JP4622946B2 - Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof. - Google Patents
Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof. Download PDFInfo
- Publication number
- JP4622946B2 JP4622946B2 JP2006178901A JP2006178901A JP4622946B2 JP 4622946 B2 JP4622946 B2 JP 4622946B2 JP 2006178901 A JP2006178901 A JP 2006178901A JP 2006178901 A JP2006178901 A JP 2006178901A JP 4622946 B2 JP4622946 B2 JP 4622946B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- resistance
- mass
- resistive
- sputtering target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010409 thin film Substances 0.000 title claims description 102
- 238000005477 sputtering target Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 19
- 239000011810 insulating material Substances 0.000 claims description 14
- 229910052804 chromium Inorganic materials 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 238000004544 sputter deposition Methods 0.000 claims description 10
- 238000004090 dissolution Methods 0.000 claims description 9
- 238000005260 corrosion Methods 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 8
- 210000004243 sweat Anatomy 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 230000036962 time dependent Effects 0.000 claims 1
- 239000011651 chromium Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 150000003839 salts Chemical class 0.000 description 19
- 239000000203 mixture Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910018487 Ni—Cr Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 3
- 229910001362 Ta alloys Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
Description
本発明は、電子部品の薄膜抵抗器、薄膜抵抗器に用いられる抵抗薄膜、抵抗薄膜形成用のスパッタリングターゲットおよび抵抗薄膜材料に関する。 The present invention relates to a thin film resistor of an electronic component, a resistive thin film used for the thin film resistor, a sputtering target for forming the resistive thin film, and a resistive thin film material.
チップ抵抗器、精密抵抗器、ネットワーク抵抗器もしくは高圧抵抗器などの抵抗器、測温抵抗体もしくは感温抵抗器などの温度センサ、ハイブリットIC、または、これらの複合モジュール製品のような電子部品には、抵抗薄膜を使用した薄膜抵抗器が用いられている。 For electronic components such as chip resistors, precision resistors, resistors such as network resistors or high voltage resistors, temperature sensors such as resistance temperature detectors or temperature sensitive resistors, hybrid ICs, or composite module products thereof A thin film resistor using a resistive thin film is used.
薄膜抵抗器には、多くの場合、抵抗薄膜材料として、Ta合金、TaN化合物およびNi−Cr合金が用いられており、これらの中でもNi−Cr合金が最も一般的に用いられている。 In many cases, a thin film resistor uses a Ta alloy, a TaN compound, and a Ni—Cr alloy as a resistance thin film material, and among these, a Ni—Cr alloy is most commonly used.
薄膜抵抗器には、抵抗温度係数の絶対値が0に近いという優れた抵抗温度特性、高温保持における経時的抵抗変化率が小さいという優れた高温安定性、人の汗や海水などに対する良好な耐食性(耐塩水性)、体積抵抗値が高い(高抵抗)といった特性が要求される。このため、薄膜抵抗器を構成する抵抗薄膜においては、抵抗温度特性、高温安定性、耐塩水性、および高抵抗という4つの特性を同時に満足する必要がある。 Thin film resistors have excellent resistance-temperature characteristics where the absolute value of the temperature coefficient of resistance is close to 0, excellent high-temperature stability with a low rate of change in resistance over time, and good corrosion resistance against human sweat and seawater Characteristics such as (salt water resistance) and high volume resistance (high resistance) are required. For this reason, in the resistive thin film which comprises a thin film resistor, it is necessary to satisfy simultaneously four characteristics, a resistance temperature characteristic, high temperature stability, salt water resistance, and high resistance.
一般に、Ni−Cr合金では、Niに対するCrの質量比Cr/Niを調整することにより、抵抗温度特性の向上、または、高温安定性の向上を図ることができるが、前述の4つの特性を同時に満足することは困難である。 In general, in a Ni—Cr alloy, by adjusting the mass ratio Cr / Ni of Cr to Ni, resistance temperature characteristics can be improved or high temperature stability can be improved. It is difficult to be satisfied.
このため、特許第2542504号公報および特開平6−20803号公報に記載されているように、Ni−Cr−Al−Si合金のような4元素合金を用いることにより、前述の4つの特性を同時に改善することが検討されてきた。しかし、Ni−Cr−Al−Si合金は、耐塩水性について、Ta合金およびTaN化合物より劣るという問題がある。 For this reason, as described in Japanese Patent No. 2542504 and Japanese Patent Laid-Open No. 6-20803, by using a four-element alloy such as a Ni—Cr—Al—Si alloy, the above four characteristics can be simultaneously achieved. Improvements have been considered. However, the Ni—Cr—Al—Si alloy has a problem that the salt water resistance is inferior to that of the Ta alloy and the TaN compound.
一方、従来のTa合金またはTaN化合物を用いた薄膜抵抗器は、耐塩水性が良好であるものの、ある特定の膜厚以外では抵抗温度係数が安定せず、幅広い抵抗値の薄膜抵抗器を製造することが困難である。 On the other hand, although the conventional thin film resistor using Ta alloy or TaN compound has good salt water resistance, the temperature coefficient of resistance is not stable except for a specific film thickness, and a thin film resistor having a wide resistance value is manufactured. Is difficult.
さらに、薄膜抵抗器では、形成される抵抗薄膜の断面積と長さにより、抵抗値を制御するパターニングが行われる。同じ抵抗値の薄膜抵抗器では、抵抗薄膜の体積抵抗値が高いほど、パターニングに必要とする面積が小さくなり、薄膜抵抗器の小型化が可能となる。 Furthermore, in the thin film resistor, patterning for controlling the resistance value is performed according to the cross-sectional area and length of the formed resistance thin film. In a thin film resistor having the same resistance value, the higher the volume resistance value of the resistive thin film, the smaller the area required for patterning, and the thin film resistor can be miniaturized.
以上のように、従来の薄膜抵抗器においては、抵抗温度特性、高温安定性、および耐塩水性、および高抵抗という4つの特性を同時に満足していない。
本発明は、体積抵抗値が700μΩ・cm以上という高抵抗、抵抗温度係数が−25〜+25ppm/℃の範囲内という抵抗温度特性、155℃で1000時間の高温保持における経時的抵抗変化率が0.1%以下という高温安定性、および、酸性人工汗液(JIS L0848)を用いた電食試験における溶解開始電圧が3V以上であるという耐塩水性を、同時に備える薄膜抵抗器を提供することを目的とする。 The present invention has a high resistance with a volume resistance of 700 μΩ · cm or more, a resistance temperature characteristic with a temperature coefficient of resistance in the range of −25 to +25 ppm / ° C., and a rate of change in resistance with time at high temperature holding at 155 ° C. for 1000 hours is zero. The object is to provide a thin film resistor having simultaneously high temperature stability of 1% or less and salt water resistance that the dissolution starting voltage is 3 V or more in an electrolytic corrosion test using an acidic artificial sweat (JIS L0848). To do.
本発明の抵抗薄膜材料は、Taを20〜60質量%、Alを2〜10質量%、および、Moを0.5〜15質量%含み、残部はCrおよびNiからなり、Niに対するCrの質量比Cr/Niが0.75〜1.1であることを特徴とする。 The resistance thin film material of the present invention contains 20 to 60% by mass of Ta, 2 to 10% by mass of Al, and 0.5 to 15% by mass of Mo, the balance is made of Cr and Ni, and the mass of Cr with respect to Ni The ratio Cr / Ni is 0.75 to 1.1.
本発明の抵抗薄膜形成用のスパッタリングターゲットは、前記抵抗薄膜材料を用いて得られ、Taを20〜60質量%、Alを2〜10質量%、および、Moを0.5〜15質量%含み、残部はCrおよびNiからなり、Niに対するCrの質量比Cr/Niが0.75〜1.1であり、前記抵抗薄膜材料と同様の組成を有する。 The sputtering target for forming a resistance thin film of the present invention is obtained by using the resistance thin film material, and includes 20 to 60% by mass of Ta, 2 to 10% by mass of Al, and 0.5 to 15% by mass of Mo. The balance is made of Cr and Ni, and the Cr to Ni mass ratio Cr / Ni is 0.75 to 1.1, and has the same composition as the resistive thin film material.
本発明の抵抗薄膜は、前記スパッタリングターゲットを用いたスパッタリング法により得られ、Taを20〜60質量%、Alを2〜10質量%、および、Moを0.5〜15質量%含み、残部はCrおよびNiからなり、Niに対するCrの質量比Cr/Niが0.75〜1.1であり、前記抵抗薄膜材料およびこれを用いたスパッタリングターゲットと同様の組成を有する。 The resistive thin film of the present invention is obtained by a sputtering method using the sputtering target, includes 20 to 60% by mass of Ta, 2 to 10% by mass of Al, and 0.5 to 15% by mass of Mo, and the balance is It consists of Cr and Ni, the mass ratio Cr / Ni with respect to Ni is 0.75 to 1.1, and has the same composition as the resistive thin film material and the sputtering target using the same.
当該抵抗薄膜は、大気中または酸素を5〜30%含む不活性ガス雰囲気中、200〜600℃で、1〜10時間、熱処理されることにより、かかる抵抗薄膜を用いた薄膜抵抗器において、優れた特性を発揮する。 The resistance thin film is excellent in a thin film resistor using such a resistance thin film by being heat-treated at 200 to 600 ° C. for 1 to 10 hours in the atmosphere or in an inert gas atmosphere containing 5 to 30% oxygen. Demonstrate the characteristics.
具体的には、体積抵抗値が700μΩ・cm以上であり、抵抗温度係数が−25〜+25ppm/℃の範囲内であり、155℃で1000時間の高温保持における経時的抵抗変化率が0.1%以下であり、かつ、酸性人工汗液(JIS L0848)を用いた電食試験において溶解開始電圧が3V以上という特性を有する。 Specifically, the volume resistance value is 700 μΩ · cm or more, the temperature coefficient of resistance is in the range of −25 to +25 ppm / ° C., and the resistance change rate with time at high temperature holding at 155 ° C. for 1000 hours is 0.1. %, And in the electrolytic corrosion test using an acidic artificial sweat (JIS L0848), the dissolution starting voltage is 3 V or more.
本発明の薄膜抵抗器は、前記抵抗薄膜を用いて得られ、絶縁材料基板と、該絶縁材料基板上に形成された抵抗薄膜と、該絶縁材料基板上で該抵抗薄膜の両側に形成された電極とからなる。 A thin film resistor of the present invention is obtained using the resistive thin film, and is formed on an insulating material substrate, a resistive thin film formed on the insulating material substrate, and on both sides of the resistive thin film on the insulating material substrate. It consists of electrodes.
本発明の薄膜抵抗器の製造方法は、前記スパッタリングターゲットを用いて、スパッタリング法により、絶縁材料基板上に抵抗薄膜を形成し、その後、得られた抵抗薄膜を大気中または酸素を5〜30%含む不活性ガス雰囲気中、200〜600℃で、1〜10時間、熱処理をすることを特徴とする。 The manufacturing method of the thin film resistor of this invention forms a resistance thin film on an insulating-material board | substrate by sputtering method using the said sputtering target, Then, the atmosphere of an obtained resistance thin film or oxygen is 5 to 30%. Heat treatment is performed at 200 to 600 ° C. for 1 to 10 hours in an inert gas atmosphere.
本発明の抵抗薄膜材料をスパッタリングターゲットとして用いた場合、不活性ガス雰囲気中でスパッタリング法により成膜されたままの抵抗薄膜は、抵抗温度係数が負に大きく、体積抵抗値が低く、高温安定性および耐塩水性も不十分である。 When the resistance thin film material of the present invention is used as a sputtering target, the resistance thin film formed by sputtering in an inert gas atmosphere has a negative resistance large coefficient, a low volume resistance, and high temperature stability. And the salt water resistance is also insufficient.
しかしながら、それぞれの組成に応じて設定される条件における大気中での熱処理をさらに施すことで、抵抗温度係数を安定的に−25〜+25ppm/℃の範囲内とすることが可能となる。また、このように大気中での熱処理を施すことによって、抵抗薄膜の表面に緻密な酸化皮膜が形成され、体積抵抗値が高くなり、高温安定性および耐塩水性も向上する。 However, the temperature coefficient of resistance can be stably within the range of −25 to +25 ppm / ° C. by further performing heat treatment in the atmosphere under conditions set according to each composition. Further, by performing the heat treatment in the air in this manner, a dense oxide film is formed on the surface of the resistance thin film, the volume resistance value is increased, and high temperature stability and salt water resistance are improved.
得られた抵抗薄膜を用いた薄膜抵抗器は、従来のNi−Cr−Al−Si系合金による抵抗薄膜を用いた薄膜抵抗器と比較して、同様の抵抗温度係数および高温安定性が得られ、かつ、体積抵抗値と耐塩水性について格段に改善がなされている。その結果、高い精度の要求される電子部品を高抵抗化することができ、さらには、高抵抗化した電子部品を、高温中や、人の汗や海水と接触する厳しい環境下で使用することを可能にするという顕著な効果を有する。 The thin film resistor using the obtained resistance thin film has the same resistance temperature coefficient and high temperature stability as compared with the conventional thin film resistor using the resistance thin film made of Ni-Cr-Al-Si alloy. In addition, the volume resistance value and salt water resistance are greatly improved. As a result, it is possible to increase the resistance of electronic components that require high accuracy, and to use the high resistance electronic components in high temperatures or in harsh environments that come into contact with human sweat or seawater. It has a remarkable effect of enabling.
本発明者らは、鋭意研究を重ねた結果、従来から抵抗薄膜材料として使用されているNi−Cr合金に対して、耐食性が良好で表面酸化皮膜に濃化しやすいAl、TaおよびMoを添加した抵抗薄膜材料をスパッタリングターゲットとして用いて、絶縁材料基板上に抵抗薄膜を形成することにより得られる薄膜抵抗器は、体積抵抗値が高く、抵抗温度特性、高温安定性、および耐塩水性のいずれもが良好であるとの知見を得て、本発明を完成させた。 As a result of intensive research, the inventors have added Al, Ta, and Mo, which have good corrosion resistance and are easily concentrated in the surface oxide film, to the Ni-Cr alloy conventionally used as a resistance thin film material. A thin film resistor obtained by forming a resistive thin film on an insulating material substrate using a resistive thin film material as a sputtering target has a high volume resistance value, and resistance temperature characteristics, high temperature stability, and salt water resistance are all present. Obtaining knowledge that it is good, the present invention has been completed.
本発明の抵抗薄膜材料は、Taを20〜60質量%、Alを2〜10質量%、Moを0.5〜15質量%含み、残部がCrおよびNiからなり、Niに対するCrの質量比Cr/Niが0.75〜1.1である組成を有する。なお、抵抗薄膜材料は、前記組成に特徴を有しているものであり、その形態には制限はない。したがって、抵抗薄膜形成の過程にある、前記組成範囲にある混合された原料、該原料を溶解して得られるインゴット、該インゴットを加工して得られるスパッタリングターゲット、ないしは、蒸着用ターゲット、さらには、これらのターゲットを用いてスパッタリング法ないしは電子ビーム法、抵抗加熱式蒸着法により得られる抵抗薄膜まで広く含む概念である。 The resistive thin film material of the present invention contains 20 to 60% by mass of Ta, 2 to 10% by mass of Al, 0.5 to 15% by mass of Mo, the balance is made of Cr and Ni, and the mass ratio Cr of Cr to Ni / Ni has a composition of 0.75 to 1.1. The resistive thin film material is characterized by the above composition, and there is no limitation on its form. Therefore, in the process of forming a resistance thin film, a mixed raw material in the composition range, an ingot obtained by dissolving the raw material, a sputtering target obtained by processing the ingot, or a deposition target, It is a concept that broadly includes resistance thin films obtained by sputtering, electron beam, or resistance heating vapor deposition using these targets.
本発明の抵抗薄膜材料を構成する成分について、それぞれの成分に係る限定理由を、以下に説明する。 The reasons for limiting the components constituting the resistive thin film material of the present invention will be described below.
Taは、主として、体積抵抗値の上昇および耐塩水性の改善に効果を有する。Taの含有率が20質量%未満では、添加効果が十分ではなく、60質量%を超えると、抵抗温度係数が負に大きくなり、抵抗温度係数の絶対値を0付近とするための熱処理温度が、高くなると共に、熱処理温度の温度幅も狭くなる。 Ta mainly has an effect of increasing the volume resistivity and improving the salt water resistance. When the content of Ta is less than 20% by mass, the effect of addition is not sufficient. When the content exceeds 60% by mass, the temperature coefficient of resistance increases negatively, and the heat treatment temperature for setting the absolute value of the resistance temperature coefficient to near 0 is low. As the temperature increases, the temperature range of the heat treatment temperature also decreases.
Moは、体積抵抗値の上昇に効果があると共に、熱処理温度に対する抵抗温度係数の変化を緩やかにし、抵抗温度係数を0付近とする熱処理温度の温度幅を広げる効果を有する。Moの含有率が0.5質量%未満では、添加効果が十分ではなく、15質量%を超えると、熱処理温度に対する抵抗温度係数の変化が小さく、抵抗温度係数を0付近とすることが困難になると共に、高温安定性も低下する。 Mo has the effect of increasing the volume resistance value, and has the effect of moderating the change of the resistance temperature coefficient with respect to the heat treatment temperature and widening the temperature range of the heat treatment temperature to make the resistance temperature coefficient near zero. When the Mo content is less than 0.5% by mass, the effect of addition is not sufficient, and when it exceeds 15% by mass, the change of the resistance temperature coefficient with respect to the heat treatment temperature is small, making it difficult to make the resistance temperature coefficient near zero. At the same time, the high temperature stability also decreases.
Alは、高温安定性の改善に効果を有する。Alの含有率が2質量%未満であるか、または10質量%を超えると、高温安定性の改善の効果が失われる。 Al is effective in improving high temperature stability. If the Al content is less than 2% by mass or exceeds 10% by mass, the effect of improving high-temperature stability is lost.
熱処理後の抵抗薄膜には、表面にCr酸化膜が形性され、このCr酸化膜と金属界面との間に、Cr、Ta、Mo、Alからなる酸化膜が形性される。後者のTa、Mo、Alを含む酸化膜の存在により、Cr酸化膜溶解後にも高い耐塩水性が確保され、また当該酸化膜が金属イオンの外方拡散の障壁として作用することにより、高温安定性が改善される。 A Cr oxide film is formed on the surface of the resistive thin film after the heat treatment, and an oxide film made of Cr, Ta, Mo, Al is formed between the Cr oxide film and the metal interface. The presence of the latter oxide film containing Ta, Mo, and Al ensures high salt water resistance even after dissolution of the Cr oxide film, and the oxide film acts as a barrier to the outward diffusion of metal ions, thereby maintaining high temperature stability. Is improved.
CrおよびNiは、主として、抵抗温度特性および高温安定性の改善に効果を有する。Niに対するCrの質量比Cr/Niが0.75未満であると、抵抗温度係数が正に大きくなり、一方、1.1を超えると、高温安定性が悪くなり、製造上の再現性が悪化する。 Cr and Ni are mainly effective in improving resistance temperature characteristics and high temperature stability. If the Cr to Ni mass ratio Cr / Ni is less than 0.75, the temperature coefficient of resistance increases positively. On the other hand, if it exceeds 1.1, the high temperature stability deteriorates and the reproducibility in production deteriorates. To do.
本発明のスパッタリングターゲットは、前記組成を有するように配合した原料、たとえば、電気ニッケル、電解クロム、アルミニウムショット、タンタル板、粉末モリブデンを、真空溶解炉でArガス中、1500℃の条件で、溶解し、冷却することによりインゴットを作製し、得られたインゴットに対して均質化処理を施し、該インゴットを適切な形状に加工することにより得られる。また、本発明のインゴットは、脆性なCr2Ta相を含み、割れやすいことから、得られたインゴットをスタンプミルなどで粉砕し、ホットプレス法により、Arガス中、1150℃の条件で焼結することによりスパッタリングターゲットとすることも有効である。 The sputtering target of the present invention dissolves raw materials, for example, electric nickel, electrolytic chromium, aluminum shot, tantalum plate, and powdered molybdenum, having the above composition, in Ar gas in a vacuum melting furnace at 1500 ° C. Then, it is obtained by producing an ingot by cooling, homogenizing the obtained ingot, and processing the ingot into an appropriate shape. In addition, since the ingot of the present invention contains a brittle Cr 2 Ta phase and is easily broken, the obtained ingot is pulverized with a stamp mill or the like, and sintered in Ar gas at 1150 ° C. by a hot press method. It is also effective to use a sputtering target.
本発明の抵抗薄膜形成用スパッタリングターゲットを用いて、スパッタリング法により、Arガス中、300Vの条件で絶縁材料基板上に抵抗薄膜を形成する。該抵抗薄膜は、Ta−Al−Mo−Cr−Ni合金からなり、その組成はスパッタリングターゲットに用いた抵抗薄膜材料の組成と実質的に同一である。ただし、不活性雰囲気中でスパッタリング法により成膜されたままの抵抗薄膜は、抵抗温度係数が負に大きく、体積抵抗値が低く、高温安定性および耐塩水性も不十分である。 Using the sputtering target for forming a resistance thin film of the present invention, a resistance thin film is formed on an insulating material substrate in a Ar gas at 300 V by sputtering. The resistance thin film is made of a Ta—Al—Mo—Cr—Ni alloy, and its composition is substantially the same as the composition of the resistance thin film material used for the sputtering target. However, a resistance thin film that has been formed by sputtering in an inert atmosphere has a negative resistance temperature coefficient, a low volume resistance value, and insufficient high-temperature stability and salt water resistance.
したがって、その後、得られた抵抗薄膜に対して、組成に応じて、大気中、200℃〜600℃で、1〜10時間、熱処理を施すことにより、抵抗温度係数の安定化を図ることが必要である。 Therefore, it is necessary to stabilize the temperature coefficient of resistance by heat-treating the obtained resistance thin film in the atmosphere at 200 ° C. to 600 ° C. for 1 to 10 hours, depending on the composition. It is.
この場合、熱処理の温度が200℃未満では、得られる薄膜抵抗器の抵抗温度係数が安定せず、一方、600℃を超えると、薄膜抵抗器の抵抗温度係数が正に大きくなってしまう。また、熱処理の時間が1時間未満では、薄膜抵抗器の抵抗温度係数が安定せず、一方、10時間を超えても、抵抗安定性に対する効果の増大は見られないので、コストアップとなる。 In this case, if the temperature of the heat treatment is less than 200 ° C., the resistance temperature coefficient of the thin film resistor to be obtained is not stable, whereas if it exceeds 600 ° C., the resistance temperature coefficient of the thin film resistor is positively increased. Further, if the heat treatment time is less than 1 hour, the temperature coefficient of resistance of the thin film resistor is not stable. On the other hand, if the heat treatment time exceeds 10 hours, an increase in the effect on the resistance stability is not observed, resulting in an increase in cost.
これらの条件は、組成に応じて、前記範囲より適宜選択されるが、当該条件は実験的に求められる。Moの添加により、所定の組成に対する熱処理、特に温度幅を拡げることができる。たとえば、22.5%Ni−22.5%Cr−5.0%Al−50.0%Taからなる合金と、この合金に対してMoを2%または5%添加した合金とに対し、抵抗温度係数が−25〜+25ppm/℃となる熱処理の温度幅を調べると、それぞれ、5℃、15℃、40℃となり、Mo量が増えるに従い熱処理の温度幅が拡がる。 These conditions are appropriately selected from the above range depending on the composition, but the conditions are obtained experimentally. By adding Mo, heat treatment for a predetermined composition, in particular, the temperature range can be expanded. For example, resistance to an alloy composed of 22.5% Ni-22.5% Cr-5.0% Al-50.0% Ta and an alloy obtained by adding 2% or 5% of Mo to this alloy. When the temperature ranges of the heat treatment with a temperature coefficient of −25 to +25 ppm / ° C. are examined, they become 5 ° C., 15 ° C., and 40 ° C., respectively, and the temperature range of the heat treatment increases as the amount of Mo increases.
なお、熱処理を行う雰囲気は、大気に代えて酸素を微量(5〜30%)含んだ不活性ガス雰囲気としてもよい。また、この大気中での熱処理の前に、真空中で熱処理をして抵抗温度係数の調整を行ってもよい。 Note that the atmosphere for the heat treatment may be an inert gas atmosphere containing a small amount of oxygen (5 to 30%) instead of the air. Further, before the heat treatment in the atmosphere, the resistance temperature coefficient may be adjusted by heat treatment in a vacuum.
適切な条件を選択した熱処理により、該抵抗薄膜は、体積抵抗値が700μΩ・cm以上、好ましくは、1000μΩ・cm以上であり、抵抗温度係数が−25〜+25ppm/℃の範囲内、好ましくは、−10〜+10ppm/℃の範囲内であり、155℃で1000時間の高温保持における経時的抵抗変化率が0.1%以下、好ましくは、0.05%以下であり、かつ、酸性人工汗液(JIS L0848)を用いた電食試験において溶解開始電圧が3V以上であり、高抵抗であるとともに、優れた抵抗温度係数、高温安定性および耐塩水性を同時に達成する。 By the heat treatment with appropriate conditions selected, the resistive thin film has a volume resistance value of 700 μΩ · cm or more, preferably 1000 μΩ · cm or more, and a resistance temperature coefficient in the range of −25 to +25 ppm / ° C., preferably It is within the range of −10 to +10 ppm / ° C., and the resistance change rate with time at high temperature holding at 155 ° C. for 1000 hours is 0.1% or less, preferably 0.05% or less. In the electrolytic corrosion test using JIS L0848), the melting start voltage is 3 V or more, and the resistance is high, and at the same time, excellent resistance temperature coefficient, high temperature stability and salt water resistance are achieved.
本発明に係る薄膜抵抗器は、図1に示すように、絶縁材料基板(1)と、該絶縁材料基板(1)上に形成された抵抗薄膜(2)と、該絶縁材料基板(1)上で該抵抗薄膜(2)の両側に形成された電極(3)とからなる。なお、絶縁材料基板(1)としては、アルミナ基板のほかに、SiO2を用いることができる。また、電極(3)としては、Au電極のほかに、Cr、Ni、Cuなどを用いることができる。 As shown in FIG. 1, the thin film resistor according to the present invention includes an insulating material substrate (1), a resistive thin film (2) formed on the insulating material substrate (1), and the insulating material substrate (1). It consists of electrodes (3) formed on both sides of the resistive thin film (2). In addition to the alumina substrate, SiO 2 can be used as the insulating material substrate (1). As the electrode (3), Cr, Ni, Cu or the like can be used in addition to the Au electrode.
[実施例1]
表1に示した組成となるように配合した原料(電気ニッケル、電解クロム、アルミニウムショット、タンタル板、粉末モリブデン)を真空溶解炉で溶解し、約2kgのインゴットを作製した。得られたインゴットに均質化処理を施した後、ワイヤーカットで厚さ5mm、直径150mmの丸板を切り出し、上下面を研削してスパッタリングターゲットとした。
[Example 1]
Raw materials (electrical nickel, electrolytic chromium, aluminum shot, tantalum plate, powdered molybdenum) blended so as to have the composition shown in Table 1 were melted in a vacuum melting furnace to produce about 2 kg of ingot. After homogenizing the obtained ingot, a round plate having a thickness of 5 mm and a diameter of 150 mm was cut by wire cutting, and the upper and lower surfaces were ground to obtain a sputtering target.
成膜工程は、カソードスパッタリング法によって以下のように行った。真空室にアルミナ基板を装入し、1×10-4Paに排気した後、純度99.9995%のアルゴンガスを導入して、0.3Paの圧力に保ち、スパッタリングパワー0.3kWで、膜厚が500Åとなるように、前記アルミナ基板上に抵抗薄膜を成膜した。なお、成膜法としては、電子ビーム、抵抗加熱式蒸着法などを用いることもできる。 The film forming process was performed by the cathode sputtering method as follows. An alumina substrate is charged into a vacuum chamber and evacuated to 1 × 10 −4 Pa. Then, an argon gas having a purity of 99.9995% is introduced and maintained at a pressure of 0.3 Pa, with a sputtering power of 0.3 kW. A resistive thin film was formed on the alumina substrate so as to have a thickness of 500 mm. Note that as a film formation method, an electron beam, a resistance heating evaporation method, or the like can be used.
得られた抵抗薄膜の両端に、膜厚が5000ÅのAu電極を、前述と同様にカソードスパッタリング法により成膜し、その後、大気中、520℃で、3時間の熱処理を行うことにより、アルミナ基板、熱処理を受けた抵抗薄膜、およびAu電極からなる薄膜抵抗器を得た。 An Au electrode having a film thickness of 5000 mm is formed on both ends of the obtained resistance thin film by the cathode sputtering method in the same manner as described above, and then heat-treated at 520 ° C. for 3 hours in the atmosphere to obtain an alumina substrate. A thin film resistor comprising a heat-treated resistive thin film and an Au electrode was obtained.
得られた薄膜抵抗器について、以下のように、体積抵抗値の測定と、抵抗温度特性、高温安定性、および耐塩水性の評価を行った。 About the obtained thin film resistor, measurement of volume resistance value and evaluation of resistance temperature characteristics, high temperature stability, and salt water resistance were performed as follows.
体積抵抗値は、得られた薄膜抵抗器を恒温漕に入れて測定された25℃における抵抗値と、Au電極間の抵抗薄膜の面積および膜厚とから算出した。 The volume resistance value was calculated from the resistance value at 25 ° C. measured by putting the obtained thin film resistor in a thermostat, and the area and film thickness of the resistive thin film between Au electrodes.
抵抗温度特性については、得られた薄膜抵抗器を恒温漕に入れ、25℃と125℃における抵抗値を測定することにより、抵抗温度係数を算出した。 Regarding the resistance temperature characteristics, the temperature coefficient of resistance was calculated by putting the obtained thin film resistor in a thermostatic oven and measuring the resistance values at 25 ° C. and 125 ° C.
高温安定性については、得られた薄膜抵抗器を155℃の恒温漕内に1000時間保持した前後で測定した抵抗値から算出した抵抗変化率(155℃、1000時間)を測定した。 For high temperature stability, the rate of change in resistance (155 ° C., 1000 hours) calculated from the resistance value measured before and after the obtained thin film resistor was held in a constant temperature bath at 155 ° C. for 1000 hours was measured.
耐塩水性については、得られた薄膜抵抗器について、以下のような電食試験(ウォータードロップ試験)を行い、溶解開始電圧を測定した。 About salt water resistance, the following electrolytic corrosion tests (water drop test) were performed about the obtained thin film resistor, and the dissolution start voltage was measured.
まず、抵抗薄膜(2)の初期抵抗値をデジタルマルチメータにより四端子法により測定した。次に、図2に示すように、マイクロシリンジで、抵抗薄膜(2)の中央に酸性人工汗液(JIS L0848)を30μL滴下し、液滴(4)の直径およびAu電極(3)の間の長さから、液滴(4)の両端に負荷される電圧(Vd)が1VとなるようにAu電極(3)の間の電圧(Vp)を調整した。Au電極(3)の間の電圧(Vp)を一定として、3分間電圧を負荷した後、水洗および乾燥を行い、四端子法により抵抗値を測定し、電圧負荷前後の抵抗変化率を測定した。 First, the initial resistance value of the resistance thin film (2) was measured with a digital multimeter by the four-terminal method. Next, as shown in FIG. 2, 30 μL of acidic artificial sweat (JIS L0848) was dropped on the center of the resistance thin film (2) with a microsyringe, between the diameter of the droplet (4) and the Au electrode (3). From the length, the voltage (Vp) between the Au electrodes (3) was adjusted so that the voltage (Vd) applied to both ends of the droplet (4) was 1V. The voltage (Vp) between the Au electrodes (3) was kept constant, and the voltage was loaded for 3 minutes, followed by washing with water and drying. The resistance value was measured by the four probe method, and the resistance change rate before and after voltage loading was measured. .
このような測定を、液滴(4)の両端に負荷される電圧(Vd)が1Vから0.2V刻みで上昇するように、Au電極(3)の間の電圧(Vp)を調整して繰り返すことにより、抵抗変化率が0.2%を超えた時の液滴(4)の両端に負荷される電圧(Vd)を得て、抵抗薄膜(2)の溶解開始電圧とした。 In such a measurement, the voltage (Vp) between the Au electrodes (3) is adjusted so that the voltage (Vd) applied to both ends of the droplet (4) rises from 1V in increments of 0.2V. By repeating, the voltage (Vd) applied to both ends of the droplet (4) when the resistance change rate exceeded 0.2% was obtained and used as the dissolution start voltage of the resistance thin film (2).
したがって、得られる溶解開始電圧は、酸性人工汗液(JIS L0848)を滴下し両端のAu電極間に一定の電圧で3分間電圧を負荷し水洗および乾燥を行って測定される抵抗変化率が0.2%を超えるという条件を満足する際に測定される液滴の両端の電圧のうちの最小値である。 Accordingly, the dissolution starting voltage obtained has a rate of change in resistance measured by dropping acidic artificial sweat (JIS L0848), applying a voltage between Au electrodes at both ends at a constant voltage for 3 minutes, washing with water, and drying. This is the minimum value of the voltage across the droplet measured when the condition of exceeding 2% is satisfied.
体積抵抗値、抵抗温度係数、抵抗変化率(155℃、1000時間)、および溶解開始電圧の測定結果を、表1に示す。 Table 1 shows the measurement results of the volume resistance value, the temperature coefficient of resistance, the rate of change in resistance (155 ° C., 1000 hours), and the dissolution start voltage.
[実施例2〜4および比較例1〜6]
表1に示した組成となるように、構成元素および配合割合を変え、さらに、表1に示した熱処理温度とした以外は、実施例1と同様にして、それぞれの薄膜抵抗器を得た。
[Examples 2 to 4 and Comparative Examples 1 to 6]
The respective thin film resistors were obtained in the same manner as in Example 1 except that the constituent elements and the blending ratio were changed so that the composition shown in Table 1 was obtained, and the heat treatment temperature shown in Table 1 was used.
得られた薄膜抵抗器について、実施例1と同様に、測定および評価を行った。体積抵抗値、抵抗温度係数、抵抗変化率(155℃、1000時間)、および溶解開始電圧の測定結果を、表1に示す。 The obtained thin film resistor was measured and evaluated in the same manner as in Example 1. Table 1 shows the measurement results of the volume resistance value, the temperature coefficient of resistance, the rate of change in resistance (155 ° C., 1000 hours), and the dissolution start voltage.
実施例1〜4は、いずれも体積抵抗値が700μΩ・cm以上であり、抵抗温度係数が−25〜+25ppm/℃の範囲内であり、抵抗変化率(155℃、1000時間)が0.1%以下であり、かつ、溶解開始電圧が3V以上である。主な従来技術である比較例1〜3と比較して、きわめて高い体積抵抗値と、同様の抵抗温度係数を維持しつつ、良好な高温安定性および耐塩水性を示した。 In each of Examples 1 to 4, the volume resistance value is 700 μΩ · cm or more, the resistance temperature coefficient is in the range of −25 to +25 ppm / ° C., and the resistance change rate (155 ° C., 1000 hours) is 0.1. %, And the melting start voltage is 3 V or more. Compared with Comparative Examples 1 to 3 which is the main prior art, it exhibited good high temperature stability and salt water resistance while maintaining a very high volume resistance value and a similar resistance temperature coefficient.
比較例4は、Moが0.5質量%未満であり、抵抗温度特性が不足していた。 In Comparative Example 4, Mo was less than 0.5% by mass, and the resistance temperature characteristics were insufficient.
比較例5は、Alが10質量%を超え、Moが15質量%を超え、高温安定性が不足していた。また、Taが20質量%未満であり、耐塩水性も不足していた。 In Comparative Example 5, Al exceeded 10 mass%, Mo exceeded 15 mass%, and high-temperature stability was insufficient. Moreover, Ta was less than 20 mass%, and salt water resistance was also insufficient.
比較例6は、Taが60質量%を超え、Moが0.5質量%未満であり、抵抗温度特性が不足していた。 In Comparative Example 6, Ta was more than 60% by mass, Mo was less than 0.5% by mass, and the resistance temperature characteristics were insufficient.
以上の結果から、本発明により、薄膜抵抗器において、抵抗温度特性、高温安定性、および耐塩水性の向上を同時に図ることができ、さらに、高抵抗を実現することができる。 From the above results, according to the present invention, in the thin film resistor, it is possible to simultaneously improve resistance temperature characteristics, high temperature stability, and salt water resistance, and to realize high resistance.
1 アルミナ基板
2 抵抗薄膜
3 Au電極
4 液滴
5 定電圧電源
1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006178901A JP4622946B2 (en) | 2006-06-29 | 2006-06-29 | Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006178901A JP4622946B2 (en) | 2006-06-29 | 2006-06-29 | Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008010604A JP2008010604A (en) | 2008-01-17 |
JP4622946B2 true JP4622946B2 (en) | 2011-02-02 |
Family
ID=39068558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006178901A Active JP4622946B2 (en) | 2006-06-29 | 2006-06-29 | Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4622946B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4760177B2 (en) * | 2005-07-14 | 2011-08-31 | パナソニック株式会社 | Thin film chip type electronic component and manufacturing method thereof |
JP5045804B2 (en) * | 2009-10-29 | 2012-10-10 | 住友金属鉱山株式会社 | Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof |
JP5824330B2 (en) | 2011-11-07 | 2015-11-25 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method of semiconductor device |
CN111275668B (en) * | 2020-01-13 | 2023-09-15 | 浙江杜比医疗科技有限公司 | Method, system and device for extracting breast blood vessels of NIR (near infrared) image |
JP7089555B2 (en) * | 2020-07-03 | 2022-06-22 | 大同特殊鋼株式会社 | Manufacturing method of current detection resistor, circuit board and current detection resistor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5694602A (en) * | 1979-12-27 | 1981-07-31 | Taisei Koki Kk | Chrome tantalum thin film resistor |
JPS5822379A (en) * | 1981-07-30 | 1983-02-09 | Tama Denki Kogyo Kk | Target for sputtering |
JPS58119601A (en) * | 1982-01-08 | 1983-07-16 | 株式会社東芝 | Resistor |
JPS63287002A (en) * | 1987-05-08 | 1988-11-24 | デール エレクトロニクス インコーポレーテッド | Electric resistor, its manufacture and alloy employed as electric resistor conductor |
JP2000182803A (en) * | 1998-12-10 | 2000-06-30 | Akita Prefecture | Thin-film resistor and its manufacture |
JP2001110602A (en) * | 1999-10-12 | 2001-04-20 | Toshiba Tec Corp | Thin-film resistor forming method and sensor |
JP2005290401A (en) * | 2004-03-31 | 2005-10-20 | Sumitomo Metal Mining Co Ltd | Metal resistor material, sputtering target and resistance thin film |
JP2006190871A (en) * | 2005-01-07 | 2006-07-20 | Sumitomo Metal Mining Co Ltd | Metal resistance material, resistance thin film, sputtering target, thin film resistor and manufacturing methods thereof |
JP2008007810A (en) * | 2006-06-29 | 2008-01-17 | Sumitomo Metal Mining Co Ltd | Sputtering target |
-
2006
- 2006-06-29 JP JP2006178901A patent/JP4622946B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5694602A (en) * | 1979-12-27 | 1981-07-31 | Taisei Koki Kk | Chrome tantalum thin film resistor |
JPS5822379A (en) * | 1981-07-30 | 1983-02-09 | Tama Denki Kogyo Kk | Target for sputtering |
JPS58119601A (en) * | 1982-01-08 | 1983-07-16 | 株式会社東芝 | Resistor |
JPS63287002A (en) * | 1987-05-08 | 1988-11-24 | デール エレクトロニクス インコーポレーテッド | Electric resistor, its manufacture and alloy employed as electric resistor conductor |
JP2000182803A (en) * | 1998-12-10 | 2000-06-30 | Akita Prefecture | Thin-film resistor and its manufacture |
JP2001110602A (en) * | 1999-10-12 | 2001-04-20 | Toshiba Tec Corp | Thin-film resistor forming method and sensor |
JP2005290401A (en) * | 2004-03-31 | 2005-10-20 | Sumitomo Metal Mining Co Ltd | Metal resistor material, sputtering target and resistance thin film |
JP2006190871A (en) * | 2005-01-07 | 2006-07-20 | Sumitomo Metal Mining Co Ltd | Metal resistance material, resistance thin film, sputtering target, thin film resistor and manufacturing methods thereof |
JP2008007810A (en) * | 2006-06-29 | 2008-01-17 | Sumitomo Metal Mining Co Ltd | Sputtering target |
Also Published As
Publication number | Publication date |
---|---|
JP2008010604A (en) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4622946B2 (en) | Resistance thin film material, sputtering target for forming resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof. | |
JP4622522B2 (en) | Metal resistor material, resistance thin film, sputtering target, thin film resistor, and manufacturing method thereof | |
JP4380586B2 (en) | Thin film resistor and manufacturing method thereof | |
JP5045804B2 (en) | Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof | |
JP4775140B2 (en) | Sputtering target | |
CN106340361B (en) | Thin film resistor and its manufacturing method | |
TWI525196B (en) | Alloy thin film resistor | |
JP4042714B2 (en) | Metal resistor material, sputtering target and resistive thin film | |
JP4895481B2 (en) | Resistance thin film and sputtering target for forming the resistance thin film | |
JP3852446B2 (en) | Resistance thin film material and method of manufacturing resistance thin film using the same | |
CN102117670B (en) | Resistor material, resistance film form by sputtering target, resistance film, thin film resistor and their manufacture method | |
JP4136755B2 (en) | PTC thermistor made of ternary alloy material | |
JPWO2020090309A1 (en) | Thermistor sintered body and temperature sensor element | |
JP2005294612A5 (en) | ||
JP4742758B2 (en) | Thin film resistor and manufacturing method thereof | |
JPWO2020090489A1 (en) | Thermistor sintered body and temperature sensor element | |
JP4238689B2 (en) | Metal resistor and manufacturing method thereof | |
JP6627993B2 (en) | Cu-Ni alloy sputtering target | |
JP7087741B2 (en) | A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. | |
KR20110047145A (en) | Material for a resistor, a sputtering target for forming resistance thin film, a resistance thin film, a thin film resistor, and manufacturing method thereof | |
JP4073658B2 (en) | Ternary alloy material | |
JP4071458B2 (en) | Manufacturing method of resistors | |
KR20230132862A (en) | Cr-Si based film | |
WO2019167564A1 (en) | Cu-Ni ALLOY SPUTTERING TARGET | |
JP2022060753A (en) | Electric resistance material, resistor for current detection, and manufacturing method of electric resistance material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4622946 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |