である。It is a graph which shows the relationship between the voltage applied to the both ends of the water droplet of Example 6 and the prior art example 1, and resistance change rate measured by the water drop test.

符号の説明Explanation of symbols

1 アルミナ基板
2 抵抗膜
3 金電極
4 水滴
5 定電圧電源
1 Alumina substrate 2 Resistive film 3 Gold electrode 4 Water drop 5 Constant voltage power supply

Claims (8)

Taを30〜60質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1である金属抵抗体材料。   A metal resistor material containing 30 to 60% by mass of Ta, the balance being Cr and Ni, and the mass ratio of Cr to Ni being 0.5 to 1.1. Taを30〜60質量%、Alを0〜8質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1である金属抵抗体材料。   A metal resistor material containing 30 to 60% by mass of Ta and 0 to 8% by mass of Al, the balance being made of Cr and Ni, wherein the mass ratio of Cr to Ni is 0.5 to 1.1. 請求項1または2に記載の金属抵抗体材料を用いた抵抗薄膜形成用のスパッタリングターゲット。   A sputtering target for forming a resistance thin film using the metal resistor material according to claim 1. Taを30〜60質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1であって、かつ、表面に酸化膜が形成されている抵抗薄膜。   A resistive thin film containing 30 to 60% by mass of Ta, the balance being Cr and Ni, the mass ratio of Cr to Ni being 0.5 to 1.1, and an oxide film being formed on the surface. Taを30〜60質量%、Alを0〜8質量%含み、残部はCrおよびNiからなり、CrのNiに対する質量比が0.5〜1.1であって、かつ、表面に酸化膜が形成されている抵抗薄膜。   30 to 60% by mass of Ta, 0 to 8% by mass of Al, the balance being made of Cr and Ni, the mass ratio of Cr to Ni being 0.5 to 1.1, and an oxide film on the surface The formed resistive thin film. 抵抗温度係数が±25ppm/℃以内であり、155℃の高温に1000時間保持した後の抵抗変化率が0.10%以下であり、酸性人工汗液を用いた電食試験において溶解開始電圧が3.0V以上であることを特徴とする請求項4または5に記載の抵抗薄膜。   The temperature coefficient of resistance is within ± 25 ppm / ° C., the rate of change in resistance after being held at a high temperature of 155 ° C. for 1000 hours is 0.10% or less, and the dissolution initiation voltage is 3 in the electrolytic corrosion test using acidic artificial sweat The resistance thin film according to claim 4 or 5, wherein the resistance thin film is 0.0 V or more. 請求項4〜6のいずれかに記載の抵抗薄膜を用いた薄膜抵抗器。   A thin film resistor using the resistive thin film according to claim 4. 請求項3に記載のスパッタリングターゲットを用いて、スパッタリング法により、絶縁材料基板上に抵抗薄膜を形成し、その後、該抵抗薄膜を大気中または酸素を微量含む不活性ガス中において、300〜650℃で1〜5時間熱処理することを特徴とする薄膜抵抗器の製造方法。   A resistance thin film is formed on an insulating material substrate by a sputtering method using the sputtering target according to claim 3, and then the resistance thin film is 300 to 650 ° C. in the atmosphere or in an inert gas containing a small amount of oxygen. A method of manufacturing a thin film resistor, wherein the heat treatment is performed for 1 to 5 hours.
JP2005002302A 2005-01-07 2005-01-07 Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof Active JP4622522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002302A JP4622522B2 (en) 2005-01-07 2005-01-07 Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002302A JP4622522B2 (en) 2005-01-07 2005-01-07 Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006190871A JP2006190871A (en) 2006-07-20
JP4622522B2 true JP4622522B2 (en) 2011-02-02

Family

ID=36797792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002302A Active JP4622522B2 (en) 2005-01-07 2005-01-07 Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4622522B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760177B2 (en) * 2005-07-14 2011-08-31 パナソニック株式会社 Thin film chip type electronic component and manufacturing method thereof
JP4622946B2 (en) * 2006-06-29 2011-02-02 住友金属鉱山株式会社 Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
WO2008015817A1 (en) * 2006-07-31 2008-02-07 Mitsumi Electric Co., Ltd. Connector for connecting electronic component
JP5045804B2 (en) * 2009-10-29 2012-10-10 住友金属鉱山株式会社 Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof
FR3002386A1 (en) * 2013-02-18 2014-08-22 Pierre Emile Jean Marie Pinsseau Amplifier i.e. voltage or power operational amplifier, for amplifying analog signals, has input attenuator implementing only resistive dipoles and/or networks of resistive dipoles formed in yarn or layer of resistive nickel-chromium alloy
CN109763100B (en) * 2019-01-25 2021-05-07 西安交通大学苏州研究院 Sensitive film in film pressure sensor and manufacturing method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694602A (en) * 1979-12-27 1981-07-31 Taisei Koki Kk Chrome tantalum thin film resistor
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material
JPS6027103A (en) * 1983-07-25 1985-02-12 株式会社タイセー Thin film metal resistor
JPS63147305A (en) * 1986-12-11 1988-06-20 Tdk Corp Metal thin-film resistor
JPH05205913A (en) * 1992-01-30 1993-08-13 Matsushita Electric Ind Co Ltd Manufacture of metal film fixed resistor
JP2000182803A (en) * 1998-12-10 2000-06-30 Akita Prefecture Thin-film resistor and its manufacture
JP2001068301A (en) * 1999-08-25 2001-03-16 Rohm Co Ltd Structure of thin film type resistor
JP2001110602A (en) * 1999-10-12 2001-04-20 Toshiba Tec Corp Thin-film resistor forming method and sensor
JP2005154884A (en) * 2003-11-04 2005-06-16 Sumitomo Metal Mining Co Ltd Resistance thin film material, and method of producing resistance thin film using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694602A (en) * 1979-12-27 1981-07-31 Taisei Koki Kk Chrome tantalum thin film resistor
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material
JPS6027103A (en) * 1983-07-25 1985-02-12 株式会社タイセー Thin film metal resistor
JPS63147305A (en) * 1986-12-11 1988-06-20 Tdk Corp Metal thin-film resistor
JPH05205913A (en) * 1992-01-30 1993-08-13 Matsushita Electric Ind Co Ltd Manufacture of metal film fixed resistor
JP2000182803A (en) * 1998-12-10 2000-06-30 Akita Prefecture Thin-film resistor and its manufacture
JP2001068301A (en) * 1999-08-25 2001-03-16 Rohm Co Ltd Structure of thin film type resistor
JP2001110602A (en) * 1999-10-12 2001-04-20 Toshiba Tec Corp Thin-film resistor forming method and sensor
JP2005154884A (en) * 2003-11-04 2005-06-16 Sumitomo Metal Mining Co Ltd Resistance thin film material, and method of producing resistance thin film using the same

Also Published As

Publication number Publication date
JP2006190871A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4622522B2 (en) Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof
TWI582247B (en) Ag alloy sputtering target and method of producing ag alloy film
WO2013129680A1 (en) Metal nitride material for thermistor, method for producing same, and film thermistor sensor
JP5477671B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6015426B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JPS61179501A (en) Resistor and manufacture thereof
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
JP4622946B2 (en) Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof.
JP4380586B2 (en) Thin film resistor and manufacturing method thereof
KR101840109B1 (en) Laminated wiring film for electronic components and sputtering target material for forming coating layer
JP4775140B2 (en) Sputtering target
JP5045804B2 (en) Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof
JP2014123647A (en) Metal nitride material for thermistor and method for manufacturing the same, and film type thermistor sensor
TWI525196B (en) Alloy thin film resistor
JP6115823B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JP3852446B2 (en) Resistance thin film material and method of manufacturing resistance thin film using the same
JPH0666162B2 (en) Thin film resistor for strain gauge
JP4238689B2 (en) Metal resistor and manufacturing method thereof
JP2005294612A5 (en)
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
JPS60204847A (en) Constant electric resistance alloy, production thereof and sensor using said alloy
JP2016136609A (en) Metal nitride material for thermistor, manufacturing method for the same and film type thermistor sensor
JP2004303804A (en) Ternary alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3